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Abstract

Purpose: Respiratory variation can increase the variability of tumor position and volume, ac-
counting for larger treatment margins and longer treatment times. Audiovisual biofeedback as a
breath-hold technique could be used to improve the reproducibility of lung tumor positions at
inhalation and exhalation for the radiation therapy of mobile lung tumors. This study aimed to
assess the impact of audiovisual biofeedback breath-hold (AVBH) on interfraction lung tumor
position reproducibility and volume consistency for respiratory-gated lung cancer radiation
therapy.
Methods: Lung tumor position and volume were investigated in 9 patients with lung cancer who
underwent a breath-hold training session with AVBH before 2 magnetic resonance imaging (MRI)
sessions. During the first MRI session (before treatment), inhalation and exhalation breath-hold 3-
dimensional MRI scans with conventional breath-hold (CBH) using audio instructions alone and
AVBH were acquired. The second MRI session (midtreatment) was repeated within 6 weeks after
the first session. Gross tumor volumes (GTVs) were contoured on each dataset. CBH and AVBH
were compared in terms of tumor position reproducibility as assessed by GTV centroid position
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and position range (defined as the distance of GTV centroid position between inhalation and
exhalation) and tumor volume consistency as assessed by GTV between inhalation and exhalation.
Results: Compared with CBH, AVBH improved the reproducibility of interfraction GTV centroid
position by 46% (P Z .009) from 8.8 mm to 4.8 mm and GTV position range by 69% (P Z .052)
from 7.4 mm to 2.3 mm. Compared with CBH, AVBH also improved the consistency of intra-
fraction GTVs by 70% (P Z .023) from 7.8 cm3 to 2.5 cm3.
Conclusions: This study demonstrated that audiovisual biofeedback can be used to improve the
reproducibility and consistency of breath-hold lung tumor position and volume, respectively. These
results may provide a pathway to achieve more accurate lung cancer radiation treatment in addition
to improving various medical imaging and treatments by using breath-hold procedures.
ª 2017 the Authors. Published by Elsevier Inc. on behalf of the American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Breath-hold techniques are frequently used to immo-
bilize respiratory-induced tumor motion, leading to the
reduction of respiratory-related motion artifacts in medi-
cal imaging and clinically meaningful tumor positions and
shapes in respiratory-gated radiation treatment.1-8 In
addition, the immobilization of lung tumors1 can reduce
phase or time shift between surrogates (ie, abdomen,
chest, and diaphragm) and tumors9 and system latency
between tumor positioning and gating.10 Immobilizing the
tumor position is advantageous in reducing treatment
margins and treatment delivery time.6,11

Several breath-hold strategies have been studied and
practiced to maintain the same level of breathing in
repeated breath-holds. Deep inspiration breath-hold has
improved the reproducibility of intra- and interfraction
target positions compared with free-breathing.2,3 Con-
ventional breath-hold (inhalation and exhalation positions
of free breathing) using the audio instructions of a
computed tomography (CT) scanner (automated “breathe
in”, “breathe out”, and “hold your breath” commands)
reduced the variation of exhalation diaphragm positions
compared with free-breathing.1 An active breathing coor-
dinator (ABC) forcibly suspends patient breathing without
automated verbal or audio instruction at predetermined
positions of lung volume. ABC has been demonstrated to
improve intrafraction tumor position reproducibility but
still needs to improve a large variation of interfraction
tumor positions >5 mm.4,5 A quasi-breath-hold using
consecutive short breath-holds (3, 5, or 7 seconds) has
demonstrated equivalent or less motion variation while
improving breath-hold efficiency.7,8 Visual biofeedback
techniques have also reduced the uncertainty of target
position by improving the reproducibility of abdominal
and chest wall and pancreatic tumor positions using
voluntary breath-hold techniques.3,7,8,12,13 However, lung
tumor position reproducibility and volume consistency
using audiovisual guidance for inhalation and exhalation
breath-holds for precise lung cancer radiation therapy has
not been studied.
Audiovisual (AV) biofeedback14-20 is an interactive
breathing guidance system that has been employed to
improve inhalation and exhalation breath-hold reproduc-
ibility.21 AV biofeedback consists of (1) monitoring the
respiratory motion of patients’ abdomens using a real-
time position management (RPM) system (Varian Medi-
cal Systems, Palo Alto, CA) to form a personalized and
customized guiding wave, (2) displaying their present
breathing position and the guiding wave on a visual
screen that patients can see, and (3) allowing patients to
control their breathing by following the guiding wave and
holding their breath at the inhalation and exhalation po-
sitions of the guiding wave when instructed.

Previous AV breath-hold (AVBH) results from healthy
volunteers have demonstrated that the reproducibility of
intrafractional abdominal positions was improved during
inhalation and exhalation breath-holds and intrafraction
image intensity variation was reduced across multiple
breath-holds.21 However, previous AVBH investigations
recruited healthy volunteers, so the impact of AVBH on
tumor position and volume for patients with lung cancer
has not been examined.

In this study, we introduced a novel approach for
AVBH for patients with lung cancer that involved a
breath-hold training session to obtain a customized guiding
wave for each patient and used the inhalation and exha-
lation breath-hold positions over 2 MRI sessions.22 This
study was the first to investigate the impact of AVBH on
lung tumor position reproducibility and volume consis-
tency and used the direct measurement of gross tumor
volume (GTV) from breath-hold high-resolution 3-
dimensional MRI scans.

Methods and materials

Patients

Eleven patients who underwent external beam radia-
tion therapy from April 2013 to June 2015 consented to
enrollment in an ethics-approved protocol. The patients
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Table 1 Patient and disease characteristics

Patient No. Sex (F/M) Age (y) Height (cm) Weight (kg) Stage PS Location Glasses Gy/Fx Hearing Aid Breath-hold (s)

1 F 62 170 80 IIIA 0 RUL Yes 60/30 No 16
2 F 61 158 72 IIA 1 RUL Yes 60/30 No 16
3 F 66 165 66 IIIB 1 LUL Yes 40/15 No 16
4 F 26 170 70 IIIA 1 LUL No 50/20 No 16
5 M 72 175 114 IIA 1 RLL No 60/30 No 22
6 M 54 170 84 IIIA 0 LUL No 60/30 No 16
7 M 55 180 69 IIIB 1 RUL No 60/30 No 17
8 M 79 168 80 IB 1 RUL No 60/30 Yes 16
9 M 68 160 76 IIIA 1 LUL Yes 50/20 No 17

Fx, fraction; LUL, left upper lobe; PS, Eastern Cooperative Oncology Group performance status; RLL, right lower lobe; RUL, right upper lobe.
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met the following eligibility criteria: 1) had non-small-cell
and small-cell stage I-IIIB lung cancer of any histology to
be treated using radiation treatment; 2) were �18 years
old; 3) were any sex or ethnicity; 4) were not pregnant or
mentally impaired; and 5) had no surgical clips, surgery
metal-ware, or pacemakers. The study comprised a
breath-hold training session and 2 MRI sessions on
different dates (pre- and midtreatment). The breath-hold
training session was scheduled on the same day as the first
MRI session, and the second MRI session occurred within
3 to 6 weeks later, depending on the duration of the ra-
diation treatment. The 9 patients with lung cancer who
completed the training and both MRI sessions are
described in Table 1. Two patients were excluded because
they withdrew from the study before their second MRI
session. Patients received a prescription dose of 40 to 60
Gy for primary lung cancer or metastatic lung cancer at
the isocenter in 15 to 30 fractions.

AVBH training session

Before the MRI sessions, individual patients in the
head-first supine position participated in a breath-hold
training session (no imaging performed) to allow them to
become comfortable with AVBH guidance. The breath-
hold training session included the acquisition of a
breathing wave (ie, an average of 10 respiratory cycles)
and inhalation and exhalation breath-hold practices. Once
inhalation and exhalation breath-hold positions were
determined at the peak and trough of the guiding wave,
patients were guided by AVBH and practiced breath-
holds (first inhalation and second exhalation), as shown in
Figure 1 (red line). Inhalation and exhalation breath-hold
practices were repeated 2 to 3 times with verbal instruc-
tion from radiographers for approximately 15 minutes
until the patients were comfortable with AVBH. After
each breath-hold practice and on the basis of a consult
with the patient, the inhalation and exhalation positions
were set for the subsequent MRI sessions.

The workflow of AVBH is as follows: (1) monitor
breathing motion of patient’s abdomen using RPM and
build a guiding wave (calculated from the average of 10
breathing cycles in a Fourier Series fit)17 shown in
Figure 1 (blue line); (2) display real-time breathing po-
sition and the guiding wave on the patient’s screen; (3)
patients control their breathing to follow the guiding
wave; and (4) patients hold their breath at inhalation and
exhalation breath-hold positions by following the verbal
instructions of radiographers.

For the MRI setup of AVBH, patients were positioned
with an optical marker block on their abdomen to monitor
their breathing motion. Visual display goggles were used
for an AVBH training session, and a head-mounted mirror
overlooking an MRI-compatible projection screen was
used (Fig 1) for both MRI sessions. The gray marker block
on the screen represented the patients’ actual breathing
position, and the red line indicated the desired inhalation
and exhalation breath-hold positions. To minimize the
change of inhalation and exhalation breath-hold positions
across a training session and 2 MRI sessions, the RPM
camera was placed on the patient’s abdomen at the same
height from the ground and distance from the RPMmarker,
and the visual guidance of inhalation and exhalation was
formed with individual breathing patterns for a consistent
displacement (ie, amplitude in millimeters).
Magnetic resonance imaging with AVBH

Breath-hold 3-dimensional MRI scans were acquired
with a 3 Tesla MRI (Skyra, Siemens Healthcare, Erlangen,
Germany) and in the head-first supine position. For the
breath-hold 3-dimensional MRI scans, a volumetric inter-
polated breath-hold examination of a magnetic resonance
pulse sequence was used to acquire 160 slices per 3-
dimensional MRI scan with individual breath-hold dura-
tions between 16 and 22 seconds (Table 1). Typical MRI
scan parameters were repetition time (TR)/echo time (TE)
Z 2.24/0.88 ms, bandwidth Z 710 Hz, flip angle Z 9�,
field of view Z 368 � 380 mm2, slice thickness Z 1.2
mm, pixel sizeZ 1.2� 1.2 mm2, and image matrixZ 310
� 320. For patient 5 (Table 1), TR/TE Z 2.14/0.83 ms,



Figure 1 The MRI setup of AVBH. (a) Exhalation and (b) inhalation breath-hold positions (red line) of the guiding wave (blue line)
for two MRI sessions.
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field of view Z 435 � 450 mm2, and pixel size Z 1.4 �
1.4 mm2 due to the large field of view that was required.

In the first MRI session (before treatment),
3-dimensional inhalation and exhalation breath-hold MRI
scans with (1) CBH and (2) AVBH were acquired. The
second MRI session (midtreatment) was repeated within 6
weeks of the first MRI session. Audio instructions (MRI;
3T Siemens Skyra) in CBH (ie, “breathe in”, “breathe
out”, and “hold your breath” or “breathe out”, “breathe
in”, and “hold your breath”) and verbal instructions (from
radiographers) in AVBH were used. For the verbal in-
structions, radiographers continuously monitored the pa-
tient’s breathing trace on an MRI-compatible projection
screen that displayed the real-time breathing position and
guiding wave. The radiographers verbally provided (1)
the exhalation breath-hold instructions once the patient’s
breath reached the inhalation position (“breathe out”,
“breathe in”, and “breathe out and hold your breath”) and
(2) the inhalation breath-hold instructions once the pa-
tient’s breathing reached the exhalation position (“breathe
in”, “breathe out”, and “breathe in and hold your breath”).

Eight datasets per patient (2 image datasets [inhalation
and exhalation] � 2 breath-hold types [CBH and AVBH])
were obtained from 2 MRI sessions. In total, 72 breath-
hold datasets were obtained from 9 patients with lung
cancer.
Lung tumor delineation

The GTV of 72 breath-hold datasets was delineated by
a radiation oncologist using the Eclipse Treatment
Planning System (Varian Medical Systems, Palo Alto,
CA). Rigid registration based on spinal vertebral anatomy
was performed between 2 MRI sessions. In this study, 2
rigid registrations were included per patient: (1) the
exhalation dataset of the first MRI session with CBH to
the exhalation dataset of the second MRI session with
CBH and (2) the exhalation dataset of the first MRI ses-
sion with AVBH to the exhalation dataset of the second
breath-hold MRI session with AVBH. During the rigid
registration, the first and second datasets were used for the
fixed and moving datasets, respectively. Exhalation
datasets were used for the rigid registrations because they
were obtained at the beginning of the breath-hold image
acquisition with CBH and AVBH.
Breath-hold lung tumor position and volume

The impact of AVBH on breath-hold lung tumors,
compared with FB, was investigated using (1) inter-
fraction tumor position reproducibility across the first (S1)
and second (S2) MRI sessions in the GTV centroid po-
sition and GTV position range, defined as the distance
between inhalation and exhalation GTV centroids; and (2)
intrafraction tumor volume consistency between inhala-
tion and exhalation GTVs in each MRI session was also
investigated. For example, tumor positon and volume can
be consistent when breath-hold is performed at the same
respiratory level. The interfraction tumor position repro-
ducibility along each direction (lefteright [LR], ante-
rioreposterior [AP], and superioreinferior [SI]) was
calculated with the following equations and in 3-



Figure 2 Lung tumors during CBH (top) and AVBH (bottom). (a) Contoured inhalation and exhalation breath-hold lung tumors, (b)
corresponding inhalation and exhalation GTVs. S1: the first MRI session, S2: the second MRI session.
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dimensional vector with 3-dimensional Euclidean
distance:

The difference of GTV centroid positionZGTVS1
CENTROID

� GTVS2
CENTROID

For the calculation of intrafraction tumor volume
consistency, the following equation was used:

The difference of GTVZ INHALEGTV � EXHALE GTV

Quantitative statistical comparisons between CBH and
AVBH were determined from the root mean square
(RMS) along each direction and the 3-dimensional vector
using the Wilcoxon signed rank test to evaluate the
interfraction GTV centroid position and position range
reproducibility and intrafraction GTV consistency.

Results

Figure 2 shows images of inhalation and exhalation
lung tumors taken during breath-hold with CBH and
AVBH across 2 MRI sessions.

In Table 2, compared with CBH, the reproducibility of
interfraction GTV centroid position with AVBH was
improved by 46% (P Z .009) from 8.8 mm (the RMS
average of each direction) to 4.8 mm and by 45%
(P Z .001) from 15.2 mm to 8.3 mm (the RMS of the
3-dimensional vector). A difference in GTV centroid
position >10 mm was seen in 7 of 18 GTVs across 5
patients with CBH and only 2 of 18 GTVs with AVBH in
1 patient. For both CBH and AVBH, the largest differ-
ence in GTV centroid position was found in the SI, fol-
lowed by the AP and LR. In terms of inhalation and
exhalation GTV centroid positions, the difference in the
exhalation GTV centroid position with CBH was 12.8
mm (the RMS average of each direction); it was 17.3 mm
for the inhalation GTV centroid position. For AVBH, the
differences in exhalation and inhalation GTV centroid
positions were 8.3 mm and 8.2 mm, respectively, which
corresponds to an improvement in reproducibility of 35%
and 52%, respectively, compared with CBH.

In Table 3, compared with CBH, the reproducibility of
the interfraction GTV position range with AVBH was
improved by 69% (P Z .052) from 7.4 mm (the
RMS average of each direction) to 2.3 mm and by 68%
(P Z .289) from 12.8 mm to 4.0 mm (the RMS of
3-dimensional vector). The difference in GTV position
range varied between �15.1 mm and 21.9 mm with CBH,
and it was between �5.4 mm and 2.9 mm for AVBH. The
GTV position range in the AP had the smallest difference
for AVBH but was 4 times smaller than the AP position
range with CBH. The difference in GTV position range
was smaller with AVBH compared with CBH except for
patients 4 and 9, for whom the position range was com-
parable or slightly larger.

In Table 4, compared with CBH, the consistency of
intrafraction GTV with AVBH improved by 70%
(P Z .023) from 7.8 cm3 (CBH) to 2.5 cm3 (AVBH).
Inhalation GTV with CBH was 4.5 cm3 larger than
exhalation GTV (57.9 cm3 and 62.4 cm3, respectively),
but inhalation and exhalation GTVs with AVBH in RMS
were almost identical at 60.8 cm3 and 60.7 cm3,
respectively. In addition, the decrease in GTV between
pre- and midtreatment was similarly noted, with 20.4
cm3 (P Z .001) in CBH and 20.3 cm3 (P < .001) in
AVBH. However, inhalation and exhalation GTVs were
only identical in S1 (69.7 cm3 and 69.3 cm3) and S2
(50.3 cm3 and 50.4 cm3) with AVBH but varied in S1
(65.2 cm3 and 71.9 cm3) and S2 (49.5 cm3 and 51.2 cm3)
with CBH.



Table 2 Difference in GTV centroid position with CBH and AVBH from 72 breath-hold datasets across 2 MRI sessions

Patient No. The GTV centroid position difference (mm), GTVS1
CENTROID � GTVS2

CENTROID

CBH AVBH

BHP LR AP SI 3-dimensional Vector LR AP SI 3-dimensional Vector

1 E �3.5 1.4 �3.3 5.0 2.5 4.8 3.9 6.6
I �1.5 14.0 11.1 18.0 2.3 4.9 5.1 7.4

2 E 1.3 �3.2 �6.9 7.7 3.7 2.6 �5.0 6.7
I 0.5 �2.7 �5.1 5.8 0.7 3.2 �5.7 6.6

3 E �9.7 �2.6 9.9 14.1 �3.1 �4.7 9.5 11.1
I �7.5 �11.4 6.2 15.0 �3.2 �3.4 6.4 7.9

4 E �2.7 0.0 3.7 4.6 �1.0 �0.6 7.2 7.3
I �2.7 5.6 6.6 9.0 �1.4 �0.6 1.9 2.5

5 E 5.9 �0.8 �6.2 8.6 2.7 �1.8 �0.2 3.3
I 0.6 �4.2 �27.8 28.1 1.8 �1.2 1.1 2.5

6 E 6.0 3.0 7.4 10.0 5.0 4.2 2.7 7.1
I 10.3 11.6 10.3 18.6 4.1 3.8 2.5 6.2

7 E �4.5 4.3 �0.4 6.2 0.7 0.6 1.7 2.0
I �6.1 2.5 �0.3 6.6 �0.8 2.8 1.2 3.1

8 E �0.2 2.2 �0.4 2.3 1.2 1.6 0.6 2.0
I �1.5 �9.5 4.1 10.4 1.7 1.9 0.6 2.6

9 E 0.6 �2.6 �2.2 3.5 1.4 0.0 �1.5 2.1
I �0.5 �6.4 1.2 6.5 2.4 2.8 2.1 4.3

RMS 4.8 6.3 8.8 11.8 2.5 3.0 4.2 5.7

3-dimensional vector,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LR2 þ AP2 þ SI2
p

; AP, anterior-posterior; AVBH, audiovisual biofeedback breath-hold; BHP, breath-hold positions; CBH,
conventional breath-hold; E, Exhalation; GTV, gross tumor volume; I, inhalation; LR, lefteright; MRI, magnetic resonance imaging; RMS, root mean
square; SI, superioreinferior.

Advances in Radiation Oncology: JulyeSeptember 2017 AVBH on lung tumor position and volume 359
Discussion

Patient setup,23 medical imaging, and radiation treat-
ment4,6 often require the immobilization of lung tumors to
avoid respiratory-related motion. In this study, we intro-
duced AVBH, which uses the same breath-hold positions
in a breath-hold training session and 2 MRI sessions to
investigate lung tumor position and volume. Using
AVBH, we demonstrated the improvement of lung tumor
position reproducibility and volume consistency using
GTV directly measured from inhalation and exhalation
3-dimensional MRI.

During radiation therapy, lung tumor displacement and
baseline shift may lead to a failure of local tumor control.24

Previous studies have demonstrated that inhalation lung
tumor position can vary by 3.6 mm, 3.5 mm, and 5.1 mm
(for LR, AP, and SI, respectively) in ABC CT scans taken
pre- and midtreatment.4 The lung tumor position of exha-
lation respiratory-gated CT scans (pre- and end-treatment)
varied by 5.1 mm in 3-dimensional vectors,25 and the
center-of-mass position of lung tumor meausred in 4-
dimensional CT scans (pre- and mid-treatment) varied by
5.8 mm, 6.5mm, and 7.8 mm (for LR, AP, and SI,
respectively). This study demonstrated that the improve-
ment of breath-hold lung tumor position reproducibility
with AVBH (2.4 mm, 4.3 mm, and 4.6 mm) is less than that
in previous studies but similar to or greater than that with
CBH (4.2 mm, 6.5 mm, and 9.0 mm).
Practical and effective use of breath-hold techniques
requires a breath-hold training session for patient com-
fort,26 composed of a series of breath-holds at inhalation
and exhalation positions and customized to the patient’s
breath-hold level. Thus, AVBH with individual breath-
hold training allows patients to understand where and
how to hold their breath. Consequently, AVBH can
improve inhalation and exhalation lung tumor position
reproducibility and volume consistency. In addition to the
previous report finding up to 40% shrinkage during the
course of radiation treatment,27-29 this study found a
similar shrinkage of GTVs with AVBH between pre-
treatment and midtreatment (inhalation, 27.8%; exhala-
tion, 27.2%), but shrinkage significantly varied with CBH
(inhalation, 24.1%; exhalation, 28.9%) due to the varia-
tion in breath-hold positions. Our results indicate that
accurate lung tumor position and volume with AVBH can
be observed at the same level of respiration during the
course of radiation treatment.26

To guide breath-hold positions, this study used RPM
signals (1-dimensional abdominal movement) acquired
from the RPM camera, which was placed at the same
height and distance, and breath-hold tumor positions were
controlled by the same level of respiratory motion across
a breath-hold training session and 2 MRI sessions. The
use of a 1-dimensional external signal to maintain an in-
ternal breath-hold is a limitation of this study. Various
internal and external respiratory signals as an input to



Table 3 Difference in GTV position range across 2 MRI sessions

The GTV position range difference (mm),
ðEXHALEGTVS1

CENTROID � INHALEGTV
S1
CENTROIDÞ � ðEXHALEGTVS2

CENTROID�INHALEGTVS2
CENTROIDÞ

CBH AVBH

LR AP SI 3-dimensional vector LR AP SI 3-dimensional vector

1 �1.9 �12.0 �14.5 18.9 0.2 �0.1 �1.2 1.2
2 0.8 �0.5 �1.7 2.0 3.1 �0.6 0.8 3.2
3 �2.2 8.8 3.7 9.8 0.0 �1.3 3.1 3.4
4 �0.1 �5.6 �2.8 6.2 0.4 0.0 5.3 5.3
5 5.3 3.8 21.6 22.6 0.9 �0.6 �1.3 1.7
6 �4.3 �8.6 �2.9 10.0 0.8 0.4 0.2 0.9
7 1.6 1.8 �0.1 2.4 1.5 �2.2 0.6 2.7
8 1.4 11.7 �4.5 12.6 �0.6 �0.3 �0.1 0.6
9 1.1 3.7 �3.4 5.2 �1.0 �2.9 �3.5 4.7
RMS 2.6 7.4 9.1 12.0 1.3 1.3 2.5 3.1

3-dimensional vector,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LR2 þ AP2 þ SI2
p

; AP, anterioreposterior; AVBH, audiovisual biofeedback breath-hold; CBH, conventional breath-hold;
GTV, gross tumor volume; LR, lefteright; MRI, magnetic resonance imaging; RMS, root mean square; SI, superioreinferior.
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AVBH can be used for tumor motion management in the
thoracic and abdominal regions13 to immobilize target
motion during medical imaging and respiratory-gated ra-
diation treatment, which could lead to the reduction of
tumor motion margins and therefore the corresponding
dose to the lung and heart.6,30 Inhalation and exhalation
MRI is an effective technique to determine lung tumor
position and volume information for patient setup and
treatment planning.10,31
Table 4 Difference in GTV as a measure of residual motion at in
negative value indicates that GTV was larger in the inhalation GTV

Patient No. Sessions Gross tumor volume (cm3)

CBH

Exhale Inhale Exhal

1 S1 23.9 18.7 5.3
S2 14.4 16.3 �2.0

2 S1 68.7 79.3 �10.5
S2 62.1 66.7 �4.6

3 S1 16.7 17.7 �1.0
S2 3.5 4.6 �1.1

4 S1 18.6 16.6 2.0
S2 9.6 9.6 0.0

5 S1 19.8 16.5 3.3
S2 18.8 24.4 �5.5

6 S1 74.2 69.2 5.0
S2 58.9 58.9 0.0

7 S1 131.0 159.5 �28.6
S2 100.8 102.9 �2.1

8 S1 78.3 73.5 4.8
S2 45.6 46.4 �0.8

9 S1 56.3 57.8 �1.5
S2 42.6 44.2 �1.6

RMS 57.9 62.4 7.8

AVBH, audiovisual biofeedback breath-hold; CBH, conventional breath-hold
AVBH can be used as a conventional breath-hold
technique for a consistent tumor position. In addition, the
acquisition of 4-dimensional MRI scans is still a chal-
lenge, so AVBH could be used for (1) 2 respiratory-gating
windows with a dual quasi-breath-hold technique8; (2) a
measure of 4-dimensional tumor motion by using inha-
lation and exhalation breath-hold data and evaluating
tumor motion range as measured with 4-dimensional
CT32; and (3) real-time 4-dimensional tumor motion
halation versus exhalation position for CBH versus AVBH. A
and a positive value indicates that it was smaller

AVBH

e � Inhale Exhale Inhale Exhale � Inhale

22.1 20.6 1.4
15.5 14.1 1.4
80.0 83.9 �3.8
61.4 64.3 �2.9
20.3 20.0 0.3
9.7 8.6 1.2
16.9 16.1 0.7
9.1 9.1 0.0
19.9 19.3 0.6
18.1 17.7 0.4
71.5 75.3 �3.9
57.5 57.7 �0.2
146.0 138.6 7.4
103.9 103.0 0.9
79.1 82.3 �3.2
44.6 46.2 �1.6
55.6 55.7 �0.1
46.6 45.0 1.6
60.8 60.6 2.5

; GTV, gross tumor volume; RMS, root mean square.
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using 3-dimensional breath-hold data as a reference in
conjunction with 2-dimensional cine-MRI.33

The present study has several limitations: (1) most
lung tumors were located in the upper-lobe; (2) the
interfraction changes were determined using only 2 MRI
sessions (pretreatment and midtreatment); and (3) the
AVBH method used only RPM (1-dimensional abdom-
inal movement) as the wave guide. Lung tumors were
contoured by a physician, so interobservation errors could
arise and rigid registration based on bony anatomy could
be improved by deformable image registration for
considering tumor shape and form changes due to tumor
shrinkage or growth between 2 MRI sessions.

AVBH is a voluntary breath-hold method that requires
patient cooperation. To minimize variability dependent on
patient cooperation, this study provided a breath-hold
training session for 15 minutes before 2 MRI sessions.
However, a breath-hold training session may need to be
individually customized for a consistent GTV range
across all patients. A further limitation is that CBH was
performed before AVBH for each patient, which could
potentially introduce bias. Future studies will include in-
vestigations of (1) the direct impact of the breath-hold
training session on MRI sessions, (2) a comparison of
AVBH with respiratory-gated19 and free-breathing across
medical imaging modalities, and (3) the significant impact
of tumor location on the effectiveness of AVBH.

Conclusions

This study was the first to assess the impact of au-
diovisual biofeedback on breath-hold lung tumor position
and volume in MRI. AVBH resulted in an improvement
of interfraction tumor position reproducibility across 2
MRI sessions by 4.0 mm (46%) along each direction and
6.9 mm (45%) in 3-dimensional vector and an improve-
ment in intrafraction tumor volume consistency by 5.3
cm3 (70%) in each MRI session. These results demon-
strate that AVBH can facilitate reproducible lung tumor
breath-hold position and consistent volume and could be a
desirable technique for medical imaging and radiation
therapy procedures.
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