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Simple Summary: Plants form beneficial symbioses with endophytes, arbuscular mycorrhizal fungi,
and nitrogen-fixing rhizobia. In addition to their role in plant growth and development, these
microorganisms enhance host plant tolerance to a wide range of environmental stress. Salicylic acid
(SA) is widely known to play essential roles in plant defense against pathogens. In addition, SA has
been shown to be involved in plant–microbe symbiotic interactions. In this review, we summarize
the impact of SA on symbiotic interactions and on defense priming by beneficial microbes.

Abstract: Plants form beneficial symbioses with a wide variety of microorganisms. Among these,
endophytes, arbuscular mycorrhizal fungi (AMF), and nitrogen-fixing rhizobia are some of the most
studied and well understood symbiotic interactions. These symbiotic microorganisms promote plant
nutrition and growth. In exchange, they receive the carbon and metabolites necessary for their
development and multiplication. In addition to their role in plant growth and development, these
microorganisms enhance host plant tolerance to a wide range of environmental stress. Multiple
studies have shown that these microorganisms modulate the phytohormone metabolism in the host
plant. Among the phytohormones involved in the plant defense response against biotic environment,
salicylic acid (SA) plays an important role in activating plant defense. However, in addition to being
a major actor in plant defense signaling against pathogens, SA has also been shown to be involved
in plant–microbe symbiotic interactions. In this review, we summarize the impact of SA on the
symbiotic interactions. In addition, we give an overview of the impact of the endophytes, AMF, and
rhizobacteria on SA-mediated defense response against pathogens.

Keywords: salicylic acid; endophytes; nitrogen-fixing symbiosis; mycorrhizae; stress; microbes;
symbiosis

1. Introduction

Plants have an innate immune system that detects and limits pathogen attacks. Pattern
recognition receptors (PRRs) on the plant cell surface detect molecules containing charac-
teristic patterns of microbes. Detection of these pathogen-/microbe-associated molecular
patterns (PAMPs/MAMPs) leads to activation of pattern-triggered immunity (PTI). In
many cases, PTI prevents further pathogen establishment. However, some pathogens have
developed effector proteins that suppress PTI and therefore maintain pathogenicity. To
resist pathogen-associated effector proteins, plants encode resistance proteins (R) to provide
effector-triggered immunity (ETI). These R proteins, which are generally located within the
plant cell, may directly or indirectly recognize their related pathogen- encoded effectors
activating ETI [1,2]. Both PTI and ETI are associated with the activation of defenses in
the infected tissue, including the generation of reactive oxygen species (ROS) [3], increase
in intracellular Ca2+ concentrations, and activation of mitogen-activated protein kinases
(MAPKs), to finally activate the expression of various defense-associated genes, synthesis
of antimicrobial compounds, and accumulation of SA [4–6].
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Usually, ETI induces plant defenses more rapidly and strongly than PTI. ETI is gener-
ally associated with the formation of necrotic lesion, which may help to restrict pathogen
movement from the infection site. Subsequent to these local events, ETI and PTI can induce
immune responses in the uninfected parts of the plant exposed to pathogen attack (Figure 1).
This long-distance-induced broad-spectrum resistance is called systemic acquired resis-
tance (SAR). SAR is primarily controlled by endogenous accumulation of salicylic acid
(SA) and characterized by the activation of Pathogenesis-Related (PR) genes and proteins
with antimicrobial activity [7–9]. Salicylic acid (SA; 2-hydroxybenzoic acid) is a critical
hormone that plays direct or indirect roles in regulating many aspects of plant growth and
development as well as thermogenesis, drought resistance, and disease resistance [10].
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Figure 1. Scheme of different types of plant systemic resistance. The systemic acquired resistance
(SAR) is triggered upon pathogen attack. Local defenses are followed by the production of mobile
signals—mainly salicylic acid (SA)—that prime distal plant parts for defense compounds accumula-
tion. Induced systemic resistance (ISR) can be triggered by colonization with plant-growth-promoting
rhizobacteria or fungi (PGPR/F). ISR is regulated mainly by jasmonic acid (JA) and ethylene (ET).

SA is linked to several key components of plant defense through intricate networks,
generally activated following infection by biotrophic pathogens, which require living host
tissue. SA acts through the non-expressor of PR1 protein (NPR1), a pivotal component in
plant defense signaling. The detailed mechanism of SA-mediated regulation of defense
through NPR1-mediated signaling and its regulation in the cytoplasm and nucleus has been
well documented [11–13]. In Arabidopsis, proteins NPR1 to NPR6 constitute a multigenic
family [14]. Among these, NPR3 and NPR4 have been shown to interact with SA [15,16],
functioning as adaptors of the Cullin-3 ubiquitin E3 ligase to mediate NPR1 degradation
in an SA-regulated manner [17]. In addition, NPR3 and NPR4 have also been shown to
bind SA directly to modulate their interaction with NPR1 [17]. NPR1 is constitutively
expressed in most cell types, and it remains mostly inactive in the cytosol in an oligomeric
form until the host is infected with a pathogen. After infection, the host plant produces
more SA, and the higher SA content is associated with an alteration in the cellular redox
potential. As a result of this, the NPR1 oligomer is reduced to biologically active monomers.
The monomeric NPR1 then moves to the nucleus where it interacts with TGA proteins.
This interaction results in the expression of SA-dependent pathogenesis-related (PR) genes.
Since PR are conserved proteins in the plant kingdom, the expression of their genes is
frequently used as a robust marker to determine and characterize the SA-response during
the acquired SAR [18,19].

In addition to SA, jasmonic acid (JA)- and ethylene-signaling pathways are usually
required for the activation of plant defense against necrotrophic pathogens and herbi-
vores [20]. JA is also commonly associated with induced systemic resistance (ISR) (Figure 1).
ISR is an improved resistance of the host plant triggered by beneficial microbes [21].
Plant defense response is energy-consuming, and extensive crosstalk between JA- and
SA-mediated defense signaling pathways occurs to efficiently allocate energy and provide
robustness to the plant immune system [22].

In addition to being a key player in plant disease reaction, SA has also been reported
to be involved in interactions between plants and beneficial microbes. Interactions between
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plants and beneficial microbes include multiple symbiotic relationships. Plant endophytes
are microbial organisms (bacteria or fungi), which live within the plant without causing
apparent disease (Figure 2). Endophytes assist their host by transformation and solubiliza-
tion of nutrients and other micro minerals. In addition, they induce the tolerance response
of the host against stress caused by abiotic factors such as osmotic stress and exposure
to heavy metals and xenobiotics. Apart from abiotic factors, endophytes also assist their
host plant in the suppression of harmful microorganisms and act in the biological control
against plant pathogens [23]. Plants may also interact with mycorrhizal fungi, resulting in
an improved plant nutrition and an induced resistance to a number of pathogens or abiotic
stresses [24,25]. Finally, another symbiotic interaction of interest which allows for better
plant nutrition in a nitrogen-deficient environment is the nitrogen-fixing symbiosis (NFS).
In NFS, the beneficial relationship established between plants and soil bacteria results in
root nodule formation and biological atmospheric nitrogen (N2) fixation. Both partners
benefit from this interaction, as the host plant is provided with a ready source of fixed
nitrogen, and in exchange bacteria receive carbon source for development and protection
from environmental conditions [26].
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of endophytic, arbuscular mycorrhizal (AM), and rhizobial colonization. Benefits from coloniza-
tion include improved nutrition and tolerance to many abiotic and biotic stresses. Created with
BioRender.com.

All these relationships involve an intimate crosstalk between the plant and the sym-
biotic microorganisms. The establishment and the maintenance of symbiosis should be
tightly controlled by the plant to balance energy cost with benefits. In this context, the
autoregulation of both mycorrhizae (AOM) and nodulation (AON) are involved in the
regulation of the interaction to avoid an over-infection of the plant [27]. Moreover, the
intracellular invasion of the nodule cells by the rhizobia also involves specific control of the
plant immunity in root nodules to allow intracellular colonization of the plant cell [28,29].
This review focuses on the role of SA in plant–microbe symbiotic interactions, including
endophytes, mycorrhiza, and nitrogen-fixing bacteria. We also discuss how SA might be
involved in the priming of the defense of symbiotic plants against pathogens.
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2. SA in Plant–Endophyte Interactions

Endophytes are microorganisms that can live in the internal parts of plants. Endo-
phytes colonize their host plants without causing any symptoms [30–33]. The intimate
association of endophytic microbes with the plant tissues improves plant survival and
productivity through nutrient acquisition [34]. Moreover, it increases the plant’s abil-
ity to tolerate abiotic stress and decrease biotic stress by enhancing plant resistance to
bio-aggressors such as pathogens, insects, and herbivores [35–37].

Endophytes colonize the extracellular space of living plant tissue. Thus, they can
potentially interact with the defensive signaling pathways of their host. Navarro-Melendez
and Heil investigated whether the interaction of Lima bean (Phaseolus lunatus) with Bar-
talinia pondoensis (C015), Fusarium sp. (U090) and Cochliobolus lunatus (U065) alters the
endogenous levels of SA and JA and the expression of the JA-dependent indirect defense
traits (extrafloral nectar secretion and volatile organic compounds emission) [38]. The au-
thors found that plant SA level was significantly decreased in plants by all of the strains [38].
Moreover, their results suggest that the endophytes interact in complex and strain-specific
ways with the endogenous levels of SA and JA and with the defense traits that are controlled
by these hormones. These findings are in line with the hypothesis that the endophytes
decrease endogenous levels of SA, likely due to SA–JA trade-offs [39].

The mechanism behind the SA down accumulation has not been fully investigated.
However, bacteria contain salicylate hydroxylase, nahG, which are able to metabolize SA
in an inactive molecule [40,41]. In studying SA degradation in endophytic fungi, Graminha
and colleagues reported that Aspergillus nidulans contained a salicylate hydroxylase-like
gene which was able to catabolize the naphthalene portion of terbinafine in a similar manner
as do bacteria [42]. This ability to degrade SA seems to be a common phenomenon among
fungi [43]. However, Ambrose and colleagues characterized the endophytic fungi Epichloë
festucae salicylate hydroxylase in red fescue [44]. They found that in planta expression of the
E. festucae salicylate hydroxylase did not significantly modify the SA level in endophyte-
infected plants compared to endophyte-free plants. This suggests that the expression of
salicylate hydroxylase by the endophyte was not the main factor in the lack of a host defense
response during endophyte colonization [44]. This further strengthens the hypothesis
that SA- and JA-mediated defense response pathways are mutually antagonistic in plant–
endophyte interactions [45].

The study of Schmid and colleagues analyzed the transcriptomes of Epichloë festu-
cae and its host Lolium perenne in host tissues of different function and developmental
stages [46]. They found 289 genes that are induced more than two times in endophyte-
inoculated plants compared to uninoculated plants. Among these, 85 are associated with
hormone synthesis, transport, and metabolism showing that the symbiosis strongly affects
the plant hormonal homeostasis. The alteration in gene expression associated to hormones
is linked to SA, JA, gibberellin, ethylene, abscisic acid, cytokinin, and auxin. However,
no specific link was observed with SA and no PR genes were found in the defense genes
induced more than twice in inoculated plants, suggesting that the modification of the plant
defense metabolism is not significantly associated with SA in this symbiotic interaction [46].

To understand the impact of SA on endophyte colonization of plants and its further
consequence on the response of plants to herbivores, the effect of the exogenous applica-
tion of SA was studied [47]. It was shown that plants in symbiosis with Epichloë fungal
endophytes had lower concentrations of SA than did endophyte-free plants. Upon the ex-
ogenous application of SA, physiological concentration of the SA was highly increased and
a significant reduction in endophyte-produced alkaloid (loline) was observed in the leaves.
This reduction was correlated to an increased susceptibility to aphids [47]. These results
support the hypothesis that high SA content suppresses some fungal endophytes [48].

Endophytes also protect plants through the priming of plant defense mechanisms. In
this context, Paenibacillus alvei K165 was able to protect Arabidopsis thaliana against the fungi
Verticillium dahlia [49]. The priming reaction was associated with the induced expression
of PR1, PR2, and PR5 genes. Moreover, the defense reaction further required intact SA
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biosynthesis and signaling pathways [49]. Likewise, root-colonizing Pseudomonas fluorescens
strain SS101 increased resistance in A. thaliana against Pseudomonas syringae pv tomato (Pst)
and the insect pest Spodoptera exigua. Transcriptomic analysis and bioassays with specific
Arabidopsis mutants showed that the induced resistance response to Pst was dependent on
SA and not on JA and ethylene [50]. Furthermore, the involvement of SA in the priming of
plant defense by Trichoderma strains against Botrytis cinerea was described in Arabidopsis and
Solanum lycopersicum [51–53]. Finally, Kou and colleagues showed that Epichloë endophytes
are capable of inducing SA-dependent defense responses in the host plants to provide
significant resistance against the pathogen Blumeria graminis [54].

Taken together, these studies indicate that plant–endophyte interaction could be mod-
ulated by SA level (Table 1). Moreover, plant–endophyte interaction could also modulate
the SA metabolism among other hormones and prime plant defense reaction against bio-
aggressors. However, this is not a general conclusion, as JA signaling was also shown to be
associated with increased plant defense metabolism depending on the symbiotic partners.

3. SA in the Plant-Mycorrhiza Interactions

Mycorrhiza is a mutualistic symbiotic association between plants and root-colonizing
fungi. During this association, the fungi provide nutrients to the plant in exchange for
photosynthetic products [55]. In addition to their involvement in the nutrient supply,
mycorrhizal fungi increase plant ability to tolerate abiotic and biotic stress [56].

Numerous studies indicate that in the plant host/Arbuscular mycorrhiza fungi (AMF)
interaction, plant defense responses are induced during early root colonization and are
repressed subsequently [57,58]. A transient accumulation of SA during the first stage of AM
root colonization, associated with the early induction of plant defense responses, has been
reported [59,60]. The role of SA in the regulation of root colonization has been suggested
during the establishment of the AM symbiosis. Indeed, the inability of Myc- Pisum sativum
mutants to form the AM association was linked to enhanced SA level during the early steps
of the interaction [61].

Table 1. Involvement of salicylic acid in plant–microorganism symbiotic interactions and de-
fense priming.

Interaction Activity Effect Microbe Host Plant Ref.

Plant-Endophyte

Establishment
of symbiosis

Downregulation of SA
accumulation

Bartalinia pondoensis,
Fusarium sp., Cochliobolus

lunatus
Phaseolus lunatus [38]

Epichloë spp. Lolium multiflorum [47]

Defense

Antiherbivory Epichloë spp. Lolium multiflorum [47]

Enhanced VOC emission
Bartalinia pondoensis,

Fusarium sp., Cochliobolus
lunatus

Phaseolus lunatus [38]

Induction of PR genes. Paenibacillus alvei Arabidopsis thaliana [49]

Induction of defense
related genes

Pseudomonas fluorescens Arabidopsis thaliana [50]

Trichoderma spp. Arabidopsis thaliana [51,52]

Solanum lycopersicum [53]

Epichloë gansuensis Achnatherum inebrians [54]
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Table 1. Cont.

Interaction Activity Effect Microbe Host Plant Ref.

Plant-
Mycorrhiza

Establishment
of symbiosis

Regulation of root
colonization

Glomus mosseae Pisum sativum [61]

Glomus intraradices,
Glomus mosseae Nicotiana tabacum [62]

Funneliformis mosseae,
Rhizophagus irregularis

Solanum lycopersicum,
Glycine max, Zea mays [63]

Glomus sp. Solanum tuberosum,
Medicago truncatula [64]

Defense

Defense Priming
Glomus mosseae Trifolium repens [65]

Rhizofagus irregularis Vitis vinifera [66]

Induction of defense
related genes

Claroideoglomus etunicatum,
Claroideoglomus claroideum,

Rhizophagus irregularis,
Funneliformis geosporus,
Funneliformis mosseae

Pisum sativum [67]

Glomus sp. Solanum tuberosum,
Medicago truncatula [68]

Funneliformis mosseae Triticum aestivum [69]

Glomus intraradices Oryza sativa [70]

Glomus mosseae Oryza sativa [59]

Plant-Rhizobia

Establishment
of symbiosis

Regulation of root
colonization and nodule

formation

Mesorhizobium loti Lotus japonicus,
Medicago truncatula [71]

Sinorhizobium meliloti Medicago sativa [72]

Sinorhizobium meliloti Medicago sativa [73]

Decreased innate
immunity within

nodules

Sinorhizobium spp. Medicago truncatula [74]

Sinorhizobium spp Medicago truncatula [75]

Defense Induction of defense
related genes

Sinorhizobium spp. Medicago truncatula [75]

Rhizobium leguminosarum,
Sinorhizobium meliloti

Medicago truncatula,
Pisum sativum [76]

Rhizobium leguminosarum Pisum sativum [77,78]

Sinorhizobium meliloti Medicago truncatula [79]

Moreover, SA exogenously applied to roots in AMF–rice interaction reduced root
colonization at the early stages of the interaction [59]. However, no effect of SA on AMF
appressoria formation was observed [59]. Application of SA to leaves of cucumber plants
showed no effect on the interaction with AMF excluding its systemic effect on the symbiotic
interaction [80]. The effect of SA level on plant–mycorrhizae interactions was confirmed
by Herrera-Medina and colleagues [62]. They showed that NahG tobacco plants with
lower SA levels showed higher levels of root colonization, more infection units, and more
arbuscules [62]. In contrast, constitutive SA biosynthesis (CSA) tobacco plants inoculated
with Glomus intraradices or G. mosseae showed lower root colonization. The result of the
SA level on mycorrhization was similar for the infection with two AMF strains showing
that the effect was not specific to a fungal strain [62].

To better understand the defense reaction occurring in the plant–AMF interaction,
an integrative analysis of the response of phylogenetically diverse plants—tomato, soy-
bean, and maize—to two mycorrhizal fungi—Funneliformis mosseae and Rhizophagus
irregularis—was carried out [63]. The two AMF had different influence on the levels of SA,
and the associated transcriptional response was dependent on the plant and mycorrhizal
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fungi species. F. mosseae induced the SA-related pathway in the tomato, while R. irregularis
had no effect. In contrast, SA accumulation was induced by R. irregularis root colonization
in maize. Although SA level increases have been shown to be related to the initial stages
of the AM interaction [81], Fernández and colleagues demonstrated that higher SA levels
are associated with later stages of AM symbiosis in tomato and maize [63]. The variation
in SA levels depends on the partners’ genotypes, and more specifically on the coloniz-
ing fungus [63]. Similarly, elevated levels of SA have been also reported in G. mosseae
colonized clover [65] and barley [82]. In grapevine, SA level was significantly higher in
leaves of plants colonized with Rhizofagus irregularis at 2 months after mycorrhization. In
contrast, mycorrhizal grapevine roots contain significantly lower levels of SA [66]. It has
been proposed that SA signaling has a biphasic induction during AM symbiosis, with a
first increase in pre-symbiotic stages that level off as the colonization initiates, and a second
induction at later stages of root colonization likely to control colonization extension [64,83].

The mycorrhiza symbiosis has been reported to have a priming effect against some
pathogens [84–86]. The protective effect of mycorrhiza on below-ground pathogens was
correlated with a decrease in pathogen content within the plant tissues, which may be linked
to the competition for space between the pathogen and the mycorrhizal fungi. However, the
modification of root metabolism during the interaction with AMF can also increase the plant
protection through the increase in defense compounds [60,65,87,88]. In clover inoculated
with G. mosseae, the increase in both free and cell wall–bound phenolics was associated
with the activation of phenylalanine ammonia-lyase (PAL) activity and the accumulation of
nitric oxide (NO), hydrogen peroxide (H2O2), and SA [65]. This highlights that SA level
may be critical in the phenolic synthesis. The effect of mycorrhiza on the induction of
plant defense against leaf pathogens was also observed multiple times [68–70,87]. Using
metabolomics and proteomics approaches, Sistani and colleagues studied the impact
of AMF colonization on pathogen resistance in pea (Pisum sativum) against Didymella
pinodes [67]. They demonstrate that AMF improves seed yield and protects two pea
cultivars, Protecta and Messire, upon pathogen attack. However, the plant protection
was different depending on the plant cultivar, with a more effective response to pathogen
attack in the Protecta cultivar, showing genotype-specific defense strategies. Moreover,
the defense priming effect seems to be associated with JA accumulation and defense
induction as proteins involved in JA synthesis, N-jasmonoyl isoleucine and JA-responsive
proteins, are significantly accumulated in mycorrhized peas compared to non-mycorrhized
plants [67]. Besides the involvement of JA, the hormones SA, and abscisic acid, ethylene was
also potentially associated with resistance response [89]. The crosstalk between the different
hormonal pathways including SA remains to be analyzed in the different multitrophic
interactions to understand the mechanisms involved in the long-distance regulation of
plant defense against bio-aggressors.

In contrast to the induced defense by mycorrhiza, multiple reports showed that
mycorrhization may have a negative effect on plant defense against some pathogens [90].
These studies show that mycorrhiza-mediated beneficial or negative effects are dependent
on the species of plant, symbiotic fungi, and pathogen.

4. SA in Plant–Rhizobia Symbiosis

Nitrogen is an essential macronutrient for plants which determines growth, develop-
ment, and yield of plants [91]. In nitrogen-deficient soils, legume and actinorhizal plants
have the ability to establish symbiosis with soil bacteria and form nodules where the bacte-
ria obtain the appropriate conditions to reduce atmospheric nitrogen into ammonia [92].
Both bacterial–plant partners benefit from this symbiotic relationship. Plants receive a
ready source of reduced nitrogen from bacteria and in exchange bacteria receive protected
environment and usable carbon sources from their host plant [93].

In legume–rhizobia symbiosis, the infection of the plant by compatible rhizobia is usu-
ally associated with a transient activation of plant defence followed by its reduction which
allows an efficient invasion of the plant cells by thousands of bacteroids [74]. The defence
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response could be induced during some rhizobia–plant interactions and has been suggested
to play an important role in determining host range or in controlling the presence of the
bacteria in the plant [94,95]. Impaired nodulation of alfalfa with a nodC mutant of Sinorhi-
zobium meliloti unable to synthesize the lipochitin Nod signal required for infection was
associated with an increased accumulation of H2O2 and SA in roots, suggesting a defense
reaction in the inefficient interaction [72,96]. Similarly, an induced SA-dependent defense
reaction was associated with an impaired nodulation elicited by glutathione deficiency [97].
Thus, SA is linked to defense induction in impaired legume–rhizobium interactions.

It is widely accepted that leguminous plants have the ability to regulate nodulation,
and autoregulation occurs at different developmental stages [98,99]. This autoregulation
may be associated with a localized defense response. These responses could potentially
be involved in limiting nodulation during the infection process, such as infection thread
and nodule formation. Vasse and colleagues reported that a plant defense response was
associated with localized root cell necrosis and accumulation of phenolic compounds [73].
This defense reaction could be involved in the abortion of the infection threads during
infection of alfalfa by Sinorhizobium meliloti and reduce the successful infection [73]. Ex-
ogenous SA treatment on the root resulted in both reduced and delayed nodule formation
on alfalfa or vetch roots, reinforcing the idea that SA regulates the early steps of the root
infection by the rhizobia [72,100]. To analyse the importance of endogenous SA, Stacey
and colleagues constructed transgenic L. japonicus plants expressing salicylate hydroxylase,
encoded by the bacterial NahG gene and NahG-expressing Medicago truncatula roots [71].
These NahG transgenic L. japonicus plants presented significantly lower accumulation of
endogenous SA associated with higher nodulation level. The nodulation was also increased
for transgenic M. truncatula roots, but it was not possible to detect a significant reduction in
the SA content [71]. Taken together these reports indicate that SA-mediated plant defense
pathways are involved in modulating legume infection both during indeterminate and
determinate nodulation.

A recent study suggests that innate immunity is reduced or suppressed within nod-
ules [75]. This reduction likely enables colonization and nodulation process and maintains
viable rhizobia populations inside the plant. Benezech and colleagues evaluated the poten-
tial consequences and risks associated with an altered immunity in the symbiotic organ [75].
They used a tripartite system with the model legume Medicago truncatula, its nodulating
symbiont of the genus Sinorhizobium, and the pathogenic soil-borne bacterium Ralstonia
solanacearum. They also observed various colonization patterns for nodules, suggesting
that the pathogen can enter the nodules through multiple ways and that nodule innate
immunity was altered in the symbiotic organs allowing an easier nodule infection by
the pathogens. However, defense gene expression was activated in nodules and roots in
response to R. solanacearum infection. R. solanacearum-induced genes showed the same
expression kinetics in roots and nodules, notably genes associated with the SA defense
pathway, indicating that nodules can activate defense reactions upon infection with R.
solanacearum. Interestingly, 130 defense-related genes were found specifically induced in R.
solanacearum-infected nodules and not in roots, indicating that nodules develop defense
reactions distinct from roots as a whole [75].

In parallel with nodule local defense, SA has also been associated with defense priming
by nitrogen-fixing symbiosis. Rhizobium inoculation decreases disease severity levels
against Didymella pinodes by lower pathogen infection, significant reduction in seed infection
level, and higher accumulation of the phytoalexin pisatin [77,78]. To investigate whether
symbiotic rhizobia are able to modulate resistance against biotrophic pathogens, Smigliesski
and colleagues analysed the impact of pre-established nodulation of M. truncatula and
P. sativum against the powdery mildew fungus Erysiphe pisi [76]. In M. truncatula, nodulation
resulted in a reduced penetration by Erysiphe pisi with a similar degree of sporulation in
nodulated and non-nodulated plants. In contrast, nodulation of the pea did not affect fungal
penetration but resulted in a significant reduction in sporulation. This result indicates that
nodulation of M. truncatula and P. sativum improves early pre-penetration (M. truncatula)
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and late post penetration (pea) resistance against E. pisi [76]. Moreover, E. pisi inoculation
of M. truncatula significantly increased the concentration of free SA in leaves of nodulated
plants at both 1 and 7 dpi. By contrast, significant increase was observed only at the later
time in non-nodulated plants [76]. Similarly, the concentration of free SA was significantly
increased in nodulated peas at 7 dpi. These findings show that nodulation of pea and M.
truncatula primed the plants for E. pisi-triggered accumulation of free SA that correlated
with increased resistance against the powdery mildew fungus. It should be noted that in
the same context, nodulation did not protect M. truncatula from Xanthomonas campestris pv
alfalfa [76].

Pandharikar and colleagues demonstrated that nitrogen-fixing symbiosis influences
plant–aphid interactions and the plant’s defense response [79]. They observed a detrimental
effect of rhizobia-inoculated plants on the aphid development as they had lower weight
compared to aphids that fed on nitrate-supplemented plants. In addition, PR1 expression
was strongly upregulated in infested plants, confirming the activation of SA-dependent de-
fense; but a higher expression of Proteinase Inhibitor gene, a gene marker for JA transduction
pathway, was observed in the leaves of nodulated plants [79].

All together, the results point to the regulatory role of the SA-mediated pathway in
nitrogen-fixing symbiosis and to the defence-priming role of NFS either through SA or JA
regulation pathways in interactions with plant bio-aggressors.

5. The Future Challenges of Hormonal Regulation in Plant-Beneficial
Microbe Interactions

The involvement of SA in the interaction between plants and beneficial microbes
has been clearly demonstrated in recent years. However, the effects of the modulation
of the plant SA metabolism by the beneficial microbes remain largely elusive. Multiple
reports showed that the modification of SA metabolism was associated with increased plant
resistance to biotic and abiotic stress. In this context, the molecular mechanisms underlying
this improved adaptation of the plants to the environment remain open questions.

The heterogeneity of the resulting effect of the plant-beneficial microbes in term of
plant response to the microbes is also an intriguing topic. This heterogeneity suggests
that plant and microbial genetic variability play a significant role in the results of the
interaction. In this context, the search for plant and microbe genes regulating the outcome
of the interaction through screening of the genetic diversity associated with the success
of the interactions seems an exciting line of research. This screening for adapted species
which present better interactions is also attractive for increasing the use of microbes for
bio-stimulation and biocontrol in agroecological practices. Indeed, the use of beneficial
microbes will be helpful to improve plant growth in impaired plant growth conditions or a
reduced use of fertilizers and pesticides.
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