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ABSTRACT14

Hypoxic ischemic encephalopathy (HIE) is a brain injury that occurs in 1 ∼ 5/1000 term neonates. Accurate identification and
segmentation of HIE-related lesions in neonatal brain magnetic resonance images (MRIs) is the first step toward predicting
prognosis, identifying high-risk patients, and evaluating treatment effects. It will lead to a more accurate estimation of prognosis,
a better understanding of neurological symptoms, and a timely prediction of response to therapy. We release the first public
dataset containing neonatal brain diffusion MRI and expert annotation of lesions from 133 patients diagnosed with HIE.
HIE-related lesions in brain MRI are often diffuse (i.e., multi-focal), and small (over half the patients in our data having lesions
occupying <1% of brain volume). Segmentation for HIE MRI data is remarkably different from, and arguably more challenging
than, other segmentation tasks such as brain tumors with focal and relatively large lesions. We hope that this dataset can help
fuel the development of MRI lesion segmentation methods for HIE and small diffuse lesions in general.

15

Background & Summary (700 words maximum)16

Accurate identification of brain lesion injuries in neonatal brain magnetic resonance images (MRI) [1, 2, 3] is crucial to improve17

clinical care of neonates with hypoxic ischemic encephalopathy (HIE), a brain disease that occurs in around 1 ∼ 5/100018

term-born infants at birth [4, 5]. HIE affects around 200,000 term-born neonates every year worldwide [4, 5], costing about $219

billion/year in the US alone, let alone family burdens. Therapeutic hypothermia, the current clinical treatment of HIE, can20

reduce mortality and morbidity. Nevertheless, around 60% of patients still die or develop neurocognitive deficits by 2 years21

of age. MRI is used in over 50% of all the >100 ongoing HIE-related clinical trials worldwide [6], for evaluating treatment22

effects [7, 8, 9], and helping discover clinical [10, 11, 12], biochemical [10, 13, 14, 15], and serum [16, 17, 18] biomarkers.23

Accurate identification of brain lesions in neonatal brain MRIs [1, 2, 3] is needed for disease prognosis, a better understanding24

of the neural basis of disease progression, and more timely evaluations of therapeutic effects.25

HIE lesions are often diffuse (i.e., multi-focal), and small; hence, algorithms that have shown great promise in segmenting26

big and focal lesions, such as brain tumors and acute strokes, often encounter challenges when directly applied to MRIs of HIE27

patients. Indeed, many (over half) patients had lesions occupying <1% of brain volume, as shown in Figure 1. As a result,28

the segmentation accuracy measured by the Dice overlap with U-Net [19] and other state-of-the-art machine/deep learning29

algorithms on HIE remains at around 0.5 [20], whereas Dice is over 0.8 when segmenting brain tumors [21, 22].30

A major hurdle in developing algorithms for small diffuse lesions, such as HIE lesions, is the lack of public data. Public data31

with expert annotations of lesions have fueled the advancement of machine learning algorithms to segment brain tumors [23],32

stroke lesions [24], multiple sclerosis lesions [25, 26], and numerous other diseases in the brain or other organs [27, 28].33

However, to date, there is no public MRI data with expert annotations available for HIE lesions.34

We present BOston Neonatal Brain Injury Dataset for Hypoxic Ischemic Encephalopathy (BONBID-HIE), an open-source,35

comprehensive, and representative MRI dataset for HIE. This paper introduces the first part of the BONBID-HIE data. This36

release contains raw and derived diffusion parameter maps, as well as manually-annotated lesion masks, for 133 HIE patients.37

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.30.546841doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.30.546841
http://creativecommons.org/licenses/by-nc-nd/4.0/


ADC
Expert

Annotations ADC
Expert

Annotations ADC
Expert

Annotations

Patient 001
Brain injured 0.82%

Patient 070
Brain injured 0.65%

Patient 302
Brain injured 4.15%

Figure 1. Lesions associated to hypoxic ischemic encephalopathy (HIE) are typically diffuse (i.e., multi-focal) and small.
Here we show two representative images for 3 HIE patients. For each patient, in the left panel: apparent diffusion coefficient
(ADC) maps that are clinically used to identify HIE lesions; in the right panel: manually-annotated lesions (shown in pink)
overlaid on the ADC map. We listed the percentage of the whole brain volume being injured at the bottom (i.e., lesion volume
divided by the whole brain volume).

Our data was from Massachusetts General Hospital. It includes MRIs from different scanners (Siemens 3T and GE 1.5T),38

different MRI protocols, and from patients of different races/ethnicities and ages (0-14 days postnatal age). Part I of our39

data release (this paper) focuses on lesion detection, while Part II (a follow-up paper) will focus on clinical, treatment, and40

neurologic outcome data for further developing prognostic biomarkers.41

Methods42

This work was approved by the Institutional Review Boards (IRBs) at Massachusetts General Hospital (MGH) and Boston43

Children’s Hospital (BCH). Figure 2 illustrates the overall data archiving process.44
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Figure 2. A schematic diagram showing the steps performed on the BONBID-HIE data for release.

Retrospective Data Collection45

Data was retrospectively collected from MGH. Inclusion criteria were: (1) term-born (at physician discretion) (2) clinical46

diagnosis of HIE; (3) initially treated at MGH between 2001 and 2018; (4) no comorbidities such as hydrocephalus or congenital47

syndromes; and (5) high-quality MRI acquired in Day 0-14 after birth (visually checked by RW, AF, YO). Exclusion criteria48

were: (1) excessive motion artifacts or missing images; (2) secondary HIE diagnosis to a primary perinatal stroke.49

Clinical characteristics and demographic information were retrospectively gathered from the electronic health records50

(EHRs). The clinical variables included maternal information during pregnancy and delivery, as well as infant information.51

More detail can be found in the "Data Records" Section.52

MRI data was downloaded from MGH Radiology Department clinical archives using the mi2b2 search engine [29]. MRIs53

were acquired on either a GE 1.5T Signa scanner (N=52, scanned during 2001-2012), or, a Siemens 3T TrioTim or PrismaFit54

scanner (N=81, scanned during 2012-2018). Diffusion tensor sequences on all scanners had the protocol as follows: Time55

of Repetition (TR)=7500− 9500ms, Time of Echo (TE)=80− 115ms, and b=1000 s/mm2. The GE scanner had resolution56

1.5×1.5× (2.0−4.0)mm3 and (6 - 60) diffusion directions, while the Siemens scanner had a resolution 2×2×2mm3 and (2557
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- 60) diffusion directions. Apparent diffusion coefficient (ADC) maps were directly generated by the scanners (with Syngo58

software for Siemens scanners [30], and with the Advantage Windows Workstation for GE scanners [31, 32]).59

MRI Pre-processing60

Besides the raw NIfTI image as converted from the DICOM files, we also generated several processed images. The pre-61

processing steps included: N4 bias correction [33], field of view normalization [34], multi-atlas skull stripping for the ADC62

maps [35], and deformable registration of each patient’s ADC map to a normative 0-14 day neonatal brain ADC atlas [36], by63

the Deformable Registration via Attribute Matching and Mutual-Saliency weighting (DRAMMS) software [37], which has64

been extended-validated for lifespan ages in various MRI sequences [38]. This normative ADC atlas was constructed from65

ADC maps of 13 healthy individuals acquired 0-14 days after birth (Figure 3a) with our extensively-validated MRI analysis66

pipeline [39, 38, 35, 34]. All software packages used in this pre-processing pipeline are publicly available and have been67

validated in processing both research and clinical MRI scans across ages [40, 41, 42, 43].68

Expert Annotation of Lesions69

HIE lesions were manually annotated as a binary mask on the 3D ADC maps in the patient’s raw image space, using the70

MRICroN software. ADC maps are clinically used as the standard images to identify HIE abnormalities [44, 45]. The71

annotations were done by a trained physician (YS; >3 years of experience) according to the neuroradiology reports that were72

generated as part of the clinical flow. The annotations started from the axial slice and were subsequently modified in the73

coronal and sagittal planes for the 3D integrity of lesion regions. Uncertainties occurred in 27 patients and were resolved by the74

consensus of three pediatric neuroradiologists (CJ, SS, and PEG; >5, >5, and >20 years of experience).75

Generation of ZADC Maps for Each Patient76

Figure 3. The generation and concept of ZADC maps. (a) Examples of ADC maps from normative subjects, which were
warped into the same space using unbiased group-wise DRAMMS registration to generate (b) the mean and standard deviation
ADC atlases. (c) One or two standard deviations above and below the mean ADC atlas define the normal ranges of voxel-wise
ADC variations. (d) Our novel ZADC map quantifies voxel-wise deviations from the mean ADC map in (b). The cool/warm
colors in (d) represent voxels with ADC values lower/higher than the mean ADC at the same anatomic location, according to
the scale bar on the right.

Neuroradiologists identify acute brain injury from HIE as regions with low ADC values. Low ADC values represent a77

reduced water diffusion or blood supply [6]. However, a dilemma is, what ADC value is considered abnormally low versus78

just low within the normal variation? The normal variations of ADC values differ across brain regions [36, 46], making this79

question difficult even for experienced neuroradiologists. For example, a voxel with an ADC value of 800 (×10−6mm2/s) may80

be considered normal at one brain region, whereas another voxel with an ADC value of 900 (×10−6mm2/s) may be considered81

lesioned at another brain region, if the normal ranges of ADC variations in the two brain regions are 700-900 and 950-110082

(same unit), respectively.83

To address this dilemma, we have developed ZADC maps to normalize and make ADC values comparable across brain voxel84

locations [40]. First, a normative ADC atlas was generated from scans of healthy neonates (Figure 3a). This atlas quantifies the85

mean ADC values and standard deviation at every voxel [47] (Figure 3b), and hence the normal range of variations at each86
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voxel (Figure 3c). Then, we converted each patient’s ADC map (first row, Figure 3d) into a ZADC map (second row, Figure 3d).87

The ZADC maps compared the patient’s ADC value at each voxel to the normal variations at the corresponding voxel in the atlas.88

In a nutshell, ZADC maps quantify how many standard deviations away a patient’s ADC value at a voxel is from the normal89

mean at the same anatomical location.90

Specifically, a deformation (D) was computed, which mapped every voxel x in the patient’s ADC map to its anatomically-91

corresponding location D(x) in the atlas space. The normal range of ADC variation per voxel was defined by the mean and92

standard deviation denoted for that voxel across all healthy neonates. Finally, the patient’s ADC value Ix at voxel x was93

converted to a Z value: Zx = (Ix −µD(x))/σD(x). We calculated the ZADC map, which resides in the patient’s raw ADC image94

space, for each patient. This offers an option for developing anatomy-aware lesion segmentation algorithms [48].95

Construction of Statistical Lesion Atlases for the Cohort96

Normal atlas (ADC, 0-2 weeks)

HIE lesion atlas (frequency map) overlaid on the normal atlas

L

L

L L

Figure 4. Statistical lesion atlas quantifying the voxel-wise lesion frequency in our cohort of N=133 patients in the normal
0-14 days ADC atlas space.

The same deformation field that was computed by the non-rigid registration from the patient’s skull-stripped ADC map97

to the normal ADC atlas was used to transform the binary brain lesion maps of each patient into the normal neonatal ADC98

atlas space [37]. The transformed binary lesion masks were then summed and divided by the total number of patients at each99

voxel. This led to a statistical lesion atlas that quantifies voxel-wise frequency, or probability, of HIE lesions in our cohort, as100

illustrated in Figure 4.101

Data Records102

Dataset Characteristics103

Table 1A lists the demographics and clinical characteristics of mothers and neonates. Maternal information includes de-104

mographics (age at delivery, race), birth mode (C-section or vaginal), and complications during pregnancy and delivery.105

Neonatal information includes demographics (age at MRI scan, gestational age at birth, birth weight, head circumference,106

sex), birth conditions (1/5/10-minute APGAR scores, lowest pH value in umbilical cord), treatment (hypothermia or not),107

and complications in the neonatal intensive care unit (NICU), including seizure (yes/no), length of stay (in days), the use of108

endotracheal tube (ETT, yes/no), and the administration of total parenteral nutrition (TPN, yes/no). In each row, we also listed109

the number of patients who had such information available.110

Table 1B quantifies the distribution of the absolute lesion volumes (in mm3) and relative lesion volume (percentage of the111

brain being injured). Here, the relative lesion volume was calculated by the volume of the expert-annotated lesion regions112

divided by the algorithm-extracted whole brain volumes [34, 35]. The median lesion volume accounted for 0.63% of the113

whole brain volume. This confirms that over half of the patients had less than 1% of the brain being injured. Table 1C further114

calculates the distribution of the relative lesion volumes (by the percentage of the brain being lesioned). The absolute and115
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relative volumes were both computed in the patient’s raw ADC image space. The minimum lesion was 0 mm3, which is a116

common issue in HIE – mild HIE cases may not show explicit lesions in neonatal MRIs [49, 50, 51].117

Figure 5 shows the ADC map, ZADC map, and expert annotations of example patients with different HIE lesion percentages.118

Two patients are shown in each of the four groups: those with lesions occupying <1% (upper left panel), 1-5% (upper right119

panel), 5-50% (lower left panel), and 50-100% (lower right panel) of the whole brain volume. Overall, around 1 in 2 (55.64%)120

patients had HIE lesions occupying less than 1% of their brain volume, and 3 in 4 patients (75.19%) patients had lesions121

occupying less than 5% of their brain. This confirms that HIE lesions detectable in the diffusion MRI in our cohort are often122

small.123

Data structure and file formats124

All medical imaging files were exported from the Picture Archiving and Communication System (PACS) and converted into the125

NIfTI format. Segmentation masks created by expert annotations were also saved in NIfTI format. Corresponding scanner126

metadata from the Digital Imaging and Communications in Medicine (DICOM) header in the .json file format is provided with127

the datasets. All data in the BONBID-HIE dataset was separated into a training dataset (n=89) and a test dataset (n=44). Both128

the training and test sets contain data from both scanners (GE 1.5T Signa and Siemens 3T Trio). The split between the training129

and test data set has been performed (RB, YO) so that both sets include a similar variance of HIE lesion patterns as shown in130

Table 1C.131

Table 1. Cohort characteristics (N=133)

A. Demographics and Clinical Characteristics

Maternal Information

Maternal age at delivery (years) 29.5±6.7 N=133

Race
White (43), Black or African American (7), Hispanic or Latino (15),

Multi Race (5), Unknown (57), Other (6) N=133
Delivery C-section (78), Vaginal (55) N=133
Antepartum hemorrhage Yes (29), No (104) N=133
Thyroid dysfunction Yes (5), No (128) N=133
Pre-eclampsia Yes (9), No (124) N=133
Fetal decels Yes (72), No (61) N=133
Shoulder dystocia Yes (8), No (125) N=133
Chorioamnionitis Yes (20), No (108) N=133
Emergency c-section Yes (69), No (58) N=133

Neonatal Information

Age at scan (days) 3.9±2.7 N=133
Gestational age at birth (weeks) 39.1±1.9 N=133
Birth weight (g) 3321.9±615.9 N=133
Infant head circumference (cm) 34.2±1.4 N=85
Sex Male (74), Female (59) N=133
1-minute APGAR scores 1.9±1.7 N=133
5-minute APGAR scores 4.2±2.3 N=132
10-minute APGAR scores 5.3±2.1 N=118
Lowest pH value in umbilical cord 7.00±0.20 N=129
Therapeutic hypothermia before MRI? Yes (86), No (47) N=133
Endotracheal tube (ETT) in NICU Yes (78), No (47) N=125
Total parenteral nutrition (TPN) in NICU Yes (111), No (21) N=133
Seizures NICU Yes (64), No (69) N=133
Length of stay in NICU (days) 12.10±9.92 N=133

B. Lesion Characteristics (N=133)

Whole-brain lesion volume – minimum 0 mm3 (0% of the brain injured)
Whole-brain lesion volume – 25th percentile 441.96 mm3 (0.10% of the brain injured)
Whole-brain lesion volume – median 2765.63 mm3 (0.63% of the brain injured)
Whole-brain lesion volume – 75th percentile 24264.27 mm3 (4.86% of the brain injured)
Whole-brain lesion volume – maximum 412120.00 mm3 (82.59% of the brain injured)

C. Number of Patients by Percentage of Lesions in the Brain (N=133)

[0%,1%) of the brain being injured 55.64% (N=74)
[1,5%) of the brain was injured 19.55% (N=26)
[5,10%) of the brain was injured 5.26% (N=7)
[10,20%) of the brain was injured 4.51% (N=6)
[20,50%) of the brain was injured 8.27% (N=11)
[50,100]% of the brain was injured 6.77% (N=9)

D. Scanner (N=133)

GE 1.5T 39% (N=52)
Siemens 3T 61% (N=81)
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Figure 5. Visualization of patients with different lesion percentages. In every patient, the left image is the ADC map (skull
stripped) with range of ADC values designated by the gray scale bar, the middle is the computed ZADC map with range of
Z-scores designated by the rainbow scale bar, and the right image is the expert-annotated lesion regions (pink) overlaid on the
ADC map. Percentages of injury were calculated by the volume of the expert-annotated lesion regions divided by
algorithm-extracted whole brain volumes.

The data is organized in the format shown in Figure 6. BONBID-HIE provides, per patient: (i) 0ADC: raw defaced ADC132

maps; (ii) 1ADC_ss: skull stripped ADC map; (iii) 2Z_ADC: ZADC map; (iv) 3LABEL: expert lesion annotations; and (v)133

clinical data: clinical variables as written in Table 1A. There is also (vi) Atlases: a folder for the normal and lesion atlases; (vii)134

a readme.txt file: a text file to provide information on this data organization; and (viii) the license file of the BONBID-HIE135

dataset.136

Data repository and storage137

All training data has been made publicly available under the CC BY NC ND license (https://creativecommons.138

org/licenses/by-nc-nd/2.0/, allowing academic use with credit, prohibiting commercial use without owner’s139

permission, and disallowing derivation or adaption of data). This dataset is also used for the HIE lesion segmentation challenge140

in Medical Image Computing and Computer Assisted Intervention (MICCAI) 2023 annual conference in October 2023.141

Further information about the HIE challenges, including data storage and download, can be found under our homepage142

(https://hiechallenge.github.io/). As such, the expert lesion annotation of lesions in the testing sub-cohort will143

be released after the challenge.144
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BONBID-HIE
(Part I. Lesion 
Segmentation)

Clinical Data

Readme.txt

1ADC_ss

2Z_ADC

3LABEL

MGHNICU_001-VISIT_01-ADC_ss.nii.gz
MGHNICU_002-VISIT_01-ADC_ss.nii.gz

Zmap_MGHNICU_001-VISIT_01-ADC_smooth2mm_clipped10.nii.gz
Zmap_MGHNICU_002-VISIT_01-ADC_smooth2mm_clipped10.nii.gz

MGHNICU_001_lesion.nii.gz
MGHNICU_002_lesion.nii.gz

ClinicalData_BONBIDHIE2023.xlsx

Atlases Normal_atlas
Lesion_atlas

0ADC
MGHNICU_001-VISIT_01-ADC_defaced.nii.gz; MGHNICU_001-VISIT_01-anon.json
MGHNICU_002-VISIT_01-ADC_defaced.nii.gz; MGHNICU_002-VISIT_01-anon.json

Licence

Figure 6. Folder structure of the BONBID-HIE dataset (Part I. Lesion Segmentation).

Technical Validation145

Representativeness of patient cohort146

Our data is representative of HIE cohorts in the developed countries. At least three characteristics of our data agree with147

documented clinical knowledge about HIE.148

Lesion distribution in space agrees with clinical knowledge. Our statistical lesion atlas in Figure 4 shows that HIE149

lesions can occur anywhere in the brain. The regions most frequently injured here included the basal ganglia, internal capsules,150

thalamus, temporal lobes, cerebral white matter, brainstem, and cerebellum (red, orange, and yellow regions in Figure 4).151

This lesion atlas map coincides with clinical knowledge of brain regions often vulnerable to HIE injuries [2, 52, 6]. Indeed,152

HIE-related injuries in these regions have been key criteria in expert MRI scoring systems, which are used to assess the severity153

of HIE. Examples include the NICHD Neonatal Research Network (NRN) [2], the Barkovich [53], the Weeke-deVeries [3], and154

the Trivedi [54] scoring systems. In addition, lesions appeared in less than 35% of the patients at any given voxel, according to155

the color bar in this figure. This confirms the clinical knowledge that HIE lesions are diffuse, spatially distributed, and almost156

half to two-thirds of the HIE patients are mild to moderate, at least in patients in the USA [50, 51].157

Lesion distribution in time agrees with clinical knowledge. Figure 7(a) shows the percentage of the whole brain volume158

being lesioned at different postnatal ages. The lesion percentage in the ADC maps came down to almost 0 in the 9 patients159

who underwent MRI scans after postnatal day 7. This agrees with the clinical knowledge that HIE-related lesions are more160

detectable in ADC during 0-7 postnatal days or in T1/T2-weighted images than in relatively later scans (after postnatal day161

7) [55, 51, 2].162

ADC evolvement with age agrees with clinical knowledge. Figure 7(b) shows the whole-brain average ADC values of all163

patients (each dot is a patient). In normal cohorts, ADC values drop rapidly in the early postnatal life (see Figures 4 and 5164

in [36], and Figures 3 and 4 in [46]). However, the presence of HIE-related abnormalities disrupted this trend – HIE patients165

undergoing earlier MRIs (0-7 postnatal days) had decreased ADC values in a larger precentage of the brain (Figure 7(a)), so the166

ADC values in 0-7 postnatal days were at similar or even lower levels than ADC values in 7-14 postnatal days among HIE167

patients (Figure 7(b)). This has also been documented in HIE literature [56, 57].168

Utility of ADC maps and ZADC maps169

To demonstrate the utility of the computed ZADC maps, we compared the accuracies of using ADC or ZADC maps for lesion170

segmentation. We attempted simple thresholding of ADC and ZADC maps, at several threshold values, for segmenting HIE171

lesions. Although simple, thresholding-based segmentation accuracy is a strong indicator for segmentation accuracies in more172
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Figure 7. Representativeness of our cohort for (a) lesion distribution across ages; and (b) whole-brain ADC values across ages.
In both panels, each dot denotes a patient in our cohort.

sophisticated machine/deep learning algorithms [58]. For ADC maps, we used different thresholds ranging from 800-1100173

µm2/s, as suggested in the literature [55, 59, 60, 61, 62]. For ZADC maps, we used thresholds -1.5, -2, and -2.5. Voxels in174

patient MRIs with ADC values 1.5 to 2.5 standard deviations below the average ADC values from healthy controls were175

considered abnormally low and hence, lesioned. The choice of thresholds around -2 in ZADC maps was also based on the normal176

distribution of ADC values at each voxel across subjects [36, 40].177

We evaluated the accuracy of these maps compared to expert-annotated ground-truth masks using the Dice coefficient,178

sensitivity, and specificity. Results are shown in Figure 8. Here, the gray boxplots are the accuracy measurements when ADC179

maps were thresholded between 800 and 1100 µm2/s (50 µm2/s intervals). The blue boxplots are the accuracy measurements180

when the ZADC maps were thresholded at -1.5, -2, and -2.5. Figure 8 demonstrates: (i) both ADC and ZADC have value in helping181

segment the HIE-related lesions, since the specificity from simple naive thresholding-based segmentations was comparable to182

those from machine learning-based algorithms [20], although the Dice and sensitivity were lower; (ii) ZADC maps thresholded183

at -2, the most intuitive and straightforward threshold value, yielded the highest Dice (0.54±0.28), followed by ZADC maps184

thresholded at -2.5 (Dice 0.39±0.25); (iii) ZADC maps thresholded at -1.5 yielded the highest sensitivity2+speci f icity2

2 (0.82±0.02)185

compared with any ADC thresholds, followed by ZADC maps thresholded at -2 (0.76± 0.03); and (iv) overall, across all186

thresholds, ZADC maps showed a higher area under the curve (AUC: 0.936). This shows that ZADC maps – anatomy-normalized187

ADC images – carry the potential to improve lesion detection accuracy.188

Code Availability189

Data is available as part of the 1st BONBID-HIE MICCAI challenge (https://hiechallenge.github.io/), to be190

held in October 2023. For the training sub-cohort, all MRI (raw and derived) and expert lesions annotations are available. For191

the testing sub-cohort, only the MRI (raw and derived) data is available at the time this manuscript is drafted, and the expert192

lesion annotations will be made available after the challenge in October 2023.193

Codes to automatically calculate the evaluation metrics are available in BONBID-HIE 2023 MICCAI challenge (https:194

//bonbid-hie2023.grand-challenge.org/). The repository in the challenge contains scripts to read the images,195

visualize them, and quantify the algorithm’s performance with the same metrics used in the challenge to rank participants.196
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ADC maps at different thresholds
ZADC maps at

different thresholds

DICE 0.13±0.19 0.17±0.21 0.21±0.23 0.25±0.25 0.26±0.28 0.26±0.29 0.23±0.29 0.39±0.25 0.54±0.28 0.39±0.28

Sen.2+Spe.2
2 0.50±0.02 0.51±0.03 0.53±0.03 0.56±0.03 0.59±0.03 0.63±0.03 0.65±0.02 0.56±0.02 0.76±0.03 0.82±0.02

AUC 0.829 0.936

Figure 8. Accuracy of thresholding-based lesion segmentation on ADC and ZADC maps with different threshold values. Bold
texts in the tables beneath the figure panels highlight the two scenarios with the highest Dice scores, the two scenarios with the
highest and most balanced sensitivity and specificity metrics, and the parametric map (ADC or ZADC) with the highest area
under the receiver-operating-characteristic curve (AUC).
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