
1

Vol.:(0123456789)

Scientific Reports (2021) 11:1–10 |        (2021) 11:20417  (2021) 11:1–10 | https://doi.org/10.1038/s41598-021-00066-3

Enhanced super‑resolution 
microscopy by extreme value based 
emitter recovery
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Super-resolution localization microscopy allows visualization of biological structure at nanoscale 
resolution. However, the presence of heterogeneous background can degrade the nanoscale 
resolution by tens of nanometers and introduce significant image artifacts. Here we investigate 
and validate an efficient approach, referred to as extreme value-based emitter recovery (EVER), to 
accurately recover the distorted fluorescent emitters from heterogeneous background. Through 
numerical simulation and biological experiments, we validated the accuracy of EVER in improving the 
fidelity of the reconstructed super-resolution image for a wide variety of imaging characteristics. EVER 
requires no manual adjustment of parameters and has been implemented as an easy-to-use ImageJ 
plugin that can immediately enhance the quality of reconstructed super-resolution images. This 
method is validated as an efficient way for robust nanoscale imaging of samples with heterogeneous 
background fluorescence, such as thicker tissue and cells.

Significant advance in localization-based super-resolution imaging techniques (also known as STORM, PALM 
or fPALM)1–4 have revolutionized the field of light microscopy and allows visualization of the previously invisible 
molecular structures at a resolution of ~ 20 nm. Their super-resolved imaging capability is achieved by precise 
localization of individual fluorescent emitters with nanometer accuracy. However, in many biological experi-
ments, the fluorescent emitters can be distorted or obscured by the heterogeneous noisy background, which can 
introduce inaccuracies up to tens of nanometers. The inaccuracy can significantly compromise the resolution 
and quality of the reconstructed super-resolution image in forms of image artifact (i.e., misrepresentation of 
samples’ structure) and localization bias (i.e., shifting the true positions of localized emitters)5–8. Such limita-
tion restricts the application of super-resolution localization microscopy to those thin cells and tissue where 
the background is relative uniform. To achieve state-of-the-art super-resolution imaging5,6,8 in a wide variety of 
biological samples (e.g., thicker tissue and cells), accurate emitter recovery from the heterogeneous background 
fluorescence is critical.

Earlier attempts to recover fluorescent emitters rely on conventional image processing methods, such as spatial 
filtering (e.g., rolling ball filter5,9) and temporal filtering (e.g., temporal median filter7,10). These approaches are not 
based on rigorous estimation models for super-resolution localization microscopy, and all have serious limita-
tions in practice. Spatial filters lack robustness to background structure and emitter size. Temporal median filter 
suffers from serious over-estimation that can suppress the emitter intensity and size, which can severely reduce 
the emitter recall rate and affect the localization accuracy, especially in axial dimension7. Recent advances in deep 
learning is another alternative to estimate the heterogeneous background, however, the overall performance of 
deep learning based methods highly depends on the training dataset11, and is not trivial for biologists to properly 
train and optimize all parameters. In our previous work12, we briefly introduced an extreme value based method, 
EVER, to estimate the heterogeneous background. However, that work only demonstrated EVER’s performance 
for two-dimensional high-density emitter localization. An extensive assessment on the overall performance of 
EVER in various scenarios with different imaging characteristics is highly demanded.

Here, we extensively evaluated EVER, an accurate emitter recovery method using an extreme value-based 
estimation model to correct for heterogeneous background in super-resolution localization microscopy. This 
method accurately separates the fast-varying emitter signals from the slow varying background signal without 
restrictions present in conventional methods, and reduce image artifacts and improve the accuracy and fidelity 
of reconstructed super-resolution images. We demonstrate the superior performance of EVER over conventional 
methods for a wide range of imaging characteristics using dataset from numerical simulation and biological 
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experiments with tissue and cell samples. Moreover, we have implemented EVER as an easy-to-use ImageJ plugin 
to help the users to immediately improve the performance of their super-resolution localization microscopy.

Results
General description of extreme value based emitter recovery (EVER).  The main procedures of 
EVER can be divided into two steps: (1) segment the raw image stack to a series of image sub-stack along the 
temporal axis and calculate the pixelwise minimum value for each image sub-stack (Fig.  1a,b); (2) estimate 
the background from the temporal minima based on their relationship look-up table to recover the emitters 
(Fig. 1c–e).

The superior performance of EVER can be explained by the extreme value statistics theory. In super-resolution 
localization microscopy, the acquired composite signal, composed of the fast-changing emitters and the slowly 
varying background, can be modeled as a Poisson distribution. In an extreme case with ultimate sparse emitter 
signal, the composite signal is almost the same as the background signal, which can be well estimated by temporal 
median or mean value and be separated to recover the emitter signal. But in practice, when a much higher emitter 
density is present in each image frame (e.g. probabilities of emitter signal’s occurrence is over 50%), the temporal 
median or mean value is significantly skewed towards higher fluorescence intensity of the composite signals, 
indicating its tendency to seriously over-estimate the background. On the other hand, the temporal minimum 
value is inherently more resistant to varying probabilities of emitter signal’s occurrence, suggesting its robustness 
under different imaging conditions with various emitter densities. However, the temporal minimum value is not 
equivalent to the actual background signal. A lookup table of their relationship (Fig. 1c) is used to estimate the 
background signal directly from temporal minimum value and separate emitters from background (Figs. 1d–f).

Validation of EVER against the ground truth of simulated dataset.  We first validate the accuracy 
of EVER against the ground truth using simulated dataset that contains a rather complex imaging characteristics 
composed of heterogeneous background, various emitter density, size and intensity. The detailed simulation 
parameters are described in Supplementary Methods. For each simulated dataset, the performance of EVER is 
benchmarked against the ground truth and two conventional methods—temporal median filter (MED)7 and 
spatial rolling ball filter (RB)9. As shown in Fig. 2, EVER accurately separates emitters from the noisy back-
ground, in which the recovered emitters show the best match with the ground-truth image. In comparison, the 

Figure 1.   (a) An image sequence (stack) of raw images composed of emitters mixed with heterogeneous 
background. (b–c) The workflow of extreme value based emitter recovery (EVER), including (b) the calculation 
of temporal minimum value from each pixel and (c) transformation of temporal minimum value to the actual 
background value based on our derived look-up table. (d) The recovered emitters and (e) background images. 
Note that, the blue line in (b) shows the probability density function ( PDF ) for a Poisson distribution with an 
expected background value of 500 photons. When probabilities of the occurrence of the emitter’s signal (500 
photons) are 50%, the mean of the probability distribution of temporal minimum value ( PMFmin ) (red solid 
lines) only increase by ~ 2% (~ 8 photons) from the case without emitters (red dashed line). While the temporal 
median value ( PMFmed ) increases by ~ 96% (~ 480 photons) for the same scenarios (green solid and dashed 
lines).
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recovered emitters by MED exhibit apparent reduction in the intensity and size, due to the over-estimated back-
ground; the recovered emitters by the spatial filter of RB exhibit erroneous structures as the artifacts introduced 
by the heterogeneous background. We further quantify their image similarity of the recovered emitters using 
EVER, MED and RB, as shown in Fig. 2c. EVER indeed best recovers the emitters with ~ 98% similarity13 com-
pared to the ground truth, while other methods only show < 60% similarity with the ground truth. The similar 
performance holds for other imaging scenarios with various background structures, emitter density, emitter size, 
emitter intensity and emitter shape, as shown in Supplementary Figs. S1–S6.

Performance of EVER on the reconstructed super‑resolution image.  The accuracy of emitter 
recovery directly affects the quality of subsequent super-resolution image reconstruction. As shown in Fig. 3, we 
compared the performance of EVER against the conventional methods of temporal median filtering (MED) and 
spatial rolling ball filtering (RB) based on the simulated datasets with the known ground truth. Figure 3a shows 
the simulated single-frame raw image (a1) with three emitters on top of a heterogeneous background, and the 
recovered emitter images from the ground truth (a2) and using EVER (a3), MED (a4) and RB (a5), respectively. 
The recovered emitters using EVER (a3) best resemble those from the ground truth (a2). While the emitter 
images recovered by MED (a4) show much smaller emitter size and lower emitter intensity, and those recovered 
by RB (a5) show the residual background features. This observation is further confirmed in the corresponding 
cross-sectional profile shown in Fig. 3c. The red solid line from EVER best tracks the profile from the ground 
truth (black solid line), but the profile from the MED-recovered image (green) shows the over-estimated back-
ground with reduced emitter intensity and size, and the profile from the RB-recovered image (blue) shows the 
result from the under-estimated background such as the region indicated by the black arrow (Fig. 3c).

Following emitter recovery, we reconstructed the super-resolution images reconstructed by 
ThunderSTORM14,15, rendered as the 2D image (Figs. 3b,d–e) and the 3D scattered plot of localized emitter 
positions (Fig. 3d). Without any processing, the heterogeneous background results in many erroneously local-
ized emitters, shown as image artifacts in Figs. 3b1,d1. After EVER, the reconstructed super-resolution image 
(Fig. 3b3) shows the closest match to the super-resolution image reconstructed from the ground truth (Fig. 3b2). 
Whereas other methods (MED and RB) suffer from apparent reduction in localization accuracy and image reso-
lution. Table 1 compares the performance of emitter recovery on localization accuracy of the emitter position 
and size, quantified by localization bias and precision. EVER shows the best localization accuracy, comparable 
to that from the ground truth.

Figure 2.   (a) A simulated raw image where the emitters are mixed with heterogeneous background, and the 
emitter and background images are recovered by ground-truth (TRUE), extreme value-based emitter recovery 
(EVER), temporal median filter (MED) and spatial rolling ball filter (RB). (b) The intensity profile of the region 
in the magenta rectangular box of (a). (c) Image similarity between the recovered emitter images using EVER, 
MED and RB and the TRUE image.
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Experimental results in tissue imaging.  To demonstrate the performance of EVER on super-resolution 
imaging of biological samples, we first used an experimental dataset of imaging heterochromatin from tissue 
section. Super-resolution imaging of tissue section is especially challenging due to the presence of heterogene-

Figure 3.   The comparison of different emitter recovery approaches using simulated dataset with various emitter 
size, emitter intensity and heterogeneous background. (a) The raw image (a1), the recovered emitters from the 
ground truth (TRUE) (a2), and using EVER (a3), MED (a4) and RB (a5). (b) The corresponding reconstructed 
super-resolution images using ThunderSTORM without additional processing (b1) and after emitter recovery 
using the ground truth (b2), EVER (b3), MED (b4) and RB (b5). Green arrows indicate the image artifact. (c) 
The corresponding intensity profiles (solid lines) from the regions between the blue bracket in (a1–a5) and 
the black dashed line (TRUE-BG) represents the profile from the ground-truth background. The black arrow 
indicates the erroneously recovered emitter signals by RB coming from the residual background. (d) The scatter 
plot of the localized emitters from the raw image without any processing (magenta) and with emitter recovery 
by the ground truth (black), EVER (red), MED (green) and RB (blue). Emitter localization was performed by 
ThunderSTORM. (e1–e3) The zoomed distribution of localized emitters in (c).
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ous and high background mainly from tissue autofluorescence and stronger scattering; and the imaging target 
of heterochromatin further complicates this problem due to the higher emitter density from the densely packed 
heterochromatin. Figure 4a1 shows the representative single-frame raw image that exhibits a strong heterogene-
ous background mixed with emitters. Figures 4a2–a4 show the recovered emitters and the estimated background 
by EVER, MED and RB, respectively. Figures  4c1–c4 show the reconstructed super-resolution images using 
emitters recovered by EVER, MED and RB, respectively. Evidently, the MED recovers a smaller number of emit-
ters with reduced intensity due to the over-estimated background (Fig. 4a3), resulting in a much lower recalled 
rate in the reconstructed super-resolution image (~ 1.9 × 105 localized emitters) compared to other methods 
(> 2.8 × 105). On the other hand, the RB under-estimates the background and recovers erroneous emitters that 
introduce image artifacts that are not visible in the wide-field image (Fig. 4b), as indicated in the blue regions in 
Figs. 4b,c4. In comparison, the reconstructed super-resolution image after background correction with EVER 
(Fig. 4c2) indeed shows the best match with the overall structural features in the wide-field image without any 
image artifacts or loss of recovered emitters.

Experimental results in cell imaging.  Although strong heterogeneous background is less common for 
imaging thin cultured cells, it can be significant in multi-color dSTORM imaging when strong crosstalk (light 
from one color leaked into another color channel) is present. In our experiment, we labelled the mitochondria 
with Alexa647 and microtubule with Cy3B and a four-band dichroic mirror and emission filter were used in 
our microscopy setup (Fig. 5a). Figures 5b1 show strong non-uniform background due to the cross talk from 
the Cy3B-labeled microtubule when imaging the mitochondria. Figures 5b2–b4 show the recovered emitters by 
EVER, MED and RB. Similar to our previous findings, the MED-recovered image (Fig. 5b3) shows a significant 
smaller number of emitters and lower emitter intensity due to background over-estimation, while RB-recovered 
image (Fig. 5b4) exhibits the residual background features as a result of background under-estimation. In com-
parison, EVER (Fig. 5b2) recovers more emitters of various sizes (than MED), without apparent background 
features. In the subsequent reconstructed super-resolution images of mitochondria, we found that the recon-
structed super-resolution images without additional processing (Figs. 5c1,e1) and with RB-based emitter recov-
ery (Figs. 5c4,e4) exhibit apparent artifacts that were not seen in the wide-field image (as indicated by the blue 
box in Figs. 5d). Both EVER (Figs. 5c2,e2) and MED-based emitter recovery (Figs. 5c3,e3) match the structural 
features seen in the wide-field image (Figs. 5a,d), but the reconstructed image after MED-based emitter recovery 
shows a significantly smaller number of recalled emitters. Although MED-based recovery eliminates the image 
artifacts caused by non-uniform background, but sacrifices the emitter intensity, emitter size and recall rate due 
to the over-estimated background, consistent with our previous simulation and experimental results.

Computation speed.  We also compared the computation speed of different methods using ImageJ (Intel 
Core i7-4790 @ 3.6 GHz, single thread was used) for our experiment dataset in Fig. 4 (image size: 128X152 
pixels, frame number: 20000 frames). Our method (EVER) takes ~ 9 s (~ 2222 fps), RB takes ~ 115 s (~ 173 fps), 
and MED takes ~ 53 s (~ 377 fps). Therefore, besides the improved robustness and accuracy demonstrated above, 
EVER is also significantly faster that RB and MED by a factor of 12 and 5, respectively. This speed is sufficient for 
online analysis for the increasingly large dataset of super-resolution localization microscopy.

Conclusion
In conclusion, we extensively validated an extreme value-based emitter recovery method, EVER, that improves 
the fidelity and the resolution of super-resolution localization microscopy with a robust performance for a wide 
range of imaging characteristics. EVER uses a time-domain statistical model that is more suitable than con-
ventional spatial filters to separate the fast-changing emitters from the slowly varying background7. It is rather 
counter-intuitive to use the extreme value for background estimation, as it is traditionally considered to be less 
accurate compared to temporal median or mean filter in conventional imaging processing. We demonstrate 
that in super-resolution localization microscopy, the extreme-value based model exhibits superior robustness 

Table 1.   Localization bias and precision* of the emitter positions (x-dimension) and size for recovered 
emitters from the ground truth (TRUE), EVER, MED and RB. The localization bias is defined as the mean 
value of the localization error, and the localization precision is defined as the standard deviation of the 
localization error.

Bias (nm) Precision (nm)

Left emitter Middle emitter Right emitter Left emitter Middle emitter Right emitter

Lateral position

TRUE 0.4 1.5 1.9 2.7 3.4 5.5

EVER 0.9 2.1 3.3 2.8 3.6 7.1

MED 1.9 2.3 3.7 2.8 5.4 12.3

RB 9.1 2.2  > 50 4.4 4.2  > 50

Emitter size

TRUE 0.1 0.8 3.1 3.5 4.4 6.9

EVER 0.1 0.9 4.9 3.6 5.1 7.6

MED 5.0 21.3 40.6 3.7 6.3 12.8

RB 22.9 17.6  > 50 3.5 7.1  > 50
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to separate the fast-varying emitters from the slowly varying background with a simple algebraic relationship 
to link the temporal minimum value to the actual background signals. We validate the accuracy and robust 
performance of our method against the ground truth using simulated datasets with a wide range of emitter and 
background characteristics. We also demonstrate that EVER enables robust and accurate nanoscale imaging in 
challenging scenarios for super-resolution localization microscopy, such as imaging densely packed structures 
in tissue slices with heterogeneous bright background and strong color cross-talk, where conventional methods 
result in image artifacts, compromised image resolution, and reduced emitter recall rate. We implement this 
method as a super-fast and easy-to-use ImageJ plugin, which can be directly applied to the dataset from sparse, 
high-density, 3D super-resolution localization microscopy to immediately enhance their image resolution and 
reduce artifacts without any manual parameter adjustment.

Methods
Theoretical basis and implementation of extreme value‑based emitter recovery (EVER).  In 
modern super-resolution localization microscopy, the most commonly used camera for signal acquisition is 
sCMOS cameras16–18, whose read noise (< 2 electrons), dark noise (generally < 0.1 electrons per frame) and the 
well-calibrated fixed pattern noise can be neglected. In this situation, the acquired signal can be modeled as 
Poisson distribution. The recorded composite signal is comprised of the fast-changing emitters and the slowly 
varying background. In an extreme case with ultra-sparse emitter signal, the recorded signal is predominated by 
the background signal, the background can be well estimated by using temporal median value7. But in the sce-
nario of dense emitters when the probability of emitter occurrence within an imaging sequence is over 50%, the 
temporal median value is seriously larger than the actual background signal. However, the extreme (minimum) 
value remains relatively stable regardless of the probability of emitter occurrence, suggesting its inherent robust-
ness. To derive the statistics of temporal minimum, we first consider N random variables to model the photon 
number K1,K2, ...,KN , that is independently and identically Poisson distributed with the probability distribution 
function (PDF), cumulative distribution function (CDF) given by the following equation:

Figure 4.   Performance of our extreme value-based emitter recovery (EVER) for super-resolution localization 
microscopy. (a1) A single-frame raw image of the heterochromatin (labeled by Alexa 647-conjugated antibody 
against H3K27me3) from a tissue section in the imaging condition for super-resolution localization microscopy 
and the recovered emitters and background using EVER (a2), MED (a3), and RB (a4). Scale bar: 4 µm. (b) A 
wide-field image and the super-resolution image of heterochromatin reconstructed by ThunderSTORM without 
any additional processing (c1) and with emitter recovery by EVER (c2), MED (c3), and RB (c4). Blue box 
indicates the image artifact caused by the heterogeneous background. The number of recalled emitters is shown 
on the upper right corner of each reconstructed image. Scale bar: 2 µm.
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where λ is the expected average photon number for each pixel. Then we define a new random variable  
Kmin = min(K1,K2, ...,KN ) that takes the minimum value among the N Poisson random variables. The cumula-
tive distribution function of this minimum value is

Then the probability mass function (the probability of being the minimum value) is now given by

The Eq. (3) assumes uniform background (λ) over N (frames). However, for many experimental data, the 
background also undergoes a slow decay during N frames. To account for such variation, we introduce a decay 
ratio R, and Eq. S3 can be modified to Eq. (4)

When R = 1, Eq. (4) is reduced to Eq. (3). The background decay ratio (R) is an automatically calculated 
parameter. In this study, we first separate the background pixels without blinking events by comparing the mean 
and standard deviation value of the pixel in the temporal dimension of each sub-stack. If the standard deviation 
value of a specific pixel in the temporal dimension is less than 2 times of the mean value, this pixel is recognized 
as the background pixel. The decay ratio is then obtained by the following equation:
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Figure 5.   Comparison of different emitter recovery approaches for cell imaging using super-resolution 
localization microscopy. (a) The wide-field (WF) image of the experimental mitochondria dataset. (b1–b4) 
The single-frame raw image and the corresponding recovered emitters using EVER (b2), MED (b3), and RB 
(b4). Scale bar: 5 µm. (c2–c4) The reconstructed super-resolution image of mitochondria (labeled by Alexa 
647-conjugated antibody) by ThunderSTORM without any additional processing (c1) and with emitter recovery 
by EVER (c2), MED (c3), and RB (c4). The number of recalled emitters is shown in the lower right corner of 
each reconstructed image. (d, e1–e4) The zoomed regions within the green boxes of the wide-field image (a) 
and reconstructed super-resolution images in (c1–c4). Scale bar: 2 µm.
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where Ibg is the average value of the background pixels in each frame of the sub-stack. N is the frame number 
of the sub-stack.

An accurate estimate of the minimal value requires that the distribution represented by pmfmin to have a 
narrow dispersion around its mean (e.g., with a small standard deviation), which can be achieved by applying a 
spatial mean filter. The distribution can be described by the following Eq. (6)

where m is the number of pixels being averaged. Therefore, Eq. (5) gives the mathematical solution to describe 
the probability distribution of temporal minima value, given the expected background value. The look-up table 
to link the background value and the corresponding temporal minimum value is calculated with this equation. 
Alternative strategies such as using the second minimum value or applying denoising filter (e.g., wavelet filter) 
to the temporal minimum value map can further improve the precision of EVER.

The ImageJ plugin of EVER can be found on this website: https://​github.​com/​YangL​iuLab/​
EVER-​ImageJ-​Plugin.

Numerical simulation.  To mimic a wide range of image characteristics in super-resolution localization 
microscopy, we simulated a series of image sets composed of spatially non-uniform background and emitters 
with various emitter density, size and intensity. The image size was set to be 128 × 128 pixels with a pixel size 
of 100 nm, and the emitters were randomly distributed in the central 100 × 100 pixels. For each image frame, 
the fluorescence signal is modeled as a distribution of emitters convolved with a point spread function and a 
spatially-varying background19:

where f is the frame number, (i, j) is the coordinate of each pixel on the image, and A is the intensity of the nth 
emitter, (x, y) is the lateral position of the nth emitter, PSF(n) is the point spread function of the nth emitter and 
N is the total number of emitters in the image.

Image reconstruction.  To compare EVER with conventional methods for emitter recovery, the temporal 
median filter (MED) is implemented following the literature7, and rolling ball filter (RB) is implemented by 
using ImageJ plugin (Process >  > Subtract background) with a radius of 5 pixels. For super-resolution image 
reconstruction, ThunderSTORM14 was used for all the simulation and experiments in this study. Wavelet filter 
was selected for image denoising and single-molecule least-squares Gaussian function fitting was used for locali-
zation. We acknowledge that our method improves the localization accuracy affected by non-uniform back-
ground, but it does not improve the localization precision affected by the increased Poisson noise from a high 
background. Furthermore, as we used least-square Gaussian localization algorithm for our super-resolution 
image reconstruction, we directly remove the background from our raw image set for the subsequent image 
reconstruction. However, if maximum likelihood estimator (MLE) is used, the estimated background image is 
needed for precise calculation.

Tissue sample preparation.  Immunofluorescence staining of tissue section.  A 3 µm-thick tissue section 
was cut from formalin-fixed, paraffin-embedded (FFPE), de-identified human tissue block of a colon tissue and 
placed on a No. 1.5 coverslip. The tissue section was first deparaffinized in xylene and rehydrated in ethanol 
with graded concentration (100%, 95%, 70%, and 50%) and finally in distilled water. Next, heat-induced antigen 
retrieval was performed in the pre-heated Tris–EDTA buffer solution in microwave oven, then cooled down at 
room temperature. To block against non-specific binding, the section was incubated with a blocking solution 
containing 3% BSA and 0.2% Triton X-100 diluted in PBS for 1 h at room temperature. The primary antibody 
(rabbit polyclonal H3K27me3, Cat. 07–449, Millipore) was diluted to be 1:300 in a solution containing 10 mM 
glycine, 0.05% Tween 20, 0.1% Triton X-100, 0.1% hydrogen peroxide and 3% BSA in PBS and incubated at 4 °C 
overnight, followed by Alexa Fluor 647 conjugated goat-anti-rabbit secondary antibody at room temperature for 
2 h and then washed with PBS.

Imaging buffer.  The coverslip that containing the tissue section was glued to a plastic petri dish. The 70% of 
2,2-thiodiethanol (TDE, Sigma-Aldrich) in PBS was used to optically clear the tissue section for at least 10 min 
before imaging. The imaging buffer was prepared fresh by mixing GLOX, 2-mercaptoethanol (βME, Sigma-
Aldrich), Cyclooctatetraene (COT, Sigma-Aldrich) and TDE buffer B at a ratio of 1:1:1:97 before imaging. In 
brief, the GLOX was mixed with 200 µl Buffer A (0.5 mL 1 M Tris (pH = 8.0) + 0.146 g NaCl + 50 mL H2O), 
14 mg Glucose Oxidase (Sigma-Aldrich), 50 µl Catalase (17 mg/mL catalase as prepared by dissolving 0.85 mg 
Catalase in 50 µl Buffer A, Sigma-Aldrich) and TDE Buffer B (2.5 mL 1 M Tris (pH 8.0) + 0.029 g NaCl + 5 g 
Glucose + 17.5 mL H2O + 30 mL TDE).

Cell sample preparation.  MEF cells (ATCC) were maintained in DMEM medium supplemented with 10% FBS. 
Cells were plated onto a glass-bottom dish (World Precision Instruments, FD3510) at an initial confluency of 
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f=1:N

Ibg
(

f
)/(

min
(

Ibg
)

· N
)

(6)pmfmin(k, �,N ,R) = pmfmin(k, �, i = 1)⊗ pmfmin(k, �, i = 2)...⊗ pmfmin(k, �, i = m)

(7)I
(

i, j, f
)

= Poisson

[

N
∑

n=1

(

PSF(n) ∗ A
(

x, y, f
))

+ background
(

i, j, f
)

]
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50% and cultured overnight to let the cells attach. To perform immunostaining, the cells were first pre-extracted 
for 30 s in 0.5% Triton X-100 (Triton) in BRB80 (80 mM PIPES, 1 mM MgCl2, 1 mM EGTA, pH = 6.8) supple-
mented with 4 mM EGTA, washed in PBS, fixed with cold Methanol for 10 min. The cells were then incubated 
with primary antibodies (rabbit anti-alpha tubulin antibody, abcam 18,251; mouse anti COX IV Mitochondrial 
antibody, abcam 33,985) at 4 °C overnight. After being washed 3 times with PBS, the cells were incubated with 
Cy3B-conjugated donkey anti-rabbit secondary antibody and Alexa 647-conjugated donkey anti-mouse second-
ary antibody for 2 h at room temperature, protected from light. The cells were then washed again 3 times and 
stored in PBS before imaging. Immediately before imaging, the buffer was switched to the STORM imaging 
buffer containing 10% w/v glucose (Sigma-Aldrich), 0.56 mg/mL glucose oxidase (Sigma-Aldrich), 0.17 mg/mL 
catalase (Sigma-Aldrich), 0.14 M β-mercaptoethanol (Sigma-Aldrich).

Super‑resolution imaging setup.  Our experiments were performed on our home-built super-resolution 
localization microscopy system. It is built upon an Olympus IX71 inverted microscope equipped with four laser 
lines including 405 nm (DL405-050, CrystaLaser), 488 nm (DL488-150, CrystaLaser), 560 nm (VFL-P-200–560-
OEM1, MPB Communications) and 642 nm (VFL-P-1000–642-OEM3, MPB Communications). Their intensity 
was controlled by neutral density filters (NDC-50C-4-A, Thorlabs) and high-speed shutters (LS6S2Z0, Vincent 
Associates). For super-resolution imaging of tissue section, 642 nm laser with a laser density of 3 kW/cm2 was 
used for excitation. The four laser beams were expanded by a 10X beam expander (T81-10X, Newport) and 
combined by the dichroic mirrors and then focused onto the rear pupil of an oil immersion objective (UPLSAPO 
100XO, NA = 1.4, Olympus) by an achromatic lens. A highly oblique-angle illumination was used to suppress the 
background signal. The emitted fluorescence was collected by the objective, passing through the dichroic mirror 
(ZT488/640rpc-UF1, Chroma) and a band-pass emission filter (ZET488/640 m, Chroma), and then focused by 
the tube lens and a 0.5X C-mount adapter onto a sCMOS camera (pco.edge 4.2, PCO-Tech), corresponding to 
a pixel size of 130 nm on the sample plane. A closed-loop piezo nanopositioner (Nano-F100S, Mad City Labs) 
was used for drift real-time correction tracking the 3D positions of fluorescence nanospheres (F8803, Thermo 
Fisher Scientific)15. Data acquisition, laser intensity control and drift correction were all integrated in our cus-
tom-designed software written in LabVIEW (National Instruments) and MATLAB (MathWorks). We acquired 
20,000 frames with an exposure time of 20 ms to ensure the collection of sufficient blinking events. For two-color 
dSTORM imaging of MCF10A cells, the dichroic mirror was replaced by (ZT405/488/561/640rpc, Chroma) and 
the emission filter is replaced by (ZET405/488/561/640mv2, Chroma). We acquired 10,000 frames with 642 nm 
laser with a laser density of 3 kW/cm2 at an exposure time of 20 ms to ensure the collection of sufficient blinking 
events.
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