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Abstract

The Coronavirus Disease 2019 (COVID-19) is caused by the betacoronavirus Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus that can mediate asymptomatic

or fatal infections characterized by pneumonia, acute respiratory distress syndrome

(ARDS), and multi-organ failure. Several studies have highlighted the importance of B and T

lymphocytes, given that neutralizing antibodies and T cell responses are required for an

effective immunity. In addition, other reports have described myeloid cells such as macro-

phages and monocytes play a major role in the immunity against SARS-CoV-2 as well as

dysregulated pro-inflammatory signature that characterizes severe COVID-19. During

COVID-19, neutrophils have been defined as a heterogeneous group of cells, functionally

linked to severe inflammation and thrombosis triggered by degranulation and NETosis, but

also to suppressive phenotypes. The physiological role of suppressive neutrophils during

COVID-19 and their implications in severe disease have been poorly studied and is not well

understood. Here, we discuss the current evidence regarding the role of neutrophils with

suppressive properties such as granulocytic myeloid-derived suppressor cells (G-MDSCs)

and their possible role in suppressing CD4+ and CD8+ T lymphocytes expansion and giving

rise to lymphopenia in severe COVID-19 infection.

The Coronavirus Disease 2019 (COVID-19) is a heterogeneous disease that ranges from

asymptomatic [1] to severe disease with fatal outcome [2,3]. Severe COVID-19, initiated by

successful viral infection and replication within type I and II alveolar epithelial cells [4,5], is

characterized by excessive lung inflammation and injury and caused by a delayed interferon

response followed by lymphopenia and cytokine storm that together impair local viral clear-

ance and injury resolution [6–8]. The elderly, which commonly present with lymphopenia, is

the most affected group by severe COVID-19 and registers the highest mortality rate [3].

Importantly, the mechanisms behind lymphopenia during severe COVID-19 remain

unknown. Despite the advent of vaccines that have shown high efficacy in preventing severe

disease and in providing protection from infection [9,10], the slow vaccination rate in
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developing countries and the emergence of variants of concern [11,12] raise the importance of

understanding the mechanisms behind the dysregulated immune response that leads to severe

COVID-19 in some individuals.

An integrated analyses of the immune response obtained from the bronchoalveolar lavage

(BAL) samples of patients affected by COVID-19 suggest that the early viral infection of alveo-

lar macrophages and monocyte-derived macrophages by Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) triggers the production of T lymphocyte chemokines such as

CCL24, CCL7, and CCL8 that promote the recruitment of T lymphocytes to the lungs [13].

Further production of interferon gamma (IFN-γ) by recruited T cells activates macrophages

and induces the production of cytokines required for T lymphocyte activation, such as

CXCL10, CCL4, and IL-1β [13]. This early circuit of monocytes and T lymphocytes is replaced

later by a robust recruitment of neutrophils comprising around 50% of the total cells found in

BAL [13].

Several studies have demonstrated that during an acute viral pulmonary infection in

humans and animal models, neutrophils are actively recruited to the site of infection, amplify-

ing lung inflammation without contributing to viral clearance [14]. In fact, a recent report

shows that enriched neutrophils in the nasal mucosa in humans and mice lead to severe symp-

tomatology during respiratory syncytial virus infection [15].

Initial analyses of neutrophil function from endotracheal aspirates during COVID-19

showed that neutrophils can also harbor viral particles intracellularly, exhibiting a pro-inflam-

matory phenotype, characterized by the production of IL-6 and tissue factor [16]. Other stud-

ies have shown that during COVID-19, neutrophils cause tissue damage, thrombosis, and

blood clots through degranulation—or release of protein content stored in granules—and

NETosis—extrusion of DNA and chromatin into the extracellular space [17–19]. These data

indicate that during COVID-19, neutrophils actively contribute to inflammation, immunopa-

thology, and severe disease. Neutrophils are myeloid granulocytic cells derived from early

committed granulocyte–monocyte progenitors (GMPs) within the bone marrow [20], which

are rapidly expanded during sepsis or infection [21]. Despite the fact that neutrophils are typi-

cally described as pro-inflammatory cells, a recent work shows that neutrophils are heteroge-

neous and remarkably plastic cells that display not only pro-inflammatory phenotypes, but

also suppressive functions [22]. Specifically, studies using mouse models have shown that dur-

ing viral, bacterial, and parasitic infections, neutrophils may acquire suppressive phenotypes

characterized by inhibition of T lymphocyte proliferation and activity through arginase-1,

inducible nitric oxide synthase (iNOS), and reactive oxygen species (ROS) production and

induction of T cell anergy through PD-L1/PD-1-mediated interaction [22–32]. This suppres-

sive neutrophil subset, referred to as granulocytic myeloid-derived suppressor cells

(G-MDSCs), has also been identified in humans [23,26,30–32].

During an inflammatory response induced by infection, the local production of cytokines

such as G-CSF, GM-CSF, and M-CSF triggers granulopoiesis of neutrophils and monocytes

that are recruited to the site of infection [30–32]. Cytokines produced in the local microenvi-

ronment subsequently dictate the function of these cells, helping to clear the infection and

resolve inflammation [30–32]. However, during pathologic states of dysregulated or unre-

solved inflammation, aberrant activation of recruited neutrophils and monocytes may occur

in the local environment, characterized by impaired phagocytic capability with increased pro-

duction of anti-inflammatory cytokines such as IL-10 and transforming growth factor beta

(TGF-β), increased production of ROS, and higher expression of iNOS, arginase-1, and PGE2

that altogether suppress the activity and proliferation of CD4+ and CD8+ T cells and promote

the expansion of regulatory T (Treg) cells [30–32].
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Recently, the role of monocytic MDSCs in COVID-19 disease outcome has been described

[33]. In this manuscript, we have primarily focused on the contribution of G-MDSCs, which

are derived from the neutrophil GMP [30].

Several studies have described the expansion of suppressive neutrophils or G-MDSCs dur-

ing COVID-19 and the association of these cells to disease severity [34–38]. Studies have

shown that during COVID-19, neutrophils are a heterogeneous group of cells comprised of

both immature and mature cells with pro-inflammatory and suppressive properties [34,35]. A

population of immature CD10neg neutrophils that exhibit a suppressive phenotype was shown

to produce high levels of Ca2+ binding proteins S100A8/A9 [34] that are typically produced by

G-MDSCs in human and mice and promote further expansion and accumulation of

G-MDSCs [39–41]. Interestingly, the presence of G-MDSCs as well as the production of

S100A8/A9 were overrepresented in patients with severe COVID-19 compared to patients

with mild disease or healthy controls [34]. Still, another study showed that, during COVID-19,

immature and mature subsets of neutrophils identified in peripheral blood express not only

classical pro-inflammatory markers such as neutrophil elastase and myeloperoxidase, but also

suppressive markers typically expressed by G-MDSCs such as arginase-1 and PD-L1 [35,42].

Immature PD-L1+ neutrophils were significantly expanded after 10 days post-symptom onset

and were overrepresented in severe COVID-19 patients compared with patients with mild

COVID-19 [39].

Further studies provided evidence that the numbers of suppressive immature neutrophils

and/or G-MDSCs expanded during severe COVID-19 infection are associated with lymphope-

nia and disease severity [36–38]. Whereas 2 studies determined that the numbers of suppres-

sive CD16+LOX1+ G-MDSCs in circulation were increased during severe COVID-19 and

constituted a strong predictor of disease severity [36,37], a third study showed that the expan-

sion of CD10neg immature neutrophils is associated with decreased numbers of CD4+ T cells,

CD8+ T cells, VD1 T cells, and VD2 T cells in circulation, increased cytokine production, and

disease severity [38]. Collectively, these studies strongly suggest that the expansion and activity

of G-MDSCs are associated with T lymphocyte numbers and disease severity.

Recent works that identified the presence of G-MDSCs (HLA-DRnegLin-
negCD33+CD11b+CD15+CD14neg) by flow cytometry in the peripheral blood of COVID-19

patients provided mechanistic insights by which these cells can impair T cell activity and cause

lymphopenia [43,44]. Ex vivo studies determined that G-MDSCs isolated from COVID-19

patients were able to suppress the proliferation of T lymphocytes previously stimulated with

Staphylococcus enterotoxin-B [43,44] and inhibited the production of IFN-γ by CD3+ T lym-

phocytes stimulated with SARS-CoV-2 Spike and Nucleocapsid-derived peptides [43]. Mecha-

nistically, the inhibition of T lymphocyte function by G-MDSCs obtained from COVID-19

patients has been shown to be dependent upon iNOS and TGF-β, as the treatment with a neu-

tralizing antibody against TGF-β or with the NOS2 inhibitor, L-NG-nitro arginine methyl

ester (L-NAME), reestablished the production of IFN-γ by T lymphocytes ex vivo [43]. Consis-

tent with previous studies discussed [34–36,38], patients admitted to the intensive care unit

(ICU) due to severe COVID-19 had increased proportions of G-MDSCs in the peripheral

blood compared to non-ICU patients with milder disease, supporting the hypothesis that these

cells may be potentially involved in COVID-19 severity [43]. Moreover, similar analyses

showed that the proportion of G-MDSCs in circulation from nonsurvivors was significantly

higher compared to that in survivors [43].

IL-10 is one important mechanism used by MDSCs to modulate inflammation [24,30,31,

45–47]. In mice, the production of IL-10 by MDSCs has been described in acute lung bacterial

infection [45–49]. During COVID-19, IL-10 production has been identified as a strong predic-

tor of disease severity as IL-10 is elevated in patients with severe disease compared to
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nonsevere disease [50]. It remains unknown whether G-MDSCs produce IL-10 during

COVID-19 and whether the increased production of IL-10 observed during severe disease is a

cause or a consequence. Nevertheless, the positive association between G-MDSC expansion

and IL-10 production with disease severity raises the possibility that G-MDSCs may be one

source of IL-10.

Several hypotheses to explain lymphopenia during severe COVID-19 have been proposed,

including cytokine storm, T lymphocyte exhaustion, T lymphocyte infection by SARS-CoV-2,

and interference of T cell activation by SARS-CoV-2 [51]. None of these hypotheses have been

fully evaluated and necessitate a deeper understanding of the inflammatory and suppressive

role of neutrophils during COVID-19 in local and multisystemic inflammation, T cell suppres-

sion, and injury resolution.

The data discussed in this manuscript suggest that the expansion and activation of

G-MDSCs during COVID-19 may be involved in lymphopenia and severe disease. The sup-

pressive function of G-MDSCs include (I) impaired T cell proliferation and suppressed IFN-γ
cytokine production; (II) anergy of effector CD8+ cytotoxic T cells and CD4+ helper T cells; or

(III) expansion of Treg cells [30,31]. Ex vivo evidence shows that G-MDSCs isolated from

COVID-19 patients inhibited the proliferation of T lymphocytes and suppressed their ability

to produce IFN-γ [43,44]. Interestingly, patients with severe COVID-19 present an increased

proportion of PD-1+CD8+ and PD-1+CD4+ T lymphocytes compared to patients with mild

disease [52,53]. Given that G-MDSCs can induce T cell anergy through PD-L1–PD-1 interac-

tion [31] and that PD-L1+ neutrophils are expanded during COVID-19 [35], it raises the possi-

bility that PD-L1+G-MDSCs can induce T cell anergy through the interaction of PD-L1–PD1.

Finally, studies have shown that Tregs are not significantly expanded during COVID-19, and

patients with severe COVID-19 exhibit a reduction rather than increase in CD45RA+ Treg

cells compared to patients with mild disease [53,54]. This suggests that increased Treg expan-

sion does not occur in severe disease and therefore is not a mechanism by which G-MDSCs

may predispose to severe COVID-19.

Ex vivo studies analyzing the properties of human G-MDSCs in circulation have demon-

strated similarities between human and mouse G-MDSCs to inhibit T cell responses [25–

27,29]. These data indicate that the role of G-MDSCs initially identified in mouse models

could be potentially extrapolated to human diseases, inviting the possibility to study the effect

and mechanisms of G-MDSCs in lymphopenia using humanized mouse models [55]. In fact, a

recent study identified the presence of immature neutrophils in the lungs, blood, and the bone

marrow of humanized mice infected with SARS-CoV-2 [56]. This study also provided mecha-

nistic insights regarding the molecules involved in the expansion of immature neutrophils

such as the alarmins S100A8/A9 that were up-regulated during SARS-CoV-2 infection, and in

which inhibition through Paquinimod, a small molecule inhibitor of S100A9, resulted in

reduced lung inflammation and disease severity following viral infection [56]. Interestingly,

S100A8/A9 was massively produced by suppressive immature neutrophils in patients with

severe COVID-19 [34]. Targeting S100A8/A9 in patients could potentially limit the accumula-

tion of suppressive neutrophils/G-MDSCs and improve disease prognosis.

An important question that remains unsolved is whether the temporality of G-MDSCs

expansion affects disease outcome. It is possible that, during severe COVID-19, the early

expansion of G-MDSCs may impair the activity and proliferation of T lymphocytes required

for viral clearance. In contrast, the expansion of G-MDSCs occurring at later time points may

improve lung injury resolution resulting in milder COVID-19. Overall, the data thus far avail-

able invite the possibility that G-MDSCs may be an important contributor of impaired T lym-

phocyte function and lymphopenia observed in severe COVID-19 (Fig 1). Future studies in

humans and humanized mouse models focusing on the interaction between G-MDSCs and T
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cells will increase understanding of the role of neutrophils during COVID-19. This research

area will provide the initial steps forward in designing innovative therapeutic agents useful to

prevent severe disease, facilitating patient management and treatment during mild and severe

COVID-19.
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