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Bladder cancer is one of the most common malignant tumors of the urinary system
that seriously threatens the health of a population. In recent years, the application of
immunotherapy has significantly changed the treatment of bladder cancer, but only
some patients can benefit from the treatment with immune-checkpoint inhibitors. Many
problems are unsolved in the field of bladder cancer immunotherapy, especially in
the search for genes that are critical to the level of immune cell infiltration and new
effective therapeutic targets. We attempted to use bioinformatics analysis to identify
immune gene markers related to the prognosis of bladder cancer and to establish
a prognostic signature for bladder cancer patients based on their immune gene
expression profiles. We used univariate Cox proportional hazards regression analysis,
the least absolute shrinkage and selection operator (LASSO) Cox regression, and
multivariate Cox proportional hazards regression analysis from The Cancer Genome
Atlas bladder cancer cohort (TCGA-BLCA). Fifteen genes related to prognosis were
screened using the survival analysis, correlation analysis, cancer and adjacent cancer
differential expression analysis, and mutation analysis. The potential biological role of
these genes was determined using survival analysis and principal component analysis
(PCA). The receiver operating characteristic (ROC) curve assesses the prognostic value
of the predictive signature. The gene ontology (GO), Kyoto Encyclopedia of Gene
and Genome (KEGG), Gene set enrichment analysis (GSEA), and other methods were
used to reveal the differential gene enrichment in the signaling pathways and cellular
processes of high- and low-risk groups. The single-sample GSEA (ssGSEA) method
was used to quantify the infiltration levels of 24 immune cells in the tumor immune
microenvironment and these immune genes were found to be closely related to the
tumor immune microenvironment. In summary, we screened 15 immune genes that
were closely related to bladder cancer overall survival (OS) and may be potential
prognostic indicators of bladder cancer. They may have research and clinical application
value in bladder cancer immunotherapy. We used 15 immune genes to construct a
new immune-related gene signature that was verified and could be helpful in improving
individualized prognosis of patients with bladder cancer.
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INTRODUCTION

Bladder cancer is the ninth most common cancer worldwide.
It has the characteristics of a difficult early diagnosis, rapid
metastasis, and unsatisfactory treatment. In the past 10 years, the
current treatment plan has not remarkably improved the 5-year
survival rate, which needs to be addressed urgently. Additionally,
finding effective biomarkers that assess and promote the
diagnosis, treatment, and prognosis of bladder cancer (Dobruch
et al., 2016) is important. To date, the prognosis of bladder cancer
mainly depends on histopathological diagnosis and the tumor
staging system. However, traditional methods are not sufficient to
accurately evaluate the prognosis of bladder cancer patients and
meet the needs of clinicians (Jordan and Meeks, 2019). Therefore,
it is imperative to develop reliable and precise prognostic
biomarkers to help clinicians optimize the treatment strategies.

The ICT is a treatment against CTLA-4, PD-1, or PD-L1.
Recently, ICT has been applied to many aggressive cancers and
it has changed the interventions for urinary cancers including
advanced bladder cancer. The inhibition of the interactions
between PD-1 and PD-L1 can restore the anti-tumor activity
of the T cells and enhance the immune attack on the antigen
(Ghasemzadeh et al., 2016; Kim, 2016). Bladder cancer is
currently a highly immunogenic malignant tumor. In recent
years, the ICT has achieved very good results in bladder cancer.
In particular, the application of PD-1/PD-L1 inhibitors has
greatly improved the incidence of benefit from survival for some
patients. However, it is undeniable that only some of these
patients can benefit from the treatment of immune checkpoint
inhibitors as some patients do not respond to ICT or become
resistant (Cheng et al., 2018; Felsenstein and Theodorescu, 2018;
Schneider et al., 2019). Many problems remain to be solved in the
bladder urothelial carcinoma (BUC) immunotherapy, especially
in predicting immunotherapeutic biomarkers and finding new
effective therapeutic targets.

Although several studies have proposed numerous biomarkers
for predicting the efficacy of a treatment such as the expression
of PD-L1, TMB, and microsatellite instability (MSI) biomarkers,
most of these markers focus on the tumor invasion of the
lymphocyte or TME. Disturbance in the immune response in a
TME plays a decisive role in the development of bladder cancer.
The constituent immune cells of a TME are an important part
of the tumor tissue (Neal et al., 2018; Lemos et al., 2019). Many
recent studies have shown that the effect of immune checkpoint
inhibitors is affected by the tumor immune microenvironment
that consists of effector CD8+, CD4+ cells, regulatory T cells, and
dendritic cells (DCs) (Barry et al., 2018; Lambrechts et al., 2018;
Sun et al., 2018). Improving the clinical response to an immune
checkpoint blockade will require a deeper understanding of

Abbreviations: CTLA-4, cytotoxic lymphocyte antigen-4; GO, gene ontology;
GSEA, gene set enrichment analysis; ICT, immune checkpoint therapy; KEGG,
Kyoto Encyclopedia of Gene and Genome; LASSO, least absolute shrinkage
and selection operator; PCA, principal component analysis; PD-1, programmed
cell death protein 1; PD-L1, programmed-death ligand 1; ROC, receiver
operating characteristic; SsGSEA, single-sample gene set enrichment analysis;
TCGA, The Cancer Genome Atlas; TMB, tumor mutation burden; TME, tumor
microenvironment.

the factors affecting the local immune balance in the TME.
Therefore, to explore the regulatory mechanism of the tumor
immune microenvironment and the factors influencing the
immune checkpoint inhibitors, we need to look for genes that are
critical in affecting the level of the immune cell infiltration. Thus,
targeted research and developmental interventions are of great
significance for the diagnosis and treatment of bladder cancer.

In recent years, gene expression databases have been used to
mine valuable therapeutic genes, identify promising prognostic
factors, and analyze the molecular mechanisms of various cancers
(Wei et al., 2019). Unlike the traditional individual molecular-
prognostic-prediction indicators, a signature combining multiple
genes can significantly improve the accuracy of prognosis
prediction. Based on the importance of immune regulation in the
diagnosis and treatment of bladder cancer and the general role
of many immune genes in the prognosis of bladder cancer, we
used single-factor Cox proportional hazards regression analysis
to screen prognostic genes from the 314 immune-related genes in
TCGA bladder cancer cohort (TCGA-BLCA). These genes were
then subjected to the LASSO Cox regression and multi-factor Cox
proportional hazard regression analyses to obtain 15 genes that
would help establish the optimal risk signature. Survival analysis,
correlation analysis, cancer and adjacent cancer differential
expression analysis, and mutation analysis were carried out to
explore the potential biological role of these genes. According to
the median risk score, the patients were divided into the high-risk
and low-risk groups. Survival analysis, PCA analysis, and ROC
curve assessed the prognostic value of the risk scores. The GO and
the KEGG databases were screened by the GSEA to explore the
key signal pathway differences between the high-risk and low-risk
populations. Finally, the ssGSEA method was used to quantify
the infiltration levels of 24 immune cells in the tumor immune
microenvironment and to explore the correlation between the 15
immune genes and the tumor immune microenvironment.

In conclusion, we screened 15 immune genes that were closely
related to the overall survival (OS) of bladder cancer. They may
prove to be potential prognostic indicators of bladder cancer,
powerful predictors of immune checkpoint inhibitor responses,
and/or new targets for immunotherapy. Simultaneously, we used
15 immune genes to construct and verify a new immune-related
gene signature that could improve the individualized prognosis
prediction of bladder cancer patients.

MATERIALS AND METHODS

Database
The RNA-seq data and data on the clinical characteristics
(including patient age, sex, stage, smoking status, and TNM
staging) of the bladder cancer cohort were obtained from
TCGA1 database.

Selection of Immune-Associated Genes
The IMMUNE_RESPONSE and IMMUNE_SYSTEM_PROCESS
2 immune gene sets were obtained from the Molecular Signatures

1https://portal.gdc.cancer.gov/
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Database (MsigDB2) and 314 duplicate immune-related genes
were removed. The mRNA expression data of these 314 genes
were obtained from TCGA-BLCA.

Identification and Validation of the
Prognostic Gene Signature
The “survival” package of R language was used to perform the
univariate Cox proportional hazards regression analysis to screen
the immune genes that were significantly related to the OS of the
TCGA-BLCA cohort. Using the “glmnet” package of R for the
LASSO Cox regression analysis, a reduction in the dimensionality
of high-dimensional data was achieved by limiting the sum of
absolute values of the coefficients to less than a predetermined
value. Variables with relatively small contributions were given
coefficients of zero; only the genes with non-zero coefficients in
the LASSO regression analysis were selected for further analysis.
Finally, the obtained genes were subjected to multi-factor Cox
proportional hazard regression analysis and screening to obtain
15 immune genes that would determine the best prediction
signature are shown in Figure 3. These genes were selected to
further calculate the risk score of each patient (Bao et al., 2014;
Cheng et al., 2016).

riskScore = ExpressionmRNA1 × CoefficientmRNA1 +

ExpressionmRNA2 × CoefficientmRNA2 + . . . ExpressionmRNAn

× CoefficientmRNAn

According to the median value of the risk coefficient, the
patients were divided into the high-risk and low-risk groups.
The univariate Cox proportional hazard regression analysis and
multivariate Cox proportional hazard regression analysis were
performed on the risk value by using the “survival” package of
the R language. Cox proportional hazard regression signature
includes the risk score, age, gender, grade, T-, N-, and M-phase,
and the smoking status. The Kaplan-Meier survival analysis was
subsequently performed using the R “survival” package. The
sensitivity and specificity of the ROC curve were used to evaluate
the prognostic performance of the signature and the PCA was
used to analyze the expression pattern of the grouped samples.
A correlation analysis of the 15 immune genes was performed
using the R “corrplot” package in the Pearson method and the
results were displayed in the form of a Circos diagram are
shown in Figure 4. The expression of these 15 immune genes
was compared between cancer tissues and normal tissues. The
mutations of the 15 immune genes in the TCGA-BLCA cohort
were downloaded from the cBioPortal website3. The Kaplan-
Meier survival analysis was performed on these 15 genes.

Pathway Analysis
The “edgeR” package calculation in R language was used to
perform a differential analysis of the mRNAs of the low-risk
and the high-risk groups. To perform functional annotation

2https://www.gsea-msigdb.org/gsea/msigdb/search.jsp
3https://www.cbioportal.org/

from the GO4 for mRNAs with FDR values less than 0.05, the
biological functions of differential genes, including biological
processes (BPs), cellular components (CCs), and molecular
functions (MFs) were analyzed. The KEGG5 database analyzes
the metabolic pathways and signal transduction pathways in
which differential genes are significantly enriched. A GSEA6 was
then performed to reveal the signaling pathways and BPs in
which differentially expressed genes were enriched between the
high-risk and low-risk subgroups.

Tumor Immune Microenvironment
Analysis
Inference of Infiltrating Cells in the TME
Based on the immune cell marker genes provided by Bindea et al.
(2013), a ssGSEA was used to quantify the infiltration levels of the
24 types of immune cells, including the T lymphocytes, DCs, and
natural killer cells; the TCGA-BLCA (Finotello and Trajanoski,
2018) database was also used for this purpose. According to
the level of immune cell infiltration, the patients were divided
into the high-infiltration group and low-infiltration group. Heat
maps were plotted to observe the relationship between risk value,
age, T, N, and M stages, gender, and the immune infiltration
levels of various immune cells in the high- and low-risk groups.
Finally, the correlation between at-risk cells and immune cells
was calculated using the Pearson method.

Statistical Analysis
All analyses were performed using the R programming language7.
Univariate and multivariate Cox proportional hazard regression
analyses were also used to assess the relationship between the
risk score and OS. The ROC analysis was used to detect the
sensitivity and specificity of the genetic signature risk scores to
predict survival. The area under the ROC curve (AUC) was used
as an indicator of prognostic accuracy. In all analyses, P-values
less than 0.05 were considered statistically significant.

RESULTS

Construction of a Prognostic Signature
for TCGA-BLCA
A total of 314 immune-related genes were obtained from the
MSigDB. Univariate Cox regression analysis was performed
on these genes. Seventy-six immune genes from the TCGA-
BLCA database were found to be significantly related to the OS.
These genes were subjected to the LASSO regression analysis
to calculate the correlation coefficients. The coefficients of each
gene are shown in Figures 1A,B. Twenty-nine immune genes
were obtained for the multi-factor Cox regression analysis. The
signature performed best when only 15 genes were included. The
results of the multi-factor Cox regression analysis for 15 genes

4http://geneontology.org/
5https://www.genome.jp/kegg/
6http://software.Broadstitute.org/GSEA/
7https://www.r-project.org/
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FIGURE 1 | The least absolute shrinkage and selection operator (LASSO) Cox regression analysis. (A) LASSO coefficient profiles of the 76 immune-genes in
TCGA-BLCA. (B) A coefficient profile plot was generated against the log (lambda) sequence.

TABLE 1 | Multivariate COX regression analysis results of 15 immune genes.

Multivariate Cox regression analysis

Gene_symbol Ensembl_ID coef HR HR.95L HR.95H p-Value

CCR9 ENSG00000173585.15 −0.33390 0.71612 0.57411 0.89327 0.00307

HDAC7 ENSG00000061273.17 −0.39344 0.67473 0.50924 0.89401 0.00614

ZAP70 ENSG00000115085.13 −0.13452 0.87414 0.78843 0.96916 0.01062

IL7 ENSG00000104432.12 −0.18109 0.83436 0.72586 0.95908 0.01084

PTGER4 ENSG00000171522.5 −0.12127 0.88579 0.80315 0.97694 0.01524

CDK6 ENSG00000105810.9 0.12004 1.12754 1.01910 1.24752 0.01998

IL10 ENSG00000136634.5 0.13817 1.14817 1.01698 1.29628 0.02562

CTSG ENSG00000100448.3 0.08613 1.08995 1.00825 1.17828 0.03027

CEBPG ENSG00000153879.8 −0.32792 0.72042 0.53444 0.97113 0.03138

PF4 ENSG00000163737.3 0.15675 1.16971 1.00964 1.35515 0.03682

MAP3K7 ENSG00000135341.17 0.31106 1.36487 0.99807 1.86647 0.05143

ZBTB16 ENSG00000109906.13 0.07375 1.07653 0.99391 1.16603 0.07030

EREG ENSG00000124882.3 0.04388 1.04486 0.99611 1.09599 0.07183

RUNX1 ENSG00000159216.18 −0.13852 0.87064 0.74289 1.02037 0.08710

CIITA ENSG00000179583.17 −0.08344 0.91994 0.82220 1.02931 0.14542

are shown in Table 1. The expression and risk coefficient to
calculate the risk value of each patient are indicated. The results
of the univariate Cox proportional hazard regression analysis
and multivariate Cox proportional hazard regression analysis
showed that the riskScore was related to the OS of the TCGA-
BLCA cohort (P < 0.01). The results of the multivariate Cox
proportional hazard regression analysis showed that the T, N,
and M stages, age, and riskScore were independent prognostic
factors (Figures 2A,B). The ROC analysis detects the sensitivity
and specificity of the genetic risk scores in predicting survival.
The AUC of riskScore was 0.751 (Figure 2C), indicating that the
signature displayed good sensitivity and specificity for predicting

survival. The Kaplan-Meier survival analysis showed that the
high-risk group had a lower prognosis than the low-risk group
(P < 0.01, Figure 2D). The PCA results showed that our 15
immune genes could better divide the high- and low-risk patients
into two groups compared with all other genes (Figure 2E) and
the immune gene set 304 genes (Figure 2F). These results confirm
the sensitivity and specificity of the signature.

Features of the Prognostic Signature
We compared the expression of the 15 immune gene cancer
tissues and adjacent tissues in the TCGA-BLCA cohort
(Figure 5A) and found that the expression of the CCR9, IL7,

Frontiers in Genetics | www.frontiersin.org 4 June 2020 | Volume 11 | Article 607

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00607 June 20, 2020 Time: 19:29 # 5

Chen et al. Bladder Cancer Prognostic Markers

FIGURE 2 | Signature validation. (A) Univariate Cox proportional hazards regression analysis and the (B) multivariate Cox proportional hazards regression analysis
explored the correlation between the risk score, age, gender, grade, T, N, M-phases, smoking status, and the overall survival (OS). (C) The signature was evaluated
by using the sensitivity and specificity of the ROC curve. (D) Kaplan-Meier analysis of TCGA bladder cancer patients stratified by median risk score. PCA analysis of
the expression patterns of grouped samples using all genes (E), 304 genes of the immune gene set (F), and prognostic signature (G).

PTGER4, IL10, CTSG, and ZBTB16 proteins in the adjacent
tissues was significantly higher than that in the cancerous tissues
(P < 0.05). The expression of CEBPG and RUNX1 proteins

in the cancer tissues was significantly higher than that in the
adjacent tissues (P < 0.05). Next, we examined the mutations
in these genes in bladder cancer (Figure 5B) and found that
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FIGURE 3 | The patients were divided into two groups: low-risk and high-risk. As the risk score increased, the survival time of patients decreased and the number of
deaths increased. The heat map shows the expression profile of the 15 immune genes in the prognostic markers.

the mutation frequency of PTGER4 was the highest, reaching
9%, with amplification mutations as the main mutation; it was
followed by RUNX1, IL7, and CIITA, with mutation frequencies
of 6, 5, and 5%, respectively. By analyzing the relationship
between the 15 immune genes and the OS, it was found that the
group showing a higher expression of the CDK6, HDAC7, CTSG,
EREG, and ZBTB16 mRNAs had a lower survival time and was
smaller. The group showing a higher expression of the ZAP70,
IL7, and PTGER4 proteins had a significantly longer survival time
than the lower expression group (P < 0.05, Figure 6).

Identification of the Involved Signaling
Pathways
The signaling pathway enrichment analysis of differential mRNA
(FDR < 0.05) in the low-risk and high-risk groups and the
GO analysis showed that the differential genes were related
to the extracellular matrix organization, extracellular structure
organization, and extracellular matrix. The collagen-containing

extra cellular matrix, extra cellular matrix structural constituents,
integral binding, and other BPs are closely related (Figures 7A–
C). The KEGG analysis revealed that these differential genes
were mainly enriched in the PI3K-Akt signaling pathway, in
the proteoglycans in cancer, human papillomavirus infection,
and other signaling pathways (Figure 7D and Table 2). The
GSEA analysis showed that the signaling pathways such as
E2F targets, hypoxia, G2/M DNA damage checkpoint, apical
junction complex, epithelial–mesenchymal transition (EMT),
KRAS Signaling UP, mTORC1 signaling, mitotic spindle, and
TNFα signaling via NF-Kβ were significantly increased in the
high-risk group (Figure 7E).

The Prognostic Signature Is Related to
the Tumor Immune Microenvironment
We quantified 24 types of immune cells including the B cells,
T cells, natural killer cells, macrophages, DCs, and myeloid
subpopulations to investigate the composition of the tumor
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FIGURE 4 | Circos plot showing the correlations between the 15 immune
genes.

immune microenvironment and draw a heat map to observe
the risk values, age, stages T, N, and M, gender, and immune
infiltration (Figure 8). At the same time, we found cytotoxic cells,
DC, eosinophils, CD56bright NK cells, CD8 T cells, T cells, and
T helper cells in the high-risk group. The level of infiltration
of TFH and Th17 cells was significantly lower than that in the
low-risk group, while the levels of macrophages, neutrophils,
CD56dim NK cells, NK cells, Th1 cells, and Th2 cells in the
high-risk group were significantly higher than that in the low-
risk group (Figure 9A). At the same time, we analyzed the
correlation between the immune cells. Among them, we focused
on the significant positive correlation between CD8+ T cells
closely related to the immune checkpoint inhibitors and iDC,
DC, pDC, TReg, T cells, and cytotoxic cells (Figure 9B). Finally,
we analyzed the correlation between the 15 immune genes and
the immune cells and found that IL10, CIITA, ZAP70, and
macrophages, neutrophils, CD56dim NK cells, Th1 cells, cytotoxic
cells, T cells, aDC, TReg, NK cells, Tem, iDC. The infiltration
levels of the DC, pDC, B cells, CD8+ T cells, TFH, and other
immune cells are positively correlated; the CEBPG has a negative
correlation with the mast cells, NK cells, Tem T cells, Lentivirus-
induced DCs (iDCs), and DC. The MAP3K7 has a positive
correlation with the T helper cells and central memory T cells
(Tcm cells) and a negative correlation with iDC, DC, and pDC.
Cathepsin G is positively related to the mast cells, NK cells, Tem T
cells, iDC, DC, plasmacytoid DCs (pDCs), B cells, macrophages,
and neutrophils. CDK6 is positively correlated with Tcm cells,
Th2 cells, macrophages, neutrophils, CD56dim NK cells, Th1
cells, cytotoxic cells, T cells, aDC, and TReg and negatively
correlated with NK CD56bright cells. IL7 was positively correlated
with the CD8+ T cells, Tcm cells, macrophages, neutrophils,

CD56dim NK cells, Th1 cells, cytotoxic cells, T cells, aDC, and
TReg (Figure 9C).

DISCUSSION

Bladder cancer is the ninth most common cancer in the
world, affecting 430,000 people and causing 165,000 deaths
each year. Although considerable time, effort, and expense have
been invested in bladder cancer research, the overall morbidity
and mortality has not improved significantly over the past 20
years (Antoni et al., 2017). Modern treatments for bladder
cancer include surgery, chemotherapy, radiation therapy, and
immunotherapy. Immunotherapy brings a new hope in the
treatment of bladder cancer. A large number of basic and
clinical experiments are currently underway, including allogeneic
stem cell transplantation, antitumor vaccines, proinflammatory
cytokines, chimeric antigen receptors, and adoptive T cell
metastasis. One of the most promising methods considered is ICT
(Yu et al., 2018; Zhu et al., 2019; Zhuang et al., 2020).

In the human immune cycle of tumors, the antigens produced
by the tumor cells are captured by the DCs. The major
histocompatibility complex (MHC)-I and MHC-II on the surface
of the DCs present these antigens to the T cells for recognition
and lead to the activation of effector T cells (Ramachandran
et al., 2017; Pio et al., 2019; Ryan et al., 2019). The internal and
external environment of the tumor cells during tumorigenesis
and metastasis is called the TME. The TME contains tumor
cells and surrounding immune cells, endothelial cells, fibroblasts,
extracellular matrix, secreted cytokines, chemokines, etc. Tumors
can create a series of favorable conditions for themselves through
the TME and even escape the immune cycle. In cancer patients,
the tumor’s immune cycle does not perform well. The most
important reason is that in the TME, there are some inhibitory
signals that suppress the immune function of the effector T
cells. The main role of the T cells is to distinguish healthy cells
from pathogens or malignant cells by activating or deactivating
various receptors on the surface of the T cells. The inhibitory
signals include a class of signaling pathways called the immune
checkpoints. These immune checkpoints are normally used to
maintain the body’s autoimmune tolerance and prevent these
killer T cells from attacking their own cells because these
molecules and their relevant receptors on the T cells “control”
the immune system by blocking the immune function, so they
are collectively referred to as checkpoint proteins. In order to
escape the hunting by T cells, some tumor cells also generate
some inhibitory signals on their surface. The immune function
of the T cells is suppressed by the immune checkpoints. As a
result, the immune system remains inactive against malignant
cells, allowing their uncontrolled growth and proliferation. The
immune checkpoint inhibitors interfere with the action of these
checkpoint proteins to prevent tumors from suppressing the T
cells and restart the tumor immune cycle (Kieler et al., 2018;
Li et al., 2019). Immune checkpoint inhibitors, in principle,
should have a wide range of killing capabilities against cancer,
but a large number of cases of non-response have been found in
clinical applications (Ellmark et al., 2015; Coffelt and de Visser,
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FIGURE 5 | Features of the prognostic signature. (A) Differential expression of the 15 genes in the normal and cancer tissues of TCGA-BLCA cohort. (B) Mutations
of 15 genes in the TCGA-BLCA cohort.

2016). Recent research indicates that non-response of immune
checkpoint inhibitors may be related to various factors such as
tumor immune microenvironment regulation, single immune
checkpoint inhibitor suppression, and blocked T cell infiltration
during the immune cycle. Therefore, the subsequent objectives
include exploring the regulatory mechanism of the TME,
clarifying the mechanism of immune checkpoint inhibitor non-
response, and finding promising new targets for immunotherapy.

Gene markers, often used to predict prognosis, have been
reported to be more accurate than the TNM staging methods
in multiple cancer species (Bao et al., 2014; Liu et al., 2019).
In this study, we screened genes related to prognosis from
314 immune-related genes. Using univariate Cox proportional
hazards regression analysis, Lasso regression analysis, and
multivariate Cox proportional hazards regression analysis, we

finally obtained 15 independent prognostic immune genes. The
survival analysis, correlation analysis, cancer and adjacent-cancer
differential expression analysis, and mutation frequency analysis
were performed on these genes. Some of these genes were closely
related to the occurrence and development of bladder cancer:
CDK6, IL-10, and RUNX1, of which CDK4/6 inhibitors are a
promising treatment strategy for the treatment of bladder cancer
(Zhao et al., 2015; Sun et al., 2019; Tong et al., 2019). The primary
bladder tumor cells secrete a large amount of IL-10. Removing
IL-10 in co-cultures of monocytes and tumor cells can reduce
the upregulation of PD-L1 in monocytes and affect the curative
effect of the immune checkpoint inhibitors (Wang et al., 2017).
RUNX1 is a novel direct target of miR-27a, which is involved
in the regulation of sensitivity to bladder cancer chemotherapy
(Deng et al., 2015). There are few reports on the role of IL-7
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FIGURE 6 | Kaplan-Meier survival analysis of the 15 immune genes in the TCGA-BLCA cohort.
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FIGURE 7 | The signal pathway enrichment analysis was performed on the differential mRNA in the low-risk and high-risk groups. The GO analysis results consist of
three parts: (A) biological process, (B) molecular function, and (C) cellular component. (D) Partial display of the KEGG analysis results. (E) Partial display of the
GSEA analysis results.

and HDAC7 in bladder cancer. It was found that IL7 might
be involved in T cell activation and play a role in the anti-
CTLA-4 immunotherapy. Niegisch et al. (2013) showed that in
urothelial carcinoma, the upregulation of the mRNAs of HDAC2
and HDAC8 and the downregulation of the mRNAs of HDAC4,

HDAC5, and HDAC7 are common findings. The role of genes
other than those mentioned here has not been reported in bladder
cancer: CCR9, ZAP70, PTGER4, CTSG, CEBPG, PF4, MAP3K7,
ZBTB16, CIITA, and EREG. These genes may be new markers
for predicting the prognosis of bladder cancer and new targets
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TABLE 2 | KEGG analysis results of the differential genes in the low-risk and high-risk groups.

ID Description GeneRatio BgRatio p-Value p.adjust q-Value

hsa04512 ECM–receptor interaction 16/264 88/8011 2.12E-08 5.57E-06 5.08E-06

hsa05205 Proteoglycans in cancer 24/264 204/8011 5.03E-08 5.75E-06 5.25E-06

hsa04974 Protein digestion and absorption 16/264 95/8011 6.56E-08 5.75E-06 5.25E-06

hsa04510 Focal adhesion 22/264 199/8011 5.57E-07 3.66E-05 3.34E-05

hsa04151 PI3K-Akt signaling pathway 29/264 354/8011 4.81E-06 0.000253 0.000231

hsa05410 Hypertrophic cardiomyopathy (HCM) 12/264 90/8011 3.54E-05 0.001473 0.001344

hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 11/264 77/8011 3.92E-05 0.001473 0.001344

hsa05414 Dilated cardiomyopathy (DCM) 12/264 96/8011 6.78E-05 0.002229 0.002034

hsa00830 Retinol metabolism 9/264 67/8011 0.000321 0.009367 0.008548

hsa05165 Human papillomavirus infection 23/264 330/8011 0.000534 0.013218 0.012062

hsa00982 Drug metabolism − cytochrome P450 9/264 72/8011 0.000553 0.013218 0.012062

hsa00140 Steroid hormone biosynthesis 8/264 60/8011 0.000724 0.015869 0.014481

hsa00590 Arachidonic acid metabolism 8/264 63/8011 0.001007 0.020364 0.018583

hsa05144 Malaria 7/264 50/8011 0.001157 0.021738 0.019837

hsa00053 Ascorbate and aldarate metabolism 5/264 27/8011 0.001665 0.029199 0.026645

hsa05146 Amebiasis 10/264 102/8011 0.001881 0.030914 0.028211

hsa00860 Porphyrin and chlorophyll metabolism 6/264 42/8011 0.002341 0.036213 0.033046

hsa00980 Metabolism of xenobiotics by cytochrome P450 8/264 76/8011 0.003393 0.049577 0.045241

FIGURE 8 | The ssGSEA method quantifies the level of invasion of the 24 immune cells in the tumor immune microenvironment. The composite heat map shows the
relationship between the risk score, age, stage, T, N, and M stages, gender, and invasion of the 24 immune cells.
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FIGURE 9 | (A) Differences in the infiltration levels of the 24 immune cells in the high- and low-risk groups. (B) Correlations between the 24 immune cells. (C) Heat
map of the correlation between the 15 immune genes and the 24 immune cells.

for immunotherapy, but further basic and clinical laboratory
identification is needed.

Signal pathway enrichment analysis of the differential mRNA
(FDR < 0.05) in the low-risk and high-risk groups and the GO
analysis results consisted of the CC, BP, and MF. At the CC
level, the differential genes are related to the inheritance junction,
extracellular matrix, and plasma membrane protein complex.
At the MF level, the differential genes are related to promoter
promoter-specific DNA binding, RNA polymerase II proximal
promoter sequence-specific DNA binding, etc. At the BP level,
the differential genes are related to the regulation of body fluid
levels, cell morphogenesis involved in neuron differentiation, etc.
These pathways are closely related to the BPs of tumorigenesis
and development. KEGG analysis found that these differential

genes were mainly enriched in the classical cancer signaling
pathways such as the PI3K-Akt signaling pathway, proteoglycans
in cancer, human papillomavirus infection, and focal adhesion
(Figure 7D and Table 2).

For example, the PI3K-Akt signaling pathway has been
studied to confirm that when its function is normal, the PI3K
pathway regulates key cellular functions, including cell growth,
movement, proliferation, and differentiation. However, excessive
activation of the PI3K signaling pathway causes breast cancer and
ovarian cancer (Shukla et al., 2007). New research shows that the
PI3K-Akt signaling pathway plays an important role in the tumor
immune microenvironment, affecting the efficacy of the immune
checkpoint inhibitors (Li et al., 2018; Cristofoletti et al., 2019).
The GSEA analysis found that the proteins in the high-risk group
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TABLE 3 | GSEA analysis of the differential genes in the low-risk and high-risk groups.

Description setSize enrichmentScore NES p-Value p.adjust q-Values

HALLMARK_E2F_TARGETS 189 0.52760 1.93416 0.00127 0.00455 0.00220

HALLMARK_HYPOXIA 190 0.48029 1.75966 0.00127 0.00455 0.00220

HALLMARK_MYOGENESIS 199 0.54299 1.98919 0.00127 0.00455 0.00220

HALLMARK_G2M_CHECKPOINT 188 0.57140 2.08917 0.00128 0.00455 0.00220

HALLMARK_APICAL_JUNCTION 194 0.57149 2.08904 0.00129 0.00455 0.00220

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 194 0.81607 2.98307 0.00129 0.00455 0.00220

HALLMARK_KRAS_SIGNALING_UP 194 0.51106 1.86815 0.00129 0.00455 0.00220

HALLMARK_MTORC1_SIGNALING 194 0.46253 1.69076 0.00129 0.00455 0.00220

HALLMARK_MITOTIC_SPINDLE 196 0.49540 1.81105 0.00129 0.00455 0.00220

HALLMARK_COMPLEMENT 195 0.47718 1.74348 0.00129 0.00455 0.00220

HALLMARK_INFLAMMATORY_RESPONSE 197 0.54348 1.98680 0.00129 0.00455 0.00220

HALLMARK_TNFA_SIGNALING_VIA_NFKB 197 0.54198 1.98130 0.00129 0.00455 0.00220

HALLMARK_APOPTOSIS 159 0.46992 1.68354 0.00132 0.00455 0.00220

HALLMARK_COAGULATION 136 0.55307 1.93471 0.00136 0.00455 0.00220

HALLMARK_UV_RESPONSE_DN 137 0.58042 2.03005 0.00137 0.00455 0.00220

HALLMARK_ANGIOGENESIS 36 0.72246 2.04503 0.00152 0.00473 0.00229

HALLMARK_MYC_TARGETS_V1 192 0.41148 1.50503 0.00256 0.00716 0.00347

HALLMARK_IL2_STAT5_SIGNALING 195 0.42002 1.53464 0.00258 0.00716 0.00347

HALLMARK_IL6_JAK_STAT3_SIGNALING 87 0.47494 1.56316 0.00289 0.00762 0.00369

HALLMARK_HEDGEHOG_SIGNALING 35 0.58977 1.66473 0.00456 0.01140 0.00552

HALLMARK_UV_RESPONSE_UP 154 0.40707 1.45416 0.00653 0.01554 0.00753

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 109 0.42188 1.44553 0.01094 0.02487 0.01204

HALLMARK_INTERFERON_ALPHA_RESPONSE 93 −0.38276 −1.42683 0.01899 0.04128 0.01999

are positively correlated with hypoxia, EMT, myogenesis, E2F
targets, G2/M checkpoint, apical junction, KRAS signaling up,
mTORC1 signaling, mitotic spindle, complement, inflammatory
response, TNFα signaling via NFKβ, apoptosis, coagulation,
UV response signal pathways such as Dn and angiogenesis,
and negatively correlated with the interferon α response signal
pathway (Figure 7E and Table 3). Most of these pathways
are closely related to tumorigenesis and the regulation of the
TME. For example, hypoxia is a common feature of malignant
tumors. It can regulate the tumor immune microenvironment
by regulating a variety of immune cells. Hypoxia significantly
reduces the T lymphocyte proliferation and activation, decreases
the NKG2D receptor on the NK cells, and thereby inhibits
the killing function of the NK cells, increases tumor-associated
macrophages to induce angiogenesis, and reduces inflammation
to promote tumor progression (Marques et al., 2012; Tian et al.,
2017; Jiao et al., 2019). The EMT signaling pathway is an
important BP for the epithelial-derived malignant tumor cells
to acquire the ability to migrate and invade. It is of great
significance in the occurrence, development, and metastasis of
bladder cancer and participates in the TME regulation (Zhaojie
et al., 2019). Interferons play a vital role in the immune response
of the body toward malignant cells. Type I interferons (IFNα

and IFNβ) directly regulate the transcription of more than 100
downstream genes, resulting in countless direct (via cancer cells)
and indirect (via immune effector cells and vasculature) on
tumors. The IFN-α/β receptor (IFNAR) signaling can promote
the Treg function in autoimmunity. Activation of the IFNα

signaling pathway leads to a more effective antiviral response
and enhanced antitumor immunity (Gangaplara et al., 2018;

Borden, 2019). In our study, the high-risk group was negatively
correlated with the interferon alpha response signal pathway
(NES = −1.427, P.adjust = 0.041, Table 3). Finally, we quantified
the levels of 24 immune cell infiltrations in TCGA-BLCA tumor
samples using the ssGSEA method. On comparing these levels
in the high- and low-risk groups, we found that the levels of the
cytotoxic cells, DC, CD8+ T cells, T cells, the T helper cells, TFH,
Th17 cells, CD56bright NK cells, and eosinophils were significantly
lower than that in the low-risk group. It is well known that the
higher the infiltration levels of the cytotoxic cells, DCs, CD8+
T cells, T cells, and T helper cells in a patient’s tumors, the
greater the survival benefit for the patients. The cell infiltration
level groups such as DC, CD8+ T cells, T cells, and T helper
cells affect the efficacy of ICT in a positive manner (Jiao et al.,
2019). This may partly explain the phenomenon that the survival
time of the high-risk group is significantly lower than that of the
low-risk group (Figure 9A). The above results further suggest
the reliability of the prediction signature, its relevance to the
TME, immunological examination, and the importance of the 15
immune genes. We then analyzed the correlation between these
15 immune genes and immune cells. We observed that most
of the immune genes have a high correlation with the level of
immune cell infiltration in the TME, but the specific mechanism
needs further experimental investigation.

CONCLUSION

In summary, we screened 15 immune-related markers that have
independent prognostic significance for bladder cancer. They
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may be used as potential prognostic indicators of bladder cancer
and related to the level of tumor cell microenvironment immune
cell infiltration. We hope to provide an additional feasible method
for assessing the prognosis of bladder cancer and may provide
valuable new targets for anti-tumor immunotherapy.
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