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Abstract The underground environment imposes unique demands on life that have led

subterranean species to evolve specialized traits, many of which evolved convergently. We studied

convergence in evolutionary rate in subterranean mammals in order to associate phenotypic

evolution with specific genetic regions. We identified a strong excess of vision- and skin-related

genes that changed at accelerated rates in the subterranean environment due to relaxed constraint

and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were

convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several

uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute

novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in

these species indicates that evolution in this environment is recurrent and predictable and can be

used to gain insights into phenotype–genotype relationships.

DOI: https://doi.org/10.7554/eLife.25884.001

Introduction
The subterranean habitat has been colonized by numerous animal species for its shelter and unique

sources of food (Andersen, 1987; Nevo, 1979). Obligate fossorial species in particular have

adopted the underground as a dedicated home, yet the intense demands of life underground often

require unique specializations. For one, the air present in tunnels is often low in oxygen (hypoxic)

and high in carbon dioxide (hypercapnic) (Nevo, 1979). This dark environment also requires the

development of enhanced senses to compensate for loss of vision. These and other subterranean

specializations have been reported in many independent evolutionary lineages of insects, amphib-

ians, reptiles, and mammals (Leys et al., 2003; Lacey et al., 2000; Albert et al., 2007; Wilkin-

son, 2012). Within mammals alone, there are several unrelated subterranean species, including the

true moles (family Talpidae), the African golden moles (Chrysochloridae), and the marsupial moles

(Notoryctidae). There are also at least three unrelated lineages of subterranean rodents: the naked

mole-rat (Heterocephalus glaber), blind mole-rats (Spalacidae), and the pocket gophers

(Geomyidae).

Fossorial mammals have evolved a number of morphological and physiological traits that are con-

sidered adaptations to subterranean life, affecting how they sense their environment, how they

move through it, or how they deal with its physiological demands. For one, species that dig with

their forelimbs, like the star-nosed mole, have enlarged forelimbs and claws that allow them to
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tunnel through substrate, whereas species that dig with their teeth, such as the naked mole-rat, have

reduced limbs and continuously growing incisors (Dubost, 1968; Ellerman, 1956). In the absence of

light, non-visual sensory systems have been elaborated. These include the sensitive vibrissae (i.e.,

sensory hairs) of the naked mole-rat and the large and elaborate snout of the star-nosed mole, which

has become a remarkable ‘tactile eye’ (Eloff, 1951; Hill et al., 2009; Catania, 1999). Fossorial mam-

mals have also evolved an ability to withstand hypoxic conditions that rivals that of species living at

high altitude (Nevo, 1979; Ar et al., 1977). For example, some species have high erythrocyte counts

and high skeletal-muscle myoglobin to facilitate oxygen exchange. Some of these adaptive strate-

gies are shared by different fossorial lineages and as such represent prime examples of convergent

evolution (Nevo, 1979). Yet, some of the most striking convergent transformations in subterranean

mammals are the reductions and losses of traits shared among aboveground mammals, of which the

most prominent example is the reduction of the eye (Dubost, 1968; Hill et al., 2009; Cei, 1946a,

1946b).

Vision in many subterranean mammals is limited, and the degree of limitation in each species is

related to the extent of its underground habitation (Nemec et al., 2008; Quilliam, 2009;

Sanyal et al., 1990). For example, star-nosed moles (Condylura cristata) that share their time above-

ground and underground possess diminutive eyes with thick eyelids (Catania, 1999), whereas the

naked mole-rat , which spends almost all of its time underground, has tiny eyes that are rarely

opened (Hetling et al., 2005). Even more extreme are the completely subcutaneous eyes of the

cape golden mole (Chrysochloris asiatica) and the blind mole-rat (genus Nannospalax), which are

thought to reflect their strictly subterranean lifestyle (Sanyal et al., 1990; Sweet, 1909). While some

degree of visual regression is shared between subterranean mammals, not all visual structures and

genetic pathways have regressed to the same degree. For instance, the eyes of true moles and

mole-rats show anatomical regression and always exhibit a small eye but retain ocular architecture,

suggesting that the basic eye developmental programs must be largely intact in these animals

(Carmona et al., 2008, 2010; Quilliam, 1966). The convergent loss of vision and visual structures in

eLife digest Over the past 100 million years, many mammals, such as moles or mole rats, for

example, have evolved to live almost entirely underground. During their transition to adapt to life

underground, many species have reduced or completely lost their sense of sight, and often have

only a small remnant of an eye that can sometimes be completely covered by skin and fur.

In addition, the sections of the DNA that usually control how the eyes form have changed in

these animals. Since there is less need for a working eye in dark environments, DNA related to the

eye is no longer protected from damaging mutations in mammals that live underground. So, by

comparing the DNA of mammals that live aboveground and underground, scientists can identify the

parts of DNA that help form mammals’ eyes.

Previous studies have discovered many sections of DNA responsible for producing the proteins

that make up the eye. However, scientists know less about which sections of DNA control when and

where these proteins are made. To address this, Partha et al. have studied the DNA of four

underground mammals: the star-nosed mole, the cape golden mole, the naked mole-rat and the

blind mole-rat.

By comparing the DNA of these animals with that of mammals that live above ground, Partha

et al. identified sections of DNA that contained an abnormally high number of changes in the blind

underground mammals. Many of these sections are involved in forming the eye, including

controlling when and where proteins are made. Overall, the findings show that comparing rates of

evolution in different species can help uncover sections of DNA that guide and influence how

organisms develop.

Understanding how the eye is formed is not only of interest to scientists studying evolution and

biology; it also has wider applications in healthcare. Many people suffer from unexplained eye

abnormalities, and insight into the sections of DNA that control the eye’s development could help

medical professionals diagnose these cases and design new treatments.

DOI: https://doi.org/10.7554/eLife.25884.002
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subterranean mammals allows us to ask which genetic regions – coding or non-coding – contributed

to regression in these species and which were conserved.

The genetic causes of these malformations have been probed through studies of blind cavefish

and evolutionary analysis of retinal genes in subterranean mammals (Jeffery, 2009; Emerling and

Springer, 2014). Pioneering work by Hendriks et al. found the evolutionary rate of the lens and ret-

ina protein aA-crystallin to be markedly accelerated in the Middle Eastern blind mole-rat (Spalax

ehrenbergi), as would be expected under relaxed constraint (Hendriks et al., 1987). Furthermore,

Emerling and Springer (2014) revealed that regressive genetic changes in retinal proteins are

unevenly distributed across different visual pathways and eye tissues. Previous studies have placed

more emphasis on retinal components of vision and connections to the visual cortex because it is

these components that sense light and transmit images to the brain for vision (Emerling and

Springer, 2014; Cooper et al., 1993). Less emphasis has been placed on the genes contributing to

other eye tissues, such as the cornea.

The genomes of four subterranean mammals have been sequenced and studied for changes that

have occurred in response to their unique environment. The naked mole-rat genome revealed

genetic changes in key genes involved in thermogenesis and circadian rhythm, as well as gene loss

and deactivating mutations in core visual perception genes (Kim et al., 2011). The genome

of the blind mole-rat (Nannospalax gailili) also yielded diverse insights into its subterranean adapta-

tions, such as an impactful change to the P53 protein that allows cells to escape hypoxia-induced

apoptosis, as well as the upregulation of specific pathways involved in the response to hypoxia and

hypercapnia (Fang et al., 2014). Additionally, parallel evolution was seen in the deactivation of visual

perception genes in the blind mole-rat and naked mole-rat. The convergence of such changes pro-

vides evidence that they have occurred in response to the subterranean environment rather than

as a result of unrelated species-specific conditions or neutral processes, highlighting a potential

strategy to discover additional genetic regions showing a similar response (Losos, 2011;

Stern, 2013; Rosenblum et al., 2014).

Previous studies have used convergent evolution to reveal genetic changes that are related to

environmental shifts without a priori expectations of which regions might respond. One strategy has

been to search for convergent amino acid substitutions at specific protein sites (Foote et al., 2015;

Liu et al., 2010; Dobler et al., 2012). A complementary strategy is to search for convergent

changes in selective pressure on larger functional regions, such as genes or regulatory sequences,

because evolution at different nucleotides within a gene could nevertheless lead to convergent phe-

notypic effects. In practice, convergent changes in selective pressure are inferred by studying evolu-

tionary rates, because selective constraint slows evolution, whereas lack of constraint and adaptation

speed it. Computational methods employing this strategy search for functional elements whose evo-

lutionary rates changed on those branches exhibiting the convergent environmental change

(Marcovitz et al., 2016; Hiller et al., 2012; Chikina et al., 2016; Lartillot and Poujol, 2011). One

demonstration of this approach by our group identified genes that convergently responded when

mammalian lineages shifted from a terrestrial to a marine environment (Chikina et al., 2016).

Another recent study by Prudent et al.(2016) demonstrated that regions showing convergent rate

acceleration in the subterranean environment were enriched in visual perception genes and also con-

tained circadian rhythm genes. Together, these studies show the promise of convergent rates to

reveal genes underlying major changes in morphology and physiology that are related to drastic

environmental shifts.

To investigate the demands placed upon subterranean species by their extreme environment, we

searched for genes exhibiting convergent rate changes in four subterranean mammals. We report a

large set of genes showing marked relaxation of constraint in subterranean species, which were

highly enriched for visual functions. This set also contained many genes of undetermined function,

which could be unrecognized causative genes in eye-related diseases. Finally, we pinpointed the

eye-specific transcriptional enhancers in the Pax6 gene region using a new variant of our method

and demonstrated the potential to detect new eye-specific enhancers at key developmental genes.
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Results

Many genes have altered evolutionary rates specifically in subterranean
mammals
We first sought to identify the genes that responded to conditions in the subterranean environment.

Accordingly, we used relative evolutionary rate (RER) methods to identify protein-coding genes that

evolved at a more rapid rate specifically on subterranean branches of the mammalian phylogenetic

tree. Subterranean branches consisted of those leading to the star-nosed mole (Condylura cristata),

the cape golden mole (Chrysochloris asiatica), the naked mole-rat (Heterocephalus glaber) and

the blind mole-rat (Nannospalax galili). Each of these species represents a lineage that indepen-

dently colonized the subterranean habitat, as each is more closely related to aboveground mammals

than they are to each other (Figure 1A). Hence, similar phenotypic changes within these species are

regarded as convergent traits. To demonstrate our RER methods, we first present the case of the

eye-specific gene LIM2, which encodes Lens intrinsic membrane protein 2. First, the amount of

amino acid divergence in LIM2 on each mammalian branch was quantified using sequences from 39

species and standard evolutionary models (Figure 1B) (see Materials and methods). The resulting

LIM2 tree is markedly different from the genome-wide average tree in Figure 1A, and reveals dis-

tinctly high amounts of divergence in LIM2 for the four subterranean species. This rapid divergence

probably resulted from loss of selective constraint in the dark subterranean environment. To quantify

this rate acceleration in the LIM2 tree, we normalized all branch lengths for the expected amount of

change as defined by the genome-wide average divergence for each branch. This average, after

scaling (see Materials and methods), should reflect both the underlying speciation times in the mam-

malian phylogeny as well as changes in demographic factors affecting substitution rates. The result-

ing RER values for each branch are plotted in Figure 1C. An RER of zero indicates that LIM2 evolved

at exactly the expected rate on that branch, while positive and negative values reflect faster and

slower rates, respectively. By examining RERs it becomes clear that LIM2 changed at abnormally

rapid rates in the four subterranean mammals; the rates for all four subterranean species are more

rapid than all aboveground species, and this difference is supported statistically (p=0.00084, Mann-

Whitney U test). Thus, extending the RER calculations to all other genes, we can distinguish the func-

tions that responded during adaptation to the subterranean environment. Importantly, the conver-

gence of these species allows us to confidently infer genes that responded specifically to

subterranean life, because faster rates in all four species are not likely to be due to random fluctua-

tions, as reflected by the low P-value for LIM2.

We performed the same RER analysis on 18,980 protein-coding genes to determine which shifted

to faster or slower evolutionary rates specifically in subterranean species. We will hereafter refer to

such genes as ‘mole-accelerated’ and ‘mole-decelerated’, respectively (see Materials and methods).

At a false discovery rate (FDR) of 15%, we identified 55 mole-accelerated genes. We expect mole-

accelerated genes to result from either selection for amino acid changes (i.e., positive Darwinian

selection) or, alternatively, from a reduction in purifying selection, as suggested for the LIM2 protein.

At the other extreme, we identified 1306 mole-decelerated genes at the same FDR. We expect

genes to show rate deceleration if there is stronger purifying selection on that gene’s function in the

subterranean environment, perhaps as the result of increased importance for fitness.

Vision-related functions are highly enriched among mole-accelerated
genes
Genes with the strongest evidence of mole-acceleration were consistently associated with function

in two organs, eye and skin. To illustrate, 17 of the top 30 mole-accelerated genes are expressed

solely in eye tissues or are associated with eye-related disorders, whereas three accelerated genes

are associated with skin, hair, and nails (Table 1). Among the genes showing very strong signals of

mole-acceleration, we find proteins tha are specifically expressed in tissues of the eye such as the

retina-specific proteins ROM1 and GNAT1 (Figure 2). The complete list of the 55 mole-accelerated

genes similarly contains a large proportion that are related to vision and external tissues

(Supplementary file 1), and they were highly enriched for functional annotations including eye mor-

phology, photoreceptors, visual signal transduction, and eye-related mutant phenotypes (Table 2,

Supplementary file 2). The strength of this enrichment is clearly illustrated by examining all genes
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annotated to the Gene Ontology (GO) term ‘visual perception’, because a large fraction of genes

that have this annotation are ranked very highly in the list of mole-accelerated genes (Figure 3A

‘subterranean’). Furthermore, if we were to employ mole-acceleration as a sole predictor of visual

function, a search would correctly identify many known visual perception genes with high accuracy,

even when searching the entire genome (Figure 3B). This strong enrichment allows us to pose
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Figure 1. Lens intrinsic membrane protein 2 (LIM2) evolutionary rates across species. (A) Mammalian transitions to a subterranean environment
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Illustrations by Michelle Leveille (Artifact Graphics).
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specific hypotheses in subsequent sections about which tissues and genetic pathways were altered

during the regressive evolution of the eye.

We performed a control analysis to demonstrate that these functional enrichments are unique to

subterranean species. We chose four aboveground species (Control species) for which there is no

reason to expect phenotypic convergence and whose branch lengths are similar to the moles – pika,

guinea pig, squirrel and cow. Whereas mole-accelerated genes were enriched in 15 GO categories

at a FDR of 15%,control-accelerated genes had no enriched categories at the same FDR

(Supplementary file 2). Furthermore, these control species showed no enrichment of visual percep-

tion genes specifically (Figure 3).

There were also 1306 mole-decelerated genes that evolved at significantly slower rates in subter-

ranean species than in other mammals (Supplementary file 3). Although mole-decelerated genes

are individually significant, only one GO category showed significant functional enrichment – GO

Table 1. Top 30 of 55 subterranean-accelerated genes.

Gene P-value Tissues Description

LIM2* 0.00084 Lens Lens intrinsic membrane protein 2

CRYBB3* 0.00087 Lens Lens-specific crystallin, beta B3

R0M1* 0.00096 Retina Retinal outer segment membrane protein 1

CRYBA1* 0.00098 Lens Lens-specific crystallin, beta Al

CRYGC* 0.00119 Lens Lens-specific crystallin, gamma C

CRYBB2* 0.00128 Lens Lens-specific crystallin, beta B2

GPR89B 0.00130 Ubiquitous G-protein-coupled receptor 89B, pH mediator in Golgi

GNAT1* 0.00133 Retina Rod cell-specific G-protein, subunit alpha

GPRS9A 0.00134 Ubiquitous G-protein-coupled receptor 89A, pH mediator in Golgi

NRL* 0.00138 Retina Neural retina leucine zipper responsible for expression of rhodopsin

CRYGS* 0.00146 Lens Lens-specific crystallin, gamma S

GRM6* 0.00150 Retina Metabotropic glutamate receptor 6, required for normal vision

GBX2 0.00165 Embryo Gastrulation brain homeobox 2, developmental transcription factor

LGSN* 0.00171 Lens Lengsin, lens protein with glutamine synthetase domain

CRYBB1* 0.00183 Lens Lens-specific crystallin, beta Bl

KLHDC3 0.00186 Ubiquitous Kelch-domain-containing 3, high expression in brain

KRT81# 0.00186 Hair and nails Keratin 81, primarily in hair cortex

WDFY1 0.00192 Ubiquitous WD repeat and FYVE-domain-containing 1, endosomal protein

KRT9# 0.00195 Skin Keratin 9, specific to palms of hands and soles of feet

POMP# 0.00199 Ubiquitous Proteasome maturation protein, associated with rare skin disorder

RRH* 0.00201 Retina Retinal pigment epithelium-derived rhodopsin homolog

DPCD* 0.00201 Ciliated cells Deleted in primary ciliary dyskinesia; maintenance of ciliated cells

RAD54L 0.00217 Ubiquitous RAD54-like: DNA double-strand break repair

TATDN1 0.00235 Ubiquitous TatD DNase-domain-containing 1

ITLN2 0.00244 Small intestine Intelectin 2, may play a role in defense against pathogens

STX3* 0.00245 Ubiquitous Syntaxin 3, associated with congenital cataracts and intellectual disability

SKJV2L* 0.00254 Ubiquitous DEAD box protein, yeast SKI2 homolog, implicated in macular degeneration

DPY19L1 0.00254 Ubiquitous dpy-19-like 1 (Caenorhabditis elegans), probable C-mannosyltransferase

TFPT 0.00266 Ubiquitous TCF3 (E2A) fusion partner (in childhood leukemia)

RSI* 0.00275 Retina Retinoschisin 1, extracellular protein involved in organization of retina

*related to vision.
#related to skin and hair.

Refer to Supplementary file 1 for a full list of the subterranean-accelerated genes.

DOI: https://doi.org/10.7554/eLife.25884.006

Partha et al. eLife 2017;6:e25884. DOI: https://doi.org/10.7554/eLife.25884 6 of 26

Research article Genomics and Evolutionary Biology

https://doi.org/10.7554/eLife.25884.006
https://doi.org/10.7554/eLife.25884


Biological Process: Nucleic acid binding transcription factor activity – at an FDR of 15%

(Supplementary file 4). A similar control analysis showed 626 genes as being significantly deceler-

ated at an FDR of 15%, and these control-decelerated genes were enriched in 24 GO categories.

Therefore, despite there being vastly more mole-decelerated genes than mole-accelerated genes,

mole-decelerated genes as a group do not show strong functional enrichment. This result stands in

stark contrast to the strong enrichment seen in the mole-accelerated genes.

Most mole-accelerated genes are under relaxed constraint
Accelerated rates could have resulted from adaptive evolution or, alternatively, from relaxation of

constraint. We distinguished between these scenarios using codon-based evolutionary models to
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Figure 2. Relative evolutionary rates of two retinal proteins across species. Relative evolutionary rates of two retinal proteins, (A) Retinal outer segment

membrane protein 1 (ROM1) and (B) Rod cell-specific G protein, subunit alpha (GNAT1), show strong acceleration in the subterranean mammals

(marked in red).

DOI: https://doi.org/10.7554/eLife.25884.004

Table 2. Representative enriched functions in mole-accelerated genes.

Functional annotation Fold enrichment p-value FDR q-value

Visual perception 23.16 6.84E-16 1.02E-11

Sensory perception of light stimulus 22.69 9.12E-L6 6.82E-12

Sensory perception 8.47 5.83E-10 2.91E-06

Neurological system process 5.39 1.75E-07 6.53E-O4

Detection of light stimulus 29.57 7.04E-07 2.10E-03

Detection of light stimulus involved in sensory perception 56.35 1.92E-05 4.77E 02

Detection of light stimulus involved in visual perception 56.35 1.92E-05 4.09E-02

Detection of external stimulus 14.38 2 49E-05 4.66E-02

DOI: https://doi.org/10.7554/eLife.25884.007
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detect signatures of adaptive evolution. We tested whether the nonsynonymous to synonymous rate

ratio (dN/dS) was significantly greater than 1 – the expectation for positive selection – for any portion

of the gene specifically on the subterranean species branches, and also more generally across the

entire mammalian phylogeny (Yang, 2007). Of the top 55 mole-accelerated genes, only one gene

rejected a neutral model not allowing dN/dS ratios exceeding 1 in favor of a model allowing positive

selection (dN/dS > 1) on subterranean branches (Supplementary file 5). This gene is involved in con-

nective tissue and hair structure (KRTAP17-1).

The other accelerated genes did not show evidence of adaptive evolution and thus are probably

under relaxed constraint. Almost all accelerated genes rejected a model requiring them to have

identical constraints in all mammals (model M1) in favor of a model that allowed subterranean-spe-

cific relaxation of constraint (model BS1) (Supplementary file 5). Some of these genes seem to have

lost all functional constraint because they show genetic lesions such as stop codons and frameshifts

in some subterranean species (Supplementary file 6). This evidence of relaxed constraint is consis-

tent with the expectation that some vision-related genes have been undergoing regressive

evolution.

Skin-related genes were accelerated possibly in response to the
demands of tunneling
The fossorial lifestyle of subterranean species has selected for traits related to digging and locomo-

tion underground (Nevo, 1979). Perhaps because of this selective pressure, many of the top mole-

accelerated genes encode proteins that are structural components of skin, hair and epithelial con-

nective tissues. The reasons for their acceleration are the result of relaxation of constraint on their

coding sequence. Genes encoding keratin proteins 9, 12, and 81 (KRT9, KRT12, KRT81) were studied

using codon models, and the results indicated that they experienced relaxed constraint in subterra-

nean species but not positive selection for amino acid diversification (Supplementary file 5). They

Figure 3. Enrichment of visual perception genes. (A) Histogram of the rankings of 189 visual perception genes based on their mole-acceleration. We

see a clear enrichment of the genes with low rank numbers, reflecting the strong signal of mole-acceleration in visual perception genes. As a control,

we use four non-subterranean species, and as expected, genes involved in vision do not show convergent rate acceleration. (B) Mole-acceleration can

equivalently serve as a predictor for function in visual perception. The plot shows the Precision-Recall values at varying p-value thresholds reflecting the

fraction of visual perception genes significant at a particular threshold (Precision) and the fraction of visual perception genes retrieved at the same

threshold (Recall). We see that mole-acceleration specifically identifies visual perception genes with high precision when compared to acceleration in

two sets of four non-subterranean control species.

DOI: https://doi.org/10.7554/eLife.25884.005
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contain early stop codons in multiple subterranean species, which is consistent with complete loss of

constraint (Supplementary file 6).

The convergent acceleration and pseudogenization of KRT9 is particularly interesting in relation

to burrowing (Figure 4). In mice, KRT9 expression is confined to footpads, and Krt9�/� null mutants

develop footpad calluses due to hyperproliferation of skin (Fu et al., 2014). In humans, KRT9 is

expressed solely on the palms of hands and the soles of feet, and mutations lead to a skin disorder

characterized by hyperkeratosis (thickening) of the surfaces of palms and soles – epidermolytic pal-

moplantar keratoderma (Hennies et al., 1995). By extension, the loss of KRT9 in subterranean spe-

cies may also have led to hyperproliferation of footpads, which could carry benefits for tunneling.

For example, the star-nosed mole digs with its forepaws, and naked mole-rats collect and remove

dirt with their feet (Jarvis and Sale, 2010; Hamilton, 1931). Such abrasive tasks could place high

demands on the footpad surfaces. In addition, mole-acceleration of the POMP gene could similarly

have resulted from demands on footpads. A human mutation in POMP is associated with KLICK syn-

drome, a skin disorder also characterized by hyperproliferation and thickening of palms and foot-

pads (Dahlqvist et al., 2010).
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Illustrations by Michelle Leveille (Artifact Graphics).
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In addition, we discovered skin- and hair-related genes showing evidence of positive selection

rather than of loss of function in subterranean species. Although these genes were not significantly

mole-accelerated at a FDR of 15%, they potentially reflect functional changes in response to subter-

ranean adaptation. One such gene, COL4A4, a gene encoding a subunit of Type IV collagen, was

strongly accelerated, did not contain genetic lesions, and showed evidence of positive selection in

subterranean species (Supplementary file 1,5,6). Type IV collagen is the major structural component

of the basal lamina in many tissues, including skin epithelium, and is composed of six subunits, three

of which (COL4A4, COL4A5 and COL4A3) were notably mole-accelerated. On average, the six subu-

nits were more accelerated than 71% of all other genes, which is a significant difference (p=0.0342,

Mann-Whitney U test). Whereas Type IV Collagen seems to have responded to the subterranean

environment, other major components of the basal lamina, the laminin proteins (e.g., LAMA1), were

not notably accelerated.

Regressive evolution is limited to the lens, retina, and eye-specific
developmental genes
In order to compare how specific eye tissues have evolved in subterranean species, we first compiled

tissue-specific gene sets using expression data from 91 mouse tissues (Su et al., 2004). We identi-

fied tissue-specific genes for cornea, iris, lens and retina by selecting those genes with significant dif-

ferential expression in the tissue of interest but not in other tissues. Using literature, we also

compiled a set of 71 important eye developmental genes (Supplementary file 7). We first asked

whether there is a relationship between the degree of tissue-specificity and the degree of mole-

acceleration measured as the difference in dN/dS between subterranean and aboveground species

(Figure 5A). We found a clear positive correlation between eye tissue-specificity and mole-accelera-

tion, which is consistent with a greater relaxation of constraint on genes with few or no roles outside

the eye. Next, we asked which genes with eye-tissue-specific expression showed acceleration and

found that genes that are specifically expressed in the cornea (a protective tissue of the outer eye)

and the iris were not accelerated in subterranean species when compared to a set of randomly cho-

sen genes (background) (Figure 5B and C). By contrast, many lens- and retina-specific genes are

0 5 10 15

-0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

M
o
le

 a
cc

e
le

ra
ti

o
n
 (

d
e
lt

a
 d

N
/d

S
)

Tissue speci city

-log10(P-value)

L
ri

c

Mole rate

background accelerated

−
0
.2

0
.0

0
.2

0
.4

Cornea Iris Lens Retina Dev Bgd
Tissue

M
o
le

 a
c
c
e
le

ra
ti
o
n
 (

d
e
lt
a
 d

N
/d

S
)

A B C

Tissue speci c genes

R-squared: 0.157

p-value: 2.57e-09 

c: Cornea, i: Iris, L: Lens, r: Retina, Dev: Development, Bgd: Background

Figure 5. Tissue-specific retinal and lens genes are highly accelerated in subterranean species. (A) Ocular genes that are more tissue-specific exhibit

stronger acceleration in subterranean ‘mole’ species. The y-axis represents the change in the rate of evolution on branches shifting to a subterranean
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to background (p=1.4�10�5 and 3.2 � 10�4, respectively). (C) Representation of average mole-acceleration for genes specifically expressed in four

different tissues of the eye.
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accelerated. On average, lens genes are more accelerated than 84% of background genes, and ret-

ina genes are more accelerated than 82% (p=9.07�10�6 and p=6.10�10�10 for lens and retina,

respectively, Mann-Whitney U test). The contrast between the front and the interior of the eye sug-

gests that the sensory functions of the inner eye, such as phototransduction and the visual cycle, are

under relaxed constraint, whereas the protective function of the cornea is not. Indeed, two of these

subterranean species have eyes that are open to the environment, such that the cornea may con-

tinue to serve as a barrier to pathogens and debris.

Eye developmental genes as a whole were not accelerated compared to background, which may

reflect the fact that most of them, such as Sonic Hedgehog (Shh), are important in the development

of non-eye tissues. However, five eye-specific developmental genes were notably present at the top

of the accelerated list (Vax2, Nrl, Foxe3, Crx and Aldh3A1), whereas no eye-specific genes were

found lower in the list (Supplementary file 7). This is consistent with the positive relationship

between eye-specificity and relaxation of constraint (Figure 5A).

Eye-specific enhancers of PAX6 show convergent acceleration in
subterranean mammals
Although we observe specific instances in which eye developmental genes show accelerated rates in

subterranean mammals, there is no significant global trend. This is understandable given that a

majority of these developmental transcription factors have important roles in the development of

non-eye-related tissues. For example, Pax6 is important in the development of pancreas and brain in

addition to the eye (Kleinjan et al., 2006; Kammandel et al., 1999; Xu et al., 1999). Hence the pro-

tein-coding sequences of the transcription factors encoded by these genes experience selective

pressure against deleterious mutations. However, regulatory regions controlling the expression of

these developmental genes in the eye might be under relaxed constraint in subterranean mammals,

given the relaxation of the need to maintain the functionality of visual pathways. We hypothesize

that these eye-specific cis-regulatory elements (CREs) would thus show accelerated rates of evolu-

tion in the subterranean mammals.

We tested this hypothesis by applying our evolutionary-based method toward identifying eye-

specific regulatory elements controlling the expression of the developmental transcription factor

PAX6. We chose the PAX6 system because extensive effort has gone into characterizing the spatio-

temporal regulation of its expression (Kleinjan et al., 2006; Kammandel et al., 1999; Xu et al.,

1999; Kleinjan et al., 2001; Dimanlig et al., 2001; Griffin et al., 2002), and there exists compre-

hensive annotation ofCRE that control the expression of PAX6 in various tissues including the eye.

On the basis of existing literature on the transcriptional regulation of Pax6 expression, we identified

a 500-kb window containing Pax6 and its neighboring gene Elp4 as our genomic window of interest

(Kleinjan et al., 2006). Experiments involving transgenic mice revealed various tissue-specific

enhancers in a 200-kb region within this genomic window to be important for Pax6 expression. We

subsequently identified 150 highly conserved non-coding elements in this genomic window and esti-

mated their evolutionary rates on each mammalian branch. We then calculated the relative rates of

the branches using the same projection operator method as was employed for the protein-coding

gene trees. We then employed the Mann-Whitney U hypothesis-testing framework to identify non-

coding elements that have evolved at an accelerated rate specifically on the subterranean branches

(Materials and methods).

The results of our analyses show that the three regions showing the strongest signals of conver-

gent acceleration in the subterranean mammals extensively overlap the regions previously annotated

to be enhancers important for regulation in eye-specific tissues (Figure 6A, B). (i) ‘cre149’ is a 558-

basepair (bp) region containing the 530-bp region annotated as the ‘alpha, intron 4 retinal’ enhancer

(Kammandel et al., 1999). (ii) ‘cre21’ is a 552-bp region located within the fragment containing HS2

and HS3 of the Distal Regulatory Region, a retina-specific enhancer of PAX6 (Kleinjan et al., 2001).

(iii) ‘cre86’ is a 429-bp region containing the 341-bp long ‘ectodermal enhancer’, which has been

shown to be important in driving the expression of PAX6 in the developing lens (Dimanlig et al.,

2001). Regions overlapping an enhancer element shown to be regulating PAX6 expression in lens,

hindbrain and diencephalon (the ‘EI’ enhancer element) do not show significant rate acceleration in

the moles (Kleinjan et al., 2001). This is in concordance with our expectation that only eye-specific

elements show convergent acceleration, and hence the regions overlapping the EI enhancer do not

show acceleration given their importance for PAX6 expression in non-eye tissues. Similarly, a 120-bp
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region overlapping the pancreas enhancer also does not show significant rate acceleration in the

moles, as expected (Kleinjan et al., 2006; Xu et al., 1999). In addition to the eye-specific enhancer

elements, we observe other regions showing comparable rate acceleration in the moles that are not

yet characterized (Supplementary file 8). These regions are candidate CREs for PAX6 expression in

the eye. This preliminary study of the Pax6 transcriptional regulatory module serves to confirm our

hypothesis that eye-specific regulatory elements are under relaxed constraint and thus show acceler-

ated rates of evolution in the subterranean mammals.

Figure 6. Mole-acceleration of eye-specific enhancers in the Pax6 gene region. (A) Genomic region spanning Pax6 and its neighbor Elp4. The exons

and introns of the two genes are represented by black blocks and lines respectively, whereas the conserved non-coding regions analyzed are

represented in light blue. The conservation signal as given by the 100 vertebrates Basewise Conservation is shown in dark blue. The mole-acceleration

scores for these regions are represented in red. The three most accelerated non-coding regions identified in this analysis are consistent with the eye-

specific enhancers regulating Pax6 expression in the eye. (B) The mole-acceleration scores for the three eye-specific enhancers of Pax6 are the highest

among 150 regions analyzed, including enhancers of other tissues and uncharacterized non-coding regions. (C) The relative rates in each species for the

most accelerated region ‘cre149’.
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Mole-accelerated non-coding elements are strongly enriched near
transcription factor genes driving eye development
Expanding from our analysis of Pax6, we performed a large-scale scan for convergently accelerated

non-coding elements near transcription factor genes in the mammalian genome. We compiled two

sets of transcription factor genes – one comprising 20 genes known to be important in eye develop-

ment (the Eye set), such as Pax6, Pax2, Otx2, and another set consisting of an equal number of tis-

sue-specific transcription factor genes that are expressed in other tissues and with no evidence of

expression in eye (the Other set), which includes Hoxa9, Pax8 and Sox13 (Supplementary file 9).

We identified 200 conserved non-coding elements near each gene in both sets, totaling to 8000 ele-

ments split equally between the two gene sets (see Materials and methods). We subsequently

applied our method and calculated the mole-acceleration of each element. This large-scale scan

revealed a total of 17 elements as convergently accelerated at an FDR of 10% (Figure 7A,

Supplementary file 10). Fourteen of the 17 elements are found near to genes belonging to the Eye

set, reflecting a significant enrichment of mole-accelerated elements near transcription factor genes

driving eye development (Hypergeometric test, p-value=0.001). We subsequently checked the geno-

mic locations of these mole-accelerated elements to ensure that they are not clustered at the same

locus for instance. These 17 elements are found close to 14 unique genes, with 11 unique genes

belonging to the Eye set, and three genes belonging to the Other set, further showcasing the strong

enrichment of unique eye developmental transcription factor genes close to mole-accelerated ele-

ments (Hypergeometric test p-value = 0.0016).
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transcription factor genes. The bar plot shows the 17 mole-accelerated conserved non-coding elements identified. Fourteen of the 17 elements are

present near transcription factor genes in the Eye set, denoted in red. (B) FANTOM5 Eye enhancers show strong mole-acceleration. The plot shows the
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enrichment of eye enhancers identified at low mole-acceleration p-values (red points) whereas no such enrichment is observed using control-species-

acceleration p-values (blue points).
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FANTOM5 eye enhancers show strong convergent acceleration in
subterranean mammals
The FANTOM5 consortium has identified putative enhancer sites in the human and mouse genomes

based on bidirectional enhancer transcription across tissues as well as at multiple developmental

time points (Andersson et al., 2014). These putative enhancer sites include genomic regions

that are transcribed in the eyeball of mouse embryos at four developmental time points. On the

basis of this resource, we compiled two sets of FANTOM5 enhancer sites (see

Materials and methods) – a set consisting of 900 genomic regions with non-zero expression in the

eyeball across four developmental time points (‘Eye’ enhancers), and another set consisting of 6000

regions with zero expression across the same samples (‘Other’ enhancers). We subsequently calcu-

lated the convergent rate acceleration of these genomic elements in the four subterranean mammals

and compared the acceleration observed for the ‘Eye’ enhancers to that of the ‘Other’ enhancers.

Our analysis revealed a strong enrichment of FANTOM5 ‘Eye’ enhancers showing convergent rate

acceleration in the four subterranean species when compared to the four control species

(Figure 7B). We observe 62 FANTOM5 enhancers in total that showed significant mole acceleration

at an FDR of 15% (Supplementary file 11). Fifteen of these correspond to the FANTOM5 Eye

enhancers set, reflecting a significant enrichment of detected FANTOM5 eye enhancers using mole-

acceleration (Hypergeometric test p-value=0.006).

Some aboveground species exhibit gene acceleration indicative of their
altered visual capacities
To understand differences in the visual capabilities of mammals systematically, we studied the overall

relative rates of evolution of visual genes across all mammals. Our gene set of interest (189 genes in

total) was comprised of all genes with ‘Visual perception’ GO term annotation, excluding develop-

mental transcription factors. For each species, we then calculated the mean relative rate across all

of the genes (Figure 8). We observed the four subterranean mammals to be among the accelerated

species (with mean >0), as was our expectation. However, we also observed aboveground species

with overall rate accelerations comparable to those of the moles, such as the armadillo, the thirteen-

lined ground squirrel, the big brown bat, David’s myotis bat and a shrew. Notably, all of these mam-

mals show varying types of visual regression: the armadillo has poor vision characterized by a lack of

cone cells in the retina (McDonough and Loughry, 2013), and shrews also have poor vision and

diminutive eyes, which in some species are hidden in fur (Nowak, 1999). The nocturnal big brown

bat and David’s myotis bat possess reduced eyes and rely on echolocation for navigation

(Koay et al., 1998). The thirteen-lined ground squirrel displays a rare visual trait: the central region

of its retina is dominated by cone photoreceptors in contrast to the retinas of most mammals

(Kim et al., 2016). These scenarios could have important implications because the ground squirrel is

used as a model for vision research (Li et al., 2010; Chen and Li, 2012).

Discussion
The independent transitions of four mammals to a subterranean environment has been accompanied

by convergent phenotypic changes that have arisen as a result of adaptation to new environmental

stresses in the underground ecotope (Nevo, 1979; Leys et al., 2003; Lacey et al., 2000;

Albert et al., 2007; Wilkinson, 2012). Here, we report a genome-wide effort encompassing both

coding and regulatory regions to identify the changes in genotype that have accompanied this phe-

notypic adaptation by studying changes in their evolutionary rates. Our study reveals that genes

showing convergent acceleration in subterranean species are highly enriched for function in visual

pathways. The decreased selective pressure on visual pathways in the dim-light subterranean envi-

ronment leads to a relaxation of constraint on genetic elements involved in various eye-related phe-

notypes, including eye morphology, photoreception and visual transduction. In addition to

accelerated change in genes in visual pathways, we observe an accelerated rate of

evolution of many genes involved in skin-related phenotypes in the subterranean mammals. Whereas

we see accelerated change in visual genes primarily as a result of relaxation of constraint, we see

that some skin-related genes also show accelerated change due to positive selection, perhaps as a

result of selection of traits contributing to a fossorial lifestyle. Aside from these two phenotypes, we
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do not observe a comparably strong enrichment for genes involved in the other environmental chal-

lenges associated with a subterranean lifestyle, such as hypoxia, hypercapnia and high infectivity. It

is possible that the subterranean mammals may show species-specific adaptations to these stresses,

whereas our analysis from a convergent evolutionary perspective reflects changes common to all the

species.

Closer examination of the accelerated genes that are enriched for vision-related pathways reveals

that accelerated genes tend to be lens- or retina-specific. On the other hand, genes encoding specif-

ically for the outer ocular structure, the cornea, do not show significant acceleration, indicating

the preservation of developmental programs that are important for ocular architecture. In two of the

four moles with non-subcutaneous eyes, the cornea can come into direct contact with the external

environment, perhaps necessitating the proper development of the structure in the highly infective

subterranean niche. Lens- and retina-specific genes that are involved with the processes of photore-

ception and phototransduction would be under greater relaxed constraint given the dim-light envi-

ronment, accruing damaging mutations at a much higher rate. Our analyses also reveal that genes

that are associated with congenital eye diseases are accelerated in the four subterranean mammals.

For the lens, which is largely made up of crystallins, we find many crystallin genes (Crybb3, Cryba1,

Crybb1, Crygc, Crygs, etc.) in our accelerated set of genes contributing to various forms of cataracts

(Graw, 2009). Similarly, we find multiple genes involved in ciliopathies to be accelerated, including

‘deleted in primary ciliary dyskinesia’ (Dpcd), Iqcb1 (a component of primary cilia), and ciliary neuro-

trophic factor (Cntf). Further inspection of the accelerated list of genes could potentially reveal new

candidate genes that are important for congenital eye diseases.
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across of the genes. Our previous observations of mole-acceleration in visual perception genes are recapitulated here – the four subterranean

mammals are among the species that show an accelerated rate across these genes. Interestingly, we find other non-subterranean species showing

acceleration comparable to the subterranean mammals, indicating adaptations in visual systems.

DOI: https://doi.org/10.7554/eLife.25884.012
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Genes that are involved in the embryonic development of eyes do not show significant global

acceleration, potentially due to their pleiotropic nature: these developmental transcription factors

tend to have important regulatory roles in non-eye-related pathways that are not under relaxed con-

straint. We successfully tested our hypothesis that eye-specific regulatory elements of such genes

are under relaxed constraint in the moles, using a novel variant of our approach that calculates con-

vergent rate acceleration at the non-coding level. Although the strong rate acceleration in the three

eye-specific enhancers of PAX6 suggests relaxation of constraint in the subterranean mammals, in

the absence of functional tests we cannot be sure that the eye-specific activity is truly lost. Further-

more, we found an enrichment of such convergently accelerated non-coding regions preferentially

near eye developmental transcription factor genes, identifying potential enhancer elements driving

the expression of these genes specifically in the eye. As a large-scale validation approach, we show

that rate acceleration in subterranean mammals strongly overlaps regions identified as eye

enhancers by the FANTOM5 consortium. These proof-of-principle analyses serve to illustrate the

power of convergent-evolution-based tools for the identification of eye-specific regulatory elements.

Despite the apparent rapid rate of enhancer evolution across mammals, our methods and those of

colleagues showcase the utility of applying evolution-based approaches to conserved non-coding

regions in identifying regulatory elements underlying important developmental functions

(Marcovitz et al., 2016; Villar et al., 2015). These methods present a unique opportunity to per-

form genome-wide scans for eye- and other tissue-specific regulatory elements, and potentially

serve as complementary approaches to genome-wide assays in the identification of active enhancer

elements in the genome. As more genomes are sequenced, we expect these methods to become

more powerful in revealing gene regulatory changes underlying convergent phenotypes.

Overall, our results suggest that genes and non-coding regions that are involved in vision path-

ways are accumulating deleterious mutations by neutral processes, given the relaxation of constraint

on these pathways in the subterranean environment. However, this does not preclude the possibility

that the initial inactivating mutations in these pathways were adaptive in nature. The initial shutdown

of eye development may have been caused by positively selected changes, followed by continued

regression of structural and physiological eye genes through neutral processes. Indeed, there is evi-

dence of such a progression of events during eye regression in blind cavefish (Jeffery, 2005). Adap-

tive forces for reduced eyes may have been driven by the energetic costs of maintaining functioning

eyes and the risk of pathogen entry through the eye (Moran et al., 2015). We note that our rate-

based analysis detects signatures of sequence divergence that are based on what is observed at the

end of these processes and does not shed light on the nature of the initial inactivating changes.

In addition, our methods detect convergent changes in the rates of evolution of genes and hence

are not designed to detect species-specific changes that might contribute to the subterranean

adaptation.

Our results showcasing acceleration in the rates of convergent evolution of visual genes strongly

supports previous reports of visual regression in the subterranean habitat. Emerling and Springer

(2014) studied the regression of retinal genes in three of these four subterranean species and

showed that a decrease in the amount of light entering the retina is associated with higher incidence

of inactivating mutations in retinal genes. They found a significantly higher number of retinal pseudo-

genes in the moles compared to that in closely related subaerial species, an observation concordant

with our results based on rate acceleration. Genome sequencing efforts for naked mole-rat and blind

mole-rat also showed a strong enrichment of pseudogenes in visual pathways that are associated

with the degradation of vision in these species (Cooper et al., 1993; Kim et al., 2011). A genome-

wide study by Prudent et al. (2016) detected significant genomic differences in genes involved in

vision-related pathways such as eye development and perception of light in two of these four subter-

ranean mammals, namely cape golden mole and blind mole-rat. Using our rates-based framework,

we performed a rigorous investigation of convergently evolving genes in a large set of four subterra-

nean species, and elucidated the tissue-specificity and underlying reasons for their convergent rate

changes. In a first-of-its-kind demonstration at the non-coding level, we applied our methods

successfully to detect eye-specific enhancers showing accelerated evolution in subterranean

mammals.

Visual regression is not limited to these four mole species, and mammals display specific types of

regression and other general differences in visual capabilities. Our analysis of visual gene rates

across other species revealed interesting patterns and trends, wherein some aboveground species
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with poor or remodeled visual systems showed mean rate acceleration comparable to subterranean

mammals (Figure 8). This provides an opportunity to further probe specific differences in the devel-

opment and function of visual systems in terms of the specific pathways that are relaxed or under

constraint across species. In addition, integrating these other species into our rate-based framework

can help in fine-tuning the predictive power of the evolutionary-based approaches. Deliberate selec-

tion of foreground branches based on specific combinations among these vision-impaired mammals

might greatly improve the power of the methods in detecting convergent changes, especially at the

non-coding level. In this regard, the availability of rich and diverse phenotypic annotations across

mammals further lays the ground for the development of evolutionary-based approaches in func-

tional and phenotypic annotation of non-coding regions (Marcovitz et al., 2016; O’Leary et al.,

2011; O’Leary et al., 2013).

Materials and methods

Adding Nannospalax galili orthologs to alignment
Given the absence of Nannospalax galili (blind mole-rat or BMR) in the 100-species alignments

made available by the UCSC genome browser, we employed a custom approach to add the correct

BMR orthologous sequence based on its closest relative on the mammalian species phylogeny,

mouse. Using the publicly available BMR gene models (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_

000622305.1_S.galili_v1.0/), we first perform ed pairwise reciprocal nucleotide blast of all BMR gene

cDNA sequences and the corresponding cDNA sequences of all genes in the mouse mm9 genome.

For every mm9 gene sequence, we subsequently identify the correct BMR ortholog using the InPara-

noid program as follows: the program clusters pairs of sequences from the two queried genomes

into groups of orthologs, and the BMR sequence forming the main ortholog pair (pairs with mutually

best hit) in every group was identified as the correct ortholog (Remm et al., 2001). We then per-

formed a profile alignment using the openly available Muscle program to add the identified BMR

ortholog to the gene’s multi-species alignment (Edgar, 2004). For all analyses involving non-coding

regions, we utilized a simpler approach to identify the BMR orthologous region. For each non-cod-

ing region of interest, we performed blastn with the mm9 orthologous sequence as the query

against the BMR assembled genome, with the default Expect (E) value of 10 (NCBI Resource Coor-

dinators, 2016). The resulting best scoring blastn hit in the BMR genome, if any, was added to the

non-coding region’s multi-species alignment (obtained from the UCSC genome browser) using the

profile alignment utility of the Muscle program (Edgar, 2004).

Calculating gene correlations with the subterranean environment
Using the 100-way 100 vertebrate species amino acid alignments from the multiz alignment available

at the UCSC genome browser (Blanchette et al., 2004; Harris, 2007), those alignments with a mini-

mum of 10 species that are also present in at least two subterranean species were selected for the

study. We pruned each alignment to include only the 39 species of interest represented in the prote-

ome-wide average tree (Figure 1A), after adding the BMR ortholog of the corresponding gene

sequence to this alignment as described in the previous section. For each resulting amino acid align-

ment, we estimated branch lengths using the ‘aaml’ program from the phylogenetic analysis using

the maximum likelihood (PAML) package (Yang, 2007). Branch lengths were estimated under an

empirical model of amino acid substitution rates with rate variability between sites modeled as a

gamma distribution approximated with four discrete classes (for computational efficiency) and an

additional class for invariable sites (aaml model ‘Empirical + F’) (Whelan and Goldman, 2001;

Yang, 1996). Branch lengths were estimated on a published mammalian species tree topology

(Murphy et al., 2004), modified to include Nannospalax galili whose position in the tree was

inferred based on existing literature on its ancestry (Fang et al., 2014). For the analyses involving

conserved non-coding elements, we identified the elements of interest based on the human phast-

Cons track generated from the 100-way vertebrate multiz alignment, eliminating any region of over-

lap with the human mRNAs track. For each such element, we obtained an alignment of orthologous

regions across our species of interest, pruning from the UCSC 100-way multiz alignment. The previ-

ous section further details the procedure employed for adding the BMR orthologous region. We

subsequently estimated the branch lengths using the baseml program of the PAML package under
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the general reversible process (REV) model for nucleotide substitution rates, with rate variability

between sites modeled as a gamma distribution approximated with four discrete classes and an

additional class for invariable sites (Blanchette et al., 2004; Rodrı́guez et al., 1990).

Subsequent to reconstructing the maximum likelihood trees using PAML, we filter out the trees

of genetic elements that have zero branch lengths in at least 80% of the species present in the tree.

Raw branch lengths in trees retained after this filtering step were transformed into relative rates

using a projection operator method (Sato et al., 2005). These branch-specific relative rates were

then used to perform a Mann-Whitney U test and correlation analysis over the binary variable of

‘subterranean’ or ‘aboveground’ (i.e., not subterranean) branches (Figure 1A). Subterranean

branches are those leading to the star-nosed mole (Condylura cristata), cape golden mole (Chryso-

chloris asiatica), naked mole-rat (Heterocephalus glaber) and blind mole-rat (Nannospalax galili).

Datasets of ‘Eye’ vs ‘Other’ conserved non-coding elements and
FANTOM5 enhancers
A. Conserved non-coding elements near transcription factor genes
We identified 20 developmental transcription factors that have important developmental roles in the

formation of eye tissues (‘Eye’ set) based on a literature search. The detailed functional roles of these

transcription factors and the specific eye tissues where they are relevant are provided in

Supplementary file 9. The second part of the dataset comprises 20 transcription factors identified

as belonging to the ‘Other’ set. These transcription factors have no known role in eye development

and their tissue-specific functions were identified from a census of human transcription factors

[Supplementary file 9] (Vaquerizas et al., 2009). Subsequently, we used the UCSC phastConsEle-

ments100way track to identify conserved non-coding elements near each transcription factor gene.

For each gene, we identify 200 elements expanding the search window from the center of the gene

along either direction. We limit the number of elements to 200 in order to avoid any biases arising

out of the total number of elements studied near any particular gene. This leads to a total of 8000

elements split equally between the ‘Eye’ and the ‘Other’ set.

B. FANTOM5 enhancers
We downloaded a dataset of 44,460 putative enhancers identified by the FANTOM5 consortium,

including their mm9 coordinates and expression quantification across 1190 tissue samples

(Andersson et al., 2014). These include 1217 enhancers with non-zero expression level in the eye-

ball of mice (‘Eye’) across four developmental time-points and 13,100 enhancers with zero expres-

sion in eyeball (‘Other’). We obtained the corresponding hg19 coordinates of these enhancers using

the UCSC liftOver utility (Kent et al., 2002). Based on this, we were able to map correctly 995

enhancers belonging to the ‘Eye’ set and 7695 enhancers belonging to the ‘Other’ set. From among

these enhancers, we were able to confidently calculate the evolutionary rate correlation with the sub-

terranean environment for 946 FANTOM5 ‘Eye’ enhancers and 6,331 FANTOM5 ‘Other’ enhancers,

after filtering out enhancers that were either poorly conserved across our species set or whose trees

were dominated by branches of length zero.

Functional enrichment analysis
We performed functional enrichment analysis using the GOrilla tool by searching for enriched GO

terms in the foreground set of genes compared to the full background set of genes tested for mole

convergence (Eden et al., 2009). In addition to this, functional information for subterranean-associ-

ated genes was mined from the Uniprot and RefSeq databases, and from literature cited directly

(UniProt Consortium, 2007; Pruitt et al., 2007). Enrichment analysis was performed using the

hypergeometric test with the background set of genes restricted to genes that were tested for mole

convergence and that had at least one annotation in the corresponding annotation file. Correction

for multiple testing was performed using false discovery rate q-values (Storey, 2002).

Multiple hypothesis testing correction
False Discovery Rate analysis was performed on probabilities resulting from the Mann-Whitney U

test. We employed an empirical permutation-based FDR calculation, often the standard approach in

genome-wide analysis. We generated 10,000 null datasets, obtaining each dataset by randomly
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permuting the species labels of the relative rates. This process is equivalent to calculating the Mann-

Whitney U test and correlation analysis over four random branches vs the rest instead of over the

binary variable of ‘subterranean’ vs ‘aboveground’ branches. The subsequent permuted datasets

were used to estimate the FDR q-values for each p-value in our subterranean correlation analysis.

Genes showing a correlation greater than or equal to 0.5 in the Mann-Whitney U test and significant

at a FDR of 15% were considered mole-accelerated genes, and the p-value reflecting the strength of

this acceleration is referred to as mole-acceleration. Similarly, genes showing a correlation less than

0.5 and significant at a FDR of 15% are considered mole-decelerated genes.

Tissue-specific gene analysis
In order to determine how specific eye tissues have evolved across subterranean species, we first

identified tissue-specific gene sets using microarray expression data from 91 mouse tissues

(Su et al., 2004). We isolated tissue-specific genes for cornea, iris, lens and retina (including retinal

pigmented epithelium). These sets were defined as those with significant differential expression only

in the tissue of interest compared to all other tissues at an alpha of 0.05 (T-test).

Phylogenetic models of selective pressure
The subterranean-accelerated genes were subjected to phylogenetic models of codon evolution to

test for significant evidence of relaxation of constraint or positive selection over the subterranean

mammal branches. Using PAML, we ran codeml using five different models: the branch-site neutral

model (BS Neutral), the branch-site selection model (BS Alt Mod), the sites neutral model (M1),

the positive selection model (M8) and its null model (M8A) (Yang, 2007). To assess the significance

of relaxation of constraint on subterranean mammal branches, we performed likelihood ratio tests

(LRT) between BS Neutral and its nested null model M1. LRTs between BS Alt Mod and its null BS

Neutral were used to infer positive selection on subterranean mammal branches. Probabilities were

assigned for each of these two LRTs using the chi-square distribution with 1 degree of freedom.

Mammal-wide positive selection was inferred using the M8 vs M8A models and their respective LRT,

using 1 degree of freedom chi square distribution to assess LRT significance. For calculating the cor-

relation between mole-acceleration and degree of tissue-specificity of genes, we estimated the

mole-acceleration of each gene as follows: using a branch-site selection model (BS Alt Mod) we esti-

mated two different values of ! (dN/dS) – one for the four subterranean branches and one for the

rest of the branches on the tree. Mole-acceleration was calculated as the difference in the two ! val-

ues that were estimated.
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Foote AD, Liu Y, Thomas GW, Vinař T, Alföldi J, Deng J, Dugan S, van Elk CE, Hunter ME, Joshi V, Khan Z, Kovar
C, Lee SL, Lindblad-Toh K, Mancia A, Nielsen R, Qin X, Qu J, Raney BJ, Vijay N, et al. 2015. Convergent
evolution of the genomes of marine mammals. Nature Genetics 47:272–275. DOI: https://doi.org/10.1038/ng.
3198, PMID: 25621460

Fu DJ, Thomson C, Lunny DP, Dopping-Hepenstal PJ, McGrath JA, Smith FJ, McLean WH, Pedrioli DM. 2014.
Keratin 9 is required for the structural integrity and terminal differentiation of the palmoplantar epidermis. The
Journal of investigative dermatology 134:754–763. DOI: https://doi.org/10.1038/jid.2013.356, PMID: 23962810

Graw J. 2009. Genetics of crystallins: cataract and beyond. Experimental Eye Research 88:173–189. DOI: https://
doi.org/10.1016/j.exer.2008.10.011, PMID: 19007775

Griffin C, Kleinjan DA, Doe B, van Heyningen V, Heyningen van . 2002. New 3’ elements control Pax6 expression
in the developing pretectum, neural retina and olfactory region. Mechanisms of Development 112:89–100.
DOI: https://doi.org/10.1016/S0925-4773(01)00646-3, PMID: 11850181

Hamilton WJ. 1931. Habits of the Star-Nosed Mole, Condylura cristata. Journal of Mammalogy 12:345.
DOI: https://doi.org/10.2307/1373758

Harris RS. 2007. Improved pairwise alignment of genomic DNA. ProQuest.
Hendriks W, Leunissen J, Nevo E, Bloemendal H, de Jong WW. 1987. The lens protein alpha A-crystallin of the
blind mole rat, Spalax ehrenbergi: evolutionary change and functional constraints. PNAS 84:5320–5324.
DOI: https://doi.org/10.1073/pnas.84.15.5320, PMID: 3474658
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