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Towards providing efficient human-robot interaction, surface electromyogram (EMG) signals have been widely adopted for the
identification of different limb movement intentions. Since the available EMG signal sensors are highly susceptible to external
interferences such as electromagnetic artifacts and muscle fatigues, the quality of EMG recordings would be mostly corrupted,
which may decay the performance of EMG-based control systems. Given the fact that the muscle shape changes (MSC) would be
different when doing various limb movements, the MSC signal would be nonsensitive to electromagnetic artifacts and muscle
fatigues and maybe promising for movement intention recognition. In this study, a novel nanogold flexible and stretchable sensor
was developed for the acquisition of MSC signals utilized for decoding multiple classes of limb movement intents. More precisely,
four sensors were used to measure the MSC signals from the right forearm of each subject when they performed seven classes of
movements. Also, six different features were extracted from themeasuredMSC signals, and a linear discriminant analysis- (LDA-)
based classifier was built for movement classification tasks.+e experimental results showed that using MSC signals could achieve
an average recognition rate of about 96.06± 1.84% by properly placing the four flexible and stretchable sensors on the forearm.
Additionally, when the MSC sampling rate was greater than 100Hz and the analysis window length was greater than 20ms, the
movement recognition accuracy would be only slightly increased. +ese pilot results suggest that the MSC-based method should
be feasible in movement identifications for human-robot interaction, and at the same time, they provide a systematic reference for
the use of the flexible and stretchable sensors in human-robot interaction systems.

1. Introduction

In recent years, wearable devices [1, 2], such as exoskeletons
and prostheses [3, 4], have shown a substantial promise in
the fields of healthcare and rehabilitation that focus on
restoring upper or lower extremity motor functions. More
so, advances in technology have led to the development of
wearable devices in the form of smart electronics that could
continuously monitor different physiological parameters
associated with the health status in humans [5, 6]. Although
such wearable systems, especially the exoskeletons and

prostheses, have been well developed for decades with re-
markable advancements, their commercial and clinical
success are still marginal. One of the reasons for this issue
should be that the motion intention recognition mechanism
employed by the devices is inconsistently accurate, thus
leading to poor control output when utilized in a real-life
scenario. Meanwhile, accurate motion intention recognition
mechanism constitutes an essential part of the devices.
Surface electromyogram (sEMG) and electroencephalogram
(EEG) have been commonly considered as potential sources
of biosignals from which information for decoding human
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limb movement intents can be seamlessly obtained, due to
their noninvasiveness and ease of acquisition. Although
these physiological signals have been widely utilized, they are
relatively weak and susceptible to various kind of interfer-
ences. For instance, power line noise and motion artifacts
would inevitably degrade the motion intention recognition
accuracy of wearable systems that utilize sEMG or EEG
signals as their sources of control. In an attempt to address
this issue, researchers have sort alternative means from
which motion intentions could be decoded which includes
ultrasound [7], pressure [8], capacitance [9], muscle cir-
cumference [10], and muscle activation [11, 12]. However,
some of the systems are relatively large in size and integrate
sensors that lack flexibility and stretchability characteristics,
which are the core requirements for developing smart
miniaturized intelligent devices that could be easily adopted
in practical applications. +erefore, there is a need to
conduct further research in this direction that would lead to
the development of a new sensing material for motion in-
tention recognition with the capability to resolve the limi-
tations of the existing sensing techniques in the context of
wearable systems.

Recently, the use of flexible and stretchable sensing
materials had attracted much attention in the bioelectrical
signal recording and health monitoring domains [13, 14]. In
this regard, various flexible and stretchable sensors have
been developed [15], including strain, pressure [16–21], and
tactile [22, 23] sensors. Interestingly, these sensors have been
used for human motion monitoring [24–29], human-ma-
chine interfaces in the context of rehabilitation, and health
monitoring [30–33]. Compared to the traditional sensors,
some of these sensors are not only flexible and stretchable
but also equipped with additional new features including
self-power, self-cleaning, self-healing, and transparency,
making them more convenient and feasible to adopt in the
modern-day wearable systems. For instance, Song and Yang
developed a self-power sensor with the capability to monitor
human body movements while sleeping [34]. A self-healing
strain sensor was developed by Cai et al. to detect the dif-
ferent joint movements in humans [35]. Trung et al. pro-
posed a transparent hybrid sensor that could detect the
temperature and strain associated with the human body [36].
In another study, Muth et al. developed a strain sensor that
was mounted on a glove to detect the movements of human
fingers [37], while Meyer et al. proposed the use of a textile
pressure sensor for the detection of muscle activities in
human [38]. It should be noted that the above work mainly
focused on examining the electrical and physical properties
of the sensors without systematic investigation and detailed
experimental study of the sensors particularly in the context
of human motion intention recognition, which constitutes a
research gap.

To fill this research gap which may facilitate practical
applications, this study firstly developed a new sensor based
on nanogold flexible material to detect muscle shape
change (MSC) information from which limb movement
intentions could be adequately decoded. Secondly, a por-
table wireless acquisition system was built for the recording
of the MSC signals picked up by the nanogold flexible and

stretchable sensors. +irdly, the performance of the newly
developed MSC-based sensor for motion intention rec-
ognition was extensively validated following a systematic
study using datasets obtained from nine able-bodied
subjects that observed seven classes of targeted upper-limb
movements. Fourthly, we investigated the effects of sensor
dimension, placement location, sampling rate, feature
extraction method, and analysis window length, on the
motion intention recognition accuracy (this is the main
index for evaluating the performance of the system) of the
proposed MSC-based sensor. Lastly, the stretchability and
flexibility of the proposed motion intention recognition
MSC-based sensor were also examined to determine the
possibility of adopting it in real-life applications. In
summary, we believe that this study would provide a
symmetric guide on the selection of optimal core param-
eters (such as feature set, locations, sizes, sampling rates,
and window lengths for data processing) required in the
practical application of stretchable and flexible sensor in
the context of motion intension recognition for human-
robot interaction.

+e rest of this paper is organized as follows. Section 2
describes the fabrication process of nanogold flexible and
stretchable sensor and the portable wireless acquisition
system and gives the systematic experimental protocols
utilized in validating the sensor’s characteristics. Section 3
presents the experimental results. Section 4 discusses the
results. Finally, Section 5 presents the conclusion and future
work.

2. Materials and Methods

2.1. Material. Gold is a well-known material with charac-
teristics such as good conductivity, ductility, and biocom-
patibility, while polymers are soft and stretchable with good
biocompatibility. With the aid of the state-of-the-art nano
and microprocessing technology, we developed a soft and
stretchable conductor using gold and polymer materials,
which is conformal and biocompatible to detect biome-
chanical signal induced by the shape change of muscles. A
detailed description of the fabrication process of the material
is described in [39]. Meanwhile, the structure of the material
used to fabricate the soft-stretchable sensor is presented in
Figure 1(a). As shown in this figure, the top layer is made of
the nanogold film while the bottom layer is a substrate
known as polydimethylsiloxane (PDMS). Randomly dis-
tributed microcracks were observed inside the thin metal
film on top of the polymer, as shown in Figure 1(b). When
the film is subjected to tensile strain, the conductive path is
still built up due to the randomly distributed microcracks. In
addition, the conductivity of the material changes regularly
with the opening and closing of the microcracks during the
stretch/release process.

Since the conducting material is soft and stretchable and
conformal with the texture of the human skin surface, the
MSC can effectively induce the corresponding mechanical
strain in the conductor. Additionally, the stretchable con-
ductor maintains the conductivity regularly during the
mechanical tensile strain, and by examining the conductivity
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during the strain, the corresponding changes with respect to
the muscles’ shape can be detected.

2.2. Fabrication of the Sensors. +e sensors utilized for ac-
quiring the MSC signals in this study were fabricated as
follows. Firstly, the nanogold material was cut into strips
with each strip having a length and width of approximately
8 cm and 8mm, respectively. +ereafter, flexible printed
circuit board (FPC) wires were attached to the strips
through a liquid silver gel at the two terminals, and then the
strips were placed in an open space for about 10 minutes so
that the wires could get glued to the strips properly. +is
procedure is represented in Figure 1(c). After the silver glue
dried up, a silica gel was applied over the silver gel to
enhance its adhesiveness which would protect the encap-
sulated regions of the strips. Finally, the fabricated sensors
were placed in a curing oven at 60°C for six hours. A
representative of the resulting sensor is shown in
Figures 1(d)–1(f ), characterized by a stretched surface area
which is 600 times the original surface area of the strip. +e
stability of the fabricated sensors was examined by pulling
the strips 100 cycles on a tensile machine (AG-X plus 100N,
Shimadzu, Japan) and a multimeter (Keithley 2000, Tek-
tronix, USA) to observe the stretchability against its re-
sistance. +e pulling process is described as follows: (a) the
sensors were pulled at a constant speed of 1mm/s along the
direction of the sensors; (b) When the sensors were
stretched at the speed of 1mm/s to the predetermined
elongation (20% of their lengths), the tensile machine held
the state for 5 seconds. Ater that, the tensile machine re-
laxed at the speed of 1mm/s until the sensors recovered to
their original lengths. As shown in Figures 1 (g)and 1(h),

when the number of stretching cycles increases from 1 to
100, a corresponding decrease from an initial 340 ohms to a
stable 210 ohms in the resistance of the sensor is observed.
+is stretching process makes the sensors more consis-
tently stable for practical applications.

2.3. MSC Signal Acquisition System. A 4-channel acquisition
system (length: 6.2 cm, width: 3.5 cm, height: 0.7 cm, and
weight: 19 g) was developed to obtain the alteration in resis-
tance of the sensors caused by the muscle shape change. As
shown in Figure 2, the acquisition systemwasmade up of three
parts, namely, the analog front-end module, an MCU (WIFI
transceiver included) module, and a computer.+e ADS1292R
(Texas Instruments, Texas, USA) is the analog front-end chip
used to acquire bioelectrical signals, such as EMG signals. +is
analog front-end chip is also used for respiration resistance
measurement. +e respiration modulating module generates a
64 kHz square wave that is applied to the sensor, thus inducing
a current that flows through the sensor. +ereafter, a voltage is
produced by the current in the sensor and then amplified and
demodulated by a respiration demodulating module. +e
demodulated signal is then digitalized by using a 24 bits sigma-
delta ADC, and finally, the data are sent to the computer
through WIFI module.

2.4. Setup of Experiments. To investigate the performance of
the newly fabricated sensors, two different experimental
sessions were designed for the collection of MSC signals
associated with multiple classes of upper-limbmovements in
an offline mode. Information about the participants and the
data acquisition procedure is provided as follows.
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Figure 1: Fabrication of the sensor. (a) +e structure of the material. (b) +e microcracks of the gold film. (c) +e process of fabrication.
(d) +e sensor. (e) +e free state. (f ) +e stretched state. (g) One hundred circles of testing. (h) One circle of loading and unloading.
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2.4.1. Participants’ Information. In this study, a total of nine
able-bodied subjects including six males and three females
(aged from 24 to 30, with an average of 26.3) were recruited.
+e protocol of this study was approved by the Institutional
Review Board of Shenzhen Institutes of Advanced Tech-
nology, Chinese Academy of Sciences. All subjects gave
written informed consent and provided permission for the
publication of their photographs for scientific and educa-
tional purposes.

2.4.2. Setup of the Movements. +e MSC signals were ac-
quired at a sampling frequency of 1000Hz using the four-
channel data acquisition system described above. More
precisely, two different kinds of stretchable-flexible sen-
sors, large-sized sensors (length: 8 cm and width: 0.8cm)
and small-sized sensors (length: 3 cm and width: 5.0mm),
were designed for the MSC data collection with an attempt
to see if the sensor size would affect the MSC recordings, as
shown in Figure 3(a). During data collection sessions, each
participant was instructed to perform seven classes of
targeted upper-limb movements that were hand close
(HC), hand open (HO), wrist pronation (WP), wrist su-
pination (WS), wrist extension (WE), wrist flexion (WF),
and one inactive limb movement known as the rest state
(RS) as shown in Figure 3(b). Note that these classes of the
upper-limb movement tasks have been considered in a
number of previous related studies [40–42]. Prior to the
data collection sessions, the subjects were properly
instructed about the experimental procedure to guarantee
high-quality recordings. Furthermore, each subject was
allowed to perform several preexperimental trials to get

themselves familiar with the experimental protocol. Fol-
lowing these procedures, the subjects performed each
movement based on a video prompt for 5 seconds, and each
movement class was followed by a rest session of five
seconds before observing the next active movement class.
In training, the order of active movements is as follows:
HC, HO, WP, WS, WE, and WF, and each subject was
asked to repeat the process three times.

2.4.3. Locations of the Sensors. In order to examine the
optimal location for the MSC sensor placement, 16 locations
along the vertical plane were selected. +is is because if
placed along the longitudinal direction of the arm, the
sensors would be folded and therefore capture lesser in-
formation since they will not be making absolute contact
with forearm muscles. As shown in Figure 3(c), each
column’s sensors were equally distributed between the
chelidon and the end (near the hand) of the brachioradialis
muscle. For the large-sized sensors, different placement
locations, namely, the radial side (column 1, sensors 1 to 4,
named region 1), ulnaris side (column 2, sensors 5 to 8,
named region 2), posterior side (column 3, sensors 9 to 12,
named region 3), and the anterior side (column 4, sensors
13 to 16, named region 4) of the forearm, were designed.
For the small-sized sensors, four additional sensor place-
ment strategies were used, but this time in a rowwise
manner. +e small-sized sensor placements are described
as row 1 (sensors 1, 5, 9, and 13, named region 5), row 2
(sensors 2, 6, 10, and 14, named region 6), row 3 (sensors 3,
7, 11, and 15, named region 7), and row 4 (sensors 4, 8, 12,
and 16, named region 8). It should be noted that the four
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sensors in a row assume a ring shape around the forearm as
shown in Figure 3(c). Using the self-made four-channel
acquisition system, the MSC signals could be measured in
one row or one column on the forearm. For the large-sized
sensors, the data from one experiment could be collected in
four times, and the data from one experiment could be
collected in 8 times for the small-sized sensors. During the
experiment, each subject was asked to take a rest for two
minutes between two acquisition sessions. Before being
used, each sensor was prestretched and then adhered to the
skin with medical adhesive tapes to ensure that they were
firmly fixed to the skin during the experimental trials.

2.4.4. Data Preparation. After the MSC signals were ac-
quired, a five-point moving average filter was applied to
attenuate the inherent noise. +en, the filtered MSC data
were downsampled from 1000Hz to 500Hz, 250Hz, 100Hz,
50Hz, 40Hz, and 20Hz, respectively. Finally, to evaluate the
effect of different window lengths on the accuracy, a series of
windows of 20ms, 50ms, 100ms, 200ms, and 300ms were
used to segment theMSC data with the overlap length of half
of their window lengths.

2.4.5. Feature Selection and Classification. For each of the
windowed MSC signals, six features (the mathematical ex-
pressions are shown in Table 1), mean value (MVAL), root
mean square (RMS), simple square integral (SSI), third
moment (TM3), logarithm detector (LOGD), and standard
deviation (STD), were extracted, which were used in some
previous studies [42, 43]. With the feature sets, the principal
component analysis technique was applied to remove re-
dundant information, and then a five-fold cross validation
was utilized to partition the feature vector into a training set
and a testing set. A linear discriminant analysis (LDA)

classifier was built for each subject to predict the limb-
movement intents [44, 45]. +e major consideration to use
the LDA classifier is its computational efficiency coupled
with its wide usage for the human-machine interface. +e
detailed operational procedure of the LDA algorithm could
be referred to as [46].

2.4.6. Statistical Analysis. To examine whether each of the
five factors (feature, sensor size, sampling rate, location, and
window length) of the sensor has an impact on the accuracy
of movement classification, the one-way ANOVA with a
post hoc analysis LSD was conducted in terms of mean
classification accuracy, using the SPSS Statistical Modeling
software (SPSS 22.0 IBM Corp., Chicago, IL). To perform
one-way ANOVA, when designing experiments and
grouping data, only one of the five factors was changed at a
time while several other factors retained their typical values
unchanged. A level of p< 0.05 was selected as the threshold
for statistical significance with the null hypothesis that the
classification accuracies achieved by one factor’s changing
(such as the frequency changing, 1000Hz, 500Hz) among
the five factors are not significantly different from each
other.

3. Results

3.1. Waveforms of MSC Signals. Figures 4(a) and 4(b) show
two typical MSC recordings by the large-sized and small-
sized sensors, respectively. +e six classes of active move-
ments and the inactive movement could be visually dis-
tinguished from the MSC recordings. +eMSC signal values
in different channels varied in a range of dozens of ohms
during the movements and had a different baseline. +e
preapplied tension and the intrinsic resistance of the sensors
were different from each other. At the rest state, MSC signal
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Figure 3:+e protocol of the experiments. (a) Placements of two types of sensors on the forearm. (b) Seven targeted movements. (c) Sixteen
locations.
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values seem different in different channels, varying with
individual movement. Comparatively, the value of the large-
sized sensors changed more than that of the small-sized
sensors.

Figure 4(c) shows the spectrums of CH4 of both sensors.
It could be known that the main components of the MSC
signal are concentrated within 5Hz. +erefore, the clean
MSC signal SMSC is obtained by using a low-pass filter (IIR,

Butterworth, the cutoff frequency is 5Hz), with very small
noise (for the band is only 5Hz).+e noise Ni is obtained by
a high-pass filter (IIR, Butterworth, the cutoff frequency is
5Hz). Figure 4(d) shows the noise of CH4 of both sensors,
and the small-sized sensors have lower noise. +en, the SNR
is calculated as equation (1), and the large-sized sensor and
the small-sized sensor have SNRs of 49.10± 4.91 dB and
29.21± 1.97 dB, respectively. +e SNR of the large-sized

Table 1: +e mathematical expressions of the six features.

Serial number Feature name Abbreviation Mathematical expression

1 Mean value MVAL MVAL � (1/k) 􏽐
k
n�1 xn

2 Root mean square RMS RMS �

��������������

(1/k) 􏽐
k
n�1 (xn)2

􏽱

3 +ird moment TM3 TM3 � (1/k) 􏽐
k
n�1 (xn)3

4 Simple square integral SSI SSI � 􏽐
k
n�1 (xn)2

5 Logarithm LOGD LOGD � e(1/k) 􏽐
k

n�1 (xn)

6 Standard deviation STD RMS �

���������������������

(1/k) 􏽐
k
n�1 (xn − MVAL)2

􏽱
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Figure 4: Typical waveforms of MSC signal recordings. (a) +e 4-channel waveforms of the large-sized sensors. (b) +e 4-channel
waveforms of the small-sized sensors. (c) +e signal spectrums of CH4 for both sensors. (d) +e noises of CH4 for both sensors.
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sensor is about 20 dB higher than that of the small-sized
sensor.

SNR � 10 log10
PSMSC

PNi

. (1)

3.2. Effect of Features on the Classification Accuracy.
Figure 5(a) shows the relationship between the average
classification accuracy vs. the six features across all the
sensor locations in nine able-bodied subjects with a sam-
pling frequency of 1000Hz and window lengths of 100ms.
For the two groups of sensors, the classification accuracies
when using the STD feature were significantly different from
the other features (p< 0.01). For the small-sized sensors,
except for the STD feature, the TM3 reflected a different
characteristic in comparison to theMVAL, RMS, and LOGD
(p< 0.016) features, respectively. For the large-sized sensors,
MVAL, RMS, TM3, SSI, and LOGD almost had the same
accuracy and no significant difference (between all groups,
p> 0.635). It can be seen from Figure 5(a) that the accuracy
of the large-sized sensors was about 3% higher than that of
the small-sized sensors. For all the six features, the average
accuracies of the movement classifications were about
81.81± 21.29% when using the large-sized sensors and
75.95± 24.30% when using the small-sized sensors. ANOVA
shows that the average classification accuracies were sig-
nificantly different for the different sensor sizes (p � 0.005).

Furthermore, using the MVAL feature as a basis, the
other five features were added one-by-one in the sequence of
RMS, STD, LOGD, TM3, and SSI, and then used to classify
the movement intentions for each subject as shown in
Figure 5(b). It can be seen from Figure 5(b) that the clas-
sification accuracies slightly increased as the number of
features increases (from 1 to 6) for both the large-sized and
small-sized sensor configurations. For the small-sized sen-
sors, the first four features have no significant impact on
accuracy (at, p> 0.50), while the addition of the fifth and
sixth features led to a significant increase in accuracy (for five
features, p � 0.035; six features, p � 0.013), from
87.57± 8.20% to 90.97± 6.19%. For the large-sized sensors,
there is no significant difference in accuracy (p> 0.09) even
when all the six features were concatenated and used for
classifying the limb movement intent of the subjects, where
only a slight increase can be observed in accuracy (from
91.47± 5.66% to 93.73± 4.90%). +ese results suggested that
the large-sized sensors would achieve higher accuracy in
comparison to the small-sized sensors (p � 0.002).

3.3. Effects of Sensor Locations on the Classification Accuracy.
With an attempt to look for the optimal sensor placements
on the forearm, the effects of different sensor locations on
the forearm of the subjects were investigated. Eight different
regions for the four small-sized sensors’ placement and four
different regions for the large-sized sensors’ placement, as
shown in Figure 3(b), were examined. Six features were used
along with the sampling frequency and window length
adopted in the previous section. +e average classification

accuracy over all the nine subjects was calculated with each
sensor placement region and is presented in Figure 6. For the
small-sized sensors, it can be seen from Figure 6(a) that the
region 6 achieved the highest accuracy of 95.07± 3.87%,
while the region 4 had the lowest accuracy of 88.64± 6.34%.
Additionally, the ANOVA showed that there was significant
difference between region 6 and region 4 (p � 0.042) and
also between region 6 and region 7 (p � 0.046). Meanwhile,
the total average accuracy (across all the subjects and all the
regions) was about 90.97± 6.19%. For the large-sized sen-
sors, the ANOVA indicated that no significant difference
between all the four regions was observed (p> 0.15).
Figure 6(b) shows that region 3 had the highest average
accuracy of 96.06± 1.84% among all the four regions, and
the total average accuracy (across all the nine subjects and all
the four regions) was about 93.73± 4.90%.

3.4. Effects of Sampling Rates and Window Lengths on the
Classification Accuracy. To investigate the effect of different
MSC signal sampling rates on the motion intention rec-
ognition accuracy, the acquired signal was downsampled
from 1000Hz to 500Hz, 250Hz, 100Hz, 50Hz, 40Hz, and
20Hz, respectively. +e identical window length of 300ms
was used for the different sampling rates and the six fea-
tures were extracted from each analysis window. +e
overall classification accuracy over all the regions and all
the subjects was calculated for each sampling rate, as shown
in Figure 7(a). It can be observed from Figure 7(a) that
using a sampling rate from 100Hz to 1000Hz, both the
large-sized and small-sized sensors showed a steady ac-
curacy. If the sampling frequency was lower than 50Hz,
there was an obvious and significant decrease in the ac-
curacy (p< 0.001).

In addition, the effect of window length on motion
intention recognition accuracy was examined by using five
different window lengths (20ms, 50ms, 100ms, 200ms, and
300ms), respectively. +e six features were extracted from
each analysis window with each window length for the
motion intention recognition. +e overall classification
accuracies over all the regions and the nine subjects are
shown in Figure 7(b). We can see from Figure 7(b) that the
movement classification accuracies of both the large-sized
and small-sized sensors only had a slight increment (less
than 1.2%) with a corresponding increase in the window
length.

3.5. Classification Accuracies of Different Movements.
Following the above-described procedures, to evaluate the
classification performance of different movements, we cal-
culated the confusion matrices of classification across all
subjects for optimal sensor locations (Figure 8, in counts of
testing samples). It can be known from the figure that (a) all
active movements almost have the same true positives; (b)
the movements HO and RS have the greatest interaction; (c)
the samples of the classes are imbalanced (each active
movement has 2133 samples, while the RS movement has
12933 samples; the ratio is about 1 : 6).

Computational and Mathematical Methods in Medicine 7



According to Sokolova and Lapalme, there are eight
measures for multiclass classification, and the measures have
some invariance properties (that is, they preserve their value
under a change in the confusion matrix) [47]. For example,
average accuracy is invariant to the exchange of positives and
negatives of the confusion matrix, while recall is invariant to
the change of true negative counts. +is is beneficial for
evaluating the performance of classification. +erefore,
Precision (Pi), Recall (Ri), and F-score (Fi) of each class
(β�1, Precision and Recall are considered equal) were
calculated (shown in Table 2), and Macro-Precision (PM),
Macro-Recall (RM), and Macro-F-score (FM) were also
calculated (shown in Table 3). For both sensors, it can be
seen from Table 2 that (a) the RS movement had the lowest
Precision among all the features, but has the highest Recall;
(b) the HO movement had the lowest Recall. (c) When

considering both precision and recall, the HO movement
had the worst performance. Additionally, all the three
measures showed that the large-sized sensors could achieve
relatively higher performance in comparison to the small-
sized sensors (shown in Table 3).

4. Discussion

Adequate human motion intention recognition technique
aids the realization of efficient human-robot interaction
mechanisms required to provide intelligent control systems
in the context of rehabilitation or service robots. Meanwhile,
information extracted from a number of physiological sig-
nals such as EMG and EEG has been widely utilized for the
decoding of humanmotion intention. However, such signals
are often subjected to different interferences resulting from
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Figure 5: Effect of the features on movement classification accuracy. (a) Effect of different features on accuracy. (b) Effect of different
numbers of features on accuracy.
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electromagnetic artifacts, touch resistance between skin and
electrodes, and muscle fatigue among others. And these
interferences have been well studied with reports revealing

their negative effects towards degrading real-time perfor-
mances of motion intention decoding. Alternatively, non-
physiological signals based on muscle geometric and/or
morphology changes that can be measured by different
techniques such as ultrasound [7], capacitance [9], muscle
circumference [10], and muscle activation [11, 12] have been
considered for motion intention recognition. In that regard,
this study hypothesized that nonphysiological MSC signals
should offer adequate information for limbmovement intent
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Figure 8: Confusion matrix. (a) Fusion matrix of large-sized sensors. (b) Fusion matrix of small-sized sensors.

Table 2: Precision, Recall, and F-score of each movement (unit: %).

Measure HC HO WP WS WE WF RS

Large-sized sensors
Pi 99.10 97.05 98.32 98.86 95.81 97.45 89.87
Ri 95.59 78.62 96.27 92.58 82.83 93.45 99.01
Fi 97.31 86.87 97.28 95.62 88.85 95.41 94.22

Small-sized sensors
Pi 96.89 95.96 95.34 97.3 96.89 97.93 85.52
Ri 90.73 71.41 86.11 84.69 88.63 95.22 98.32
Fi 93.71 81.88 90.49 90.56 92.58 96.56 91.47

Table 3: Macro-Precision, Macro-Recall, and Macro-F-score of
both sensors (unit: %).

PM RM FM

Large-sized sensors 96.64 91.19 93.65
Small-sized sensors 95.12 87.87 91.04
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decoding. In this study, we systematically examined the
feasibility of utilizing the MSC signals acquired through the
newly developed nanogold flexible and stretchable sensor for
upper-limb movement intent decoding in the currently
evolving human-robot interaction systems.

Firstly, we extensively examined the characteristics of
the MCS signals when different features, namely, linear
(MVAL), nonlinear (RMS, SSI, TM3, and LOG), and
statistical (STD) features, were extracted for the limb
movement decoding task under multiple criteria. +e
outcome of the investigation reveals that except for the
STD feature that recorded extremely low accuracies (less
than 50%), the other examined features achieved high
accuracies with somewhat similar performance for the
movement intent decoding task. Also, by concatenating
the features extracted from the MSC signals in an in-
cremental manner, it was found that using more features
would only result in slight increase in accuracy (that is,
about a 3.4% increase for the small-sized sensors and
2.26% increase for the large-sized sensors), indicating that
it might be unnecessary to utilize multiple features when
adopting the MSC signals in practical applications. Im-
portantly, we found that regardless of the feature used to
predict the movement intent of the subjects, they still
exhibited similar waveforms except for their amplitudes
that appeared to be different. Also, one or two features
would be sufficient to achieve acceptable accuracy, which
may minimize computational complexity.

Secondly, sixteen different forearm locations were
mapped out to determine the most appropriate regions on
the forearm for the sensor placement while considering two
distinct sensor sizes (small-sized sensors and large-sized
sensors). +e experimental results showed that the sensors
placed on the locations with more muscles led to higher
accuracy in comparison to locations with fewer forearm
muscles. Also, the small-sized sensors placed around region
6 achieved the highest accuracy as against the sensors placed
around region 4 which recorded the lowest accuracy
(Figure 6). +is analysis is supported by Figure 9, in which
the sensors in region 4 (sensors 13 to 16 of Figure 4) were
placed in the center of the extensor digitorum, located at
the anterior side of the forearm. Compared to the posterior
side where there are seven superficial muscles, there are
only four muscles in the anterior region. +us, the sensors
in region 4 may acquire less limb motion information in
comparison to the other regions [48, 49]. In region 6 (row
2, sensors 2, 6, 10, and 14), the center of these four sensors
was placed right on the bulges of all the muscles’ bellies that
had obvious shape changes when doing different move-
ments, so these sensors may pick up the maximum shape
change of the muscles and obtain relatively higher infor-
mation than the sensors in the other locations. +us, higher
motion recognition accuracy could be achieved when
utilizing MSC signals from region 6. For the large-sized
sensors, the placement locations were similar to those of
the small-sized sensors. Due to the relatively large surface
area of the large-sized sensors, they cover more muscles
and could capture more MSC information related to
muscle activities. For example, sensor 7 of region 3 covers

the brachioradialis, part of the extensor digitorum and part
of the flexor carpi ulnaris. +is is equivalent to the in-
formation obtained from the three small-sized sensors
(sensors 11, 7, and 15). On the contrary, this makes the
large-sized sensors less sensitive to local muscle informa-
tion than their small-sized counterparts. +is could explain
the results presented in Figure 6(b).

+irdly, two important parameters, the sampling rate
and window length associated with processing the MSC
signals, which accounts for the computational complexity of
the entire motion intention recognition task, were also in-
vestigated. In the real-time applications (particularly for
embedded microcontrollers) of the motion intention rec-
ognitions, a high sampling rate would normally lead to large
computation time while a long window length often results
in large delay. +us, it is preferred to develop a system that
has a lower sampling rate and adopts a shorter window
length for the data processing task. As shown in Figure 7(a),
sampling frequencies that are less than 100Hz could be seen
to affect the accuracy of the motion intention recognition
classifier because the highest frequency of the MSC signal is
between 20 and 50Hz [50]. According to the Nyquist
sampling theorem which states that the sampling frequency
of a signal should be at least twice the signal’s bandwidth
[51], a sampling frequency of 100Hz would be sufficient to
preserve all the relevant information of the MSC signals.
+erefore, utilizing sampling frequencies from 100Hz or
above could help maintain the motion intention recognition
accuracy of the newly proposed MSC sensors. Meanwhile,
Figure 7(b) shows that the window length has little effect on
the motion intention recognition accuracy. In addition, it
can be observed in Figure 4 that the MSC signal exhibits
fewer changes while features extracted from longer windows
yielded almost the same performance in terms of motion
recognition accuracy compared to those extracted from
shorter windows. In other words, varying the window length
would only result in a slight increment in the motion in-
tention recognition rate. +us, the calculation amount can
be further reduced by reducing the sampling rate, and the
response time of the system can be improved by reducing the
window length.

Posterior

Region 6

Region 4 Region 3

Anterior Anterior Posterior

Figure 9: +e muscles of the forearm.
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In summary, using the newly proposed MSC signal, one
may realize a computationally efficient motion intention rec-
ognition system by considering a sampling frequency of about
100Hz, a window length of about 50ms, and one feature. +e
computational complexity of the intention recognition system
is estimated as follows. It mainly includes three parts: (a)
feature extracting. From Table 1, it can be known that the
computational complexity is O(NM), where N is the total
number of samples and M is the number of features (in this
study, M<N); (b) training. According to [52], the computa-
tional complexity of LDA is O(NM2) when M<N; (c) clas-
sification. +is step is the product of the coefficients and the
data to be identified, so the computational complexity is
O(NM). In total, the computational complexity of the system is
about O(NM2). When one feature is used, the computational
complexity is aroundO(N). In our system, N is a small number
(about a few thousand when in training, and about a few
hundred when in real-time application), so the system would
be easily realized on amicrocontroller and the systemwould be
easily realized on amicrocontroller. Table 4 shows some results
of the running time on our system (computer: Intel i5,
Windows 7, MATLAB 2016; the large-sized sensors in region 1
of the nine subjects were tested with a window length of
100ms). Sampling rate and number of features dramatically
affect the time for feature extracting, and lower sampling rate
and less features would decrease the computational complexity.

Despite the interesting results obtained in the current
study, some issues were observed while analyzing the MSC
signals. For instance, compared to the EMG signal, the MSC
signal exhibited a relatively simpler waveform characteristic
suggesting that it might contain relatively less information.
Hence, it may be a challenge to recognize more classes of
limb movements with high accuracy when using the pro-
posed MSC signals. According to the work of Li et al. [53],
most of the useful information from the EMG recordings for
motion intention recognition is contained in the frequency
range of 60Hz to 250Hz. Meanwhile, the proposed MSC
signals have a relatively lower frequency of 50Hz. Hence, a
combination of these two kinds of signals (EMG and MSC
signals) may provide complementary information in dif-
ferent frequency bands that would be potential for the de-
velopment of accurately robust motion intention
recognition system in real-life applications particularly when
several targeted limb movements are to be decoded.

On the other hand, the MSC signals were characterized
by creep [54], which causes crosstalk between the active and
nonactive (RS) motion recordings, thus attenuating the
motion recognition accuracy. +is situation is particularly
severe in cases where the RS and HO movements of the
subjects are being predicted (Figure 8). Importantly, when
data corresponding to the RS were excluded, higher motion

intention recognition accuracies were achieved for both the
small-sized and large-sized sensors across all locations
(Figures 10(a) and 10(b))). Because the occurrence of the
creep can be modeled using somemethods [55], one possible
solution would be to develop a creep-sensitive algorithm to
reconstruct the MSC signal patterns according to a pre-
defined model. Another possible way to resolve this issue
would be to consider using EMG signal for detecting the RS
states. +is is because when the limb assumes a rest state, the
amplitude of the EMG signal drops to around the baseline,
and afterward, there is an obvious rise in the signal’s am-
plitude when a targeted limb movement is elicited. +ere-
fore, using EMG signal as a switch for the RS state, that is,
only using EMG signal to identify the RS state, and using a
combination of EMG and MSC signals to identify the active

Table 4: Running time per subject (unit: ms).

(Hz)
Time for feature extracting Time for training Time for classification

One feature Six features One feature Six features One feature Six features
1000 23.49± 6.57 165.8± 11.30 23.10± 3.88 20.79± 1.77 0.98± 0.45 0.86± 0.26
100 7.45± 3.95 33.79± 7.80 23.59± 3.85 22.15± 2.96 0.98± 0.37 0.69± 0.16
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Figure 10: +e RS was removed. (a) +e accuracies of the small-
sized sensors. (b) +e accuracies of the large-sized sensors.
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movement classes may lead to high and stable motion in-
tention recognition in practical applications.

5. Conclusions

In summary, the proposed nanogold flexible and stretchable
sensor was developed towards providing an alternative
approach for motion intention recognition that may en-
hance the practical applications of pattern recognition
systems. Based on the experimental results obtained in this
study, accuracies of up to 95.07± 3.87% and 96.06± 1.84%
were recorded for the small-sized and large-sized sensors,
respectively, particularly when the sensors were placed at the
optimal locations. Additionally, when using the proposed
sensor for motion intention recognition, it often does not
require a high sampling rate (just over 100Hz) and a long
window length (50ms) for data processing. Interestingly, the
newly proposed MSC sensor is not sensitive to feature set
selection, indicating that simple feature methods could be
applied to achieve an acceptable motion intention recog-
nition accuracy in practical settings. +us, this suggests that
the proposed nanogold flexible and stretchable sensor would
be feasible and effective in practical applications.

Despite the potential results obtained in the current
study, there are still some shortcomings that need to be
addressed in our future work. For instance, the issue of
degradation in the performance of the proposed MSC
sensors resulting from the creeping nature of the materials
would hopefully be addressed through systematic investi-
gation in our future work either through the development of
intelligent signal processing algorithms or via a technique
that would combine the MSC and EMG signals for motion
intention recognition.
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