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Abstract

Motivation: Complex microbial communities can be characterized by metagenomics and metapro-

teomics. However, metagenome assemblies often generate enormous, and yet incomplete, protein

databases, which undermines the identification of peptides and proteins in metaproteomics. This

challenge calls for increased discrimination of true identifications from false identifications by data-

base searching and filtering algorithms in metaproteomics.
Results: Sipros Ensemble was developed here for metaproteomics using an ensemble approach. Three

diverse scoring functions from MyriMatch, Comet and the original Sipros were incorporated within a sin-

gle database searching engine. Supervised classification with logistic regression was used to filter data-

base searching results. Benchmarking with soil and marine microbial communities demonstrated a

higher number of peptide and protein identifications by Sipros Ensemble than MyriMatch/Percolator,

Comet/Percolator, MS-GFþ/Percolator, Comet & MyriMatch/iProphet and Comet & MyriMatch & MS-

GFþ/iProphet. Sipros Ensemble was computationally efficient and scalable on supercomputers.

Availability and implementation: Freely available under the GNU GPL license at http://sipros.omics

bio.org.

Contact: cpan@utk.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbial communities drive nutrient cycling in aquatic and terres-

trial ecosystems and influence the health of human, animal and plant

hosts. The metabolic activities of a microbial community can be

inferred from the proteomes of its constituent microorganisms. In a

typical metaproteomics experiment, total proteins are extracted

from environmental samples of a microbial community and then

measured by liquid chromatography-tandem mass spectrometry

(LC-MS/MS) using a ‘shotgun’ proteomics approach (Washburn

et al., 2001). All acquired tandem mass spectra (MS2) are compared

with predicted peptides from a protein sequence database in a com-

putational procedure called database searching (Chatterjee et al.,

2016; Eng et al., 2011; Sadygov et al., 2004; Xiong et al., 2015). A

statistically significant match between a peptide and an MS2 spec-

trum, referred to as a peptide-spectrum match (PSM), provides an

identification of the peptide by this spectrum and an identification
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of the protein containing this peptide. Reversed protein sequences

are often added to a protein database as decoys to estimate the false

discovery rates (FDR) of peptide and protein identifications (Elias

and Gygi, 2007; Peng et al., 2003). PSMs are typically filtered with

a score threshold to generate a set of confident PSMs at a specific

FDR.

Database searching can provide comprehensive and confident

identifications of proteins in single-organism proteomics ranging

from axenic bacterial cultures to human tissue samples. The protein

databases of these organisms contain only thousands or tens of thou-

sands of protein sequences and provide relatively complete represen-

tations of the actual proteins in their proteome samples. However,

database searching presents uniquely formidable computational

challenges for metaproteomics of microbial communities (Xiong

et al., 2015). The metaproteomic protein databases constructed in

silico from metagenome assemblies may contain millions of pre-

dicted proteins spanning thousands of organisms in complex com-

munities (Ahn et al., 2014; Haider et al., 2014). This requires the

scoring function of a database searching algorithm to evaluate up to

hundreds of times more peptide candidates in community metapro-

teomics than single-organism proteomics (Chatterjee et al., 2016).

While an MS/MS spectrum should have a high score for its match

with the correct peptide, the scores of the random matches generally

follow a probabilistic distribution with a small tail towards high

scores. Therefore, as databases of candidate peptides increase in

size, the probability of an incorrect random match that scores higher

than the correct match for a spectrum increases as well.

Furthermore, because of the incomplete assembly of metagenomes

and potential technical biases in sample extractions for metagenom-

ics and metaproteomics, the large protein databases used in meta-

proteomics are still incomplete and biased representations of the

actual proteins in metaproteome samples. As a result, a metaproteo-

mics measurement often contains many spectra originating from

peptides not included in these incomplete protein databases. These

spectra have no true PSMs to out-rank their high-scoring false, ran-

dom PSMs. To filter out the high-scoring false PSMs and control the

FDR of identifications, a database searching algorithm then needs to

set a score threshold for metaproteomics higher than single-

organisms proteomics, resulting in the loss of many true PSMs

scored below this stringent threshold. These computational chal-

lenges often lead to a much smaller number of peptide and protein

identifications in metaproteomics analyses of complex communities

than comparable proteomics analyses of single organisms.

In this study, we developed a general database searching and fil-

tering algorithm, Sipros Ensemble, for shotgun proteomics analysis

of single organisms and microbial communities. It was optimized

for metaproteomics to address the computational challenges

described above. Two key innovations in Sipros Ensemble were the

integration of three diverse existing scoring functions into a single

database searching engine and the formulation of PSM filtering as a

supervised classification problem. These features enabled Sipros

Ensemble to produce substantially higher numbers of peptide and

protein identifications in complex metaproteomics datasets than the

existing database searching and filtering algorithms benchmarked

here.

2 Algorithm and implementation

2.1 Ensemble searching in Sipros
Sipros Ensemble searches all MS2 spectra against a protein database

that contains both target protein sequences and reversed sequences

of target proteins as decoys. The database searching iterates between

a peptide generation module and a peptide scoring module as the

original Sipros (Hyatt and Pan, 2012). The multi-threading parallel-

ism was re-implemented using a producer-consumer model provided

by the tasking function in OpenMP 3.0. A single thread serves as the

producer of tasks and executes the peptide generation module,

which digests proteins to peptides, then matches peptides with spec-

tra by precursor masses to generate PSMs, and finally packages

PSMs into tasks (default: 20 000 PSMs per task). All the remaining

threads serve as the consumers of tasks and run the peptide scoring

module to score PSMs. The producer-consumer tasking parallelism

in Sipros Ensemble provided better multi-threading scalability than

the simple spectrum-level parallelism in the original Sipros (data not

shown).

The peptide scoring module of Sipros Ensemble incorporates the

multivariate hypergeometric scoring function (MVH) from the

MyriMatch algorithm (Tabb et al., 2007), the cross-correlation

scoring function (Xcorr) (Eng et al., 1994) from the Comet algo-

rithm (Eng et al., 2013), and the weighted dot product scoring func-

tion (WDP) from the original Sipros algorithm (Pan et al., 2011;

Wang et al., 2013). Only Cþþ codes for the MVH scoring from

MyriMatch (�750 lines out of �17 000 lines in the MyriMatch

codebase) and only Cþþ codes for the Xcorr scoring from Comet

(�1450 lines out of �17 200 lines in the Comet codebase) were inte-

grated into the Sipros Cþþ codebase (a total of �7800 lines). The

other functionalities of these two algorithms, including the

mzFidelity scoring in MyriMatch and the expectation value scoring

in Comet, were not incorporated in Sipros Ensemble. For most

PSMs, Sipros Ensemble generated the same MVH, Xcorr and WDP

scores as the original algorithms (data not shown).

Because MVH is more memory-efficient than Xcorr and more

CPU-efficient than WDP, MVH is used as the first scoring function

in Sipros Ensemble. For each MS2 spectrum, all peptide candidates

are first scored by MVH and the top-50 candidates ranked by MVH

are then scored by Xcorr and WDP. Scoring top-200 MVH candi-

dates by Xcorr and WDP led to �6% higher peak memory usage

and �13% longer wall-clock time, but virtually no difference in the

identification results.

Comet has a relatively high memory usage because it saves all

spectra in memory using a sparse matrix representation to speed up

the Xcorr calculation. To reduce memory usage, each thread in

Sipros Ensemble converts a spectrum to a sparse matrix on the fly,

calculates the Xcorr scores for all top candidates of this spectrum,

and deletes the sparse matrix before scoring the next spectrum.

Sipros Ensemble ranks the top-50 peptides by each scoring func-

tion and outputs the union of top-5 peptides by MVH, top-5 pepti-

des by Xcorr and top-5 peptides by WDP. The scoring results of

these peptides can be printed out in a custom tab-delimited format

for filtering by Sipros Ensemble or in the pepXML format for third-

party filtering algorithms.

2.2 Ensemble filtering in Sipros
To filter the database searching results, Sipros Ensemble calculates

the following 10 features for every PSM.

• MVH: MVH score;
• Xcorr: Xcorr score;
• WDP: WDP score;
• DMVH: score differential for the MVH score by Equation 1

below;
• DXcorr: score differential for the Xcorr score by Equation 1

below;
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• DWDP: score differential for the WDP score by Equation 1 below;
• DM: absolute difference between the calculated mass and the

measured mass of the precursor ion;
• #MCS: number of missed cleavage sites in the peptide of the PSM;
• #PEP: spectrum count for the peptide of the PSM, including all

modification forms and charge states of the peptide.
• #PRO: spectrum count for the protein or the protein group of

the PSM. The spectrum count of a protein or a protein group

includes both unique peptides and non-unique peptides. If this

PSM can be assigned to multiple proteins or protein groups, the

one with the highest spectrum count is used.

The score differential of a PSM for a given scoring function is

calculated as:

D ¼ Sc � Sb

Sb
(1)

where Sc is the score of this PSM and Sb is the highest score of other

PSMs for this spectrum. The score differential is positive for the top-

ranking PSMs and negative for lower-ranking PSMs. Peptide- and

protein-level features, similar to #PEP and #PRO, were also used

by Percolator (Käll et al., 2007) and iProphet (Shteynberg et al.,

2011). Filtering PSMs with peptide- and protein-level features

would make PSM identifications no longer independent events for

peptide and protein identifications.

Each scoring function has a top-ranking PSM for a spectrum. A

PSM is a unanimous PSM if it is identified as the top-ranking PSM

by all three scoring functions. All unanimous PSMs from target pro-

teins are incorporated into the positive training data. The reversed

proteins in the database are randomly assigned to a training set for

building classifiers and a test set for estimating FDRs. Decoy PSMs

from the reversed proteins in the training set are incorporated into

the negative training data. The positive and negative training data

are used to train the following supervised binary classifiers: logistic

regression with L2 regularization, random forest (200 decision trees,

Gini impurity, minimum samples of an internal node¼800, and

minimum samples of leaf node¼50), AdaBoost (200 estimators),

deep learning (three layers, each with 32 perceptrons and sigmoid as

the activation function) and stacking (logistic regression as the

meta-layer to combine predictions from the previous four models).

Logistic regression, random forest and AdaBoost were implemented

using the scikit-learn library (Pedregosa et al., 2011). Deep learning

was implemented using the Keras library (Chollet, 2015). Default

parameters in these libraries were used unless specified above.

A trained classifier is used to evaluate the top-ranking PSM(s)

from the three scoring functions for every spectrum in a proteomics

run. For a spectrum with two or three top-ranking PSMs identified

by different scoring functions, the PSM with the highest classifica-

tion score is selected as the top-ranking PSM for filtering. Every

spectrum has one and only one PSM for filtering based on its classi-

fication score. The score threshold is adjusted to reach a user-

defined FDR. The FDR of a set of filtered PSM is calculated as

FDR ¼ #TestDecoy

a�#Target
(2)

where #Target is the number of target PSMs, #TestDecoy is the

number of decoy PSMs from the reversed proteins in the test set,

and a is the fraction of the reversed proteins in the test set out of all

reversed proteins. Since the reversed proteins in the training set are

not used to estimate FDRs to avoid the training bias, #TestDecoy=a

is an estimate of the number of decoy PSMs if all reversed proteins

are used for FDR estimation. The value of a is 1/2 when all reversed

proteins are randomly assigned to the training set and the test set in

equal proportions. The performances of the five classifiers were

benchmarked, and the logistic regression classifier was selected for

PSM filtering in Sipros Ensemble.

Sipros Ensemble assembles the filtered PSMs to peptides and

proteins as described previously (Hyatt and Pan, 2012; Nesvizhskii

and Aebersold, 2005; Pan et al., 2011; Wang et al., 2013). A peptide

is identified if any of its PSMs is identified. A protein is identified if

at least one unique peptide from this protein is identified. These cri-

teria for peptide and protein identifications can be adjusted by users.

Proteins with indistinguishable PSMs are aggregated to protein

groups. FDRs for identified peptides and proteins are also estimated

by Equation 2 using the reversed proteins in the test set. Sipros

Ensemble can adjust the score threshold for filtering PSMs to reach

a user-defined FDR at the peptide level or the protein level. Sipros

Ensemble is freely available at http://sipros.omicsbio.org, including

the source code, documentation and benchmarking results.

3 Results

3.1 Ensemble searching with three diverse scoring

functions
The three scoring functions in Sipros Ensemble were compared using

three metaproteomes from a soil community (Butterfield et al., 2016)

and three metaproteomes from a marine community (Bryson et al.,

2016) (Table 1). These metaproteomes were all measured using the

Multidimensional Protein Identification Technology (MudPIT)

approach (Washburn et al., 2001) on an LTQ Orbitrap Elite mass

spectrometer (Thermo Scientific). Their matched metagenomes were

used to construct a soil protein databases containing �3.4 million tar-

get proteins and a marine protein database containing �392 000 tar-

get proteins. The mass spectrometry data and protein databases are

available from the ProteomeXchange Consortium via the PRIDE

repository with the dataset identifier of PXD007587. Details on these

benchmarking datasets are described in the Supplementary Methods.

Because MVH, Xcorr and WDP may rank different peptides as

the highest-scoring match for an MS2 spectrum, Sipros Ensemble can

assign one, two or three PSMs to an MS2 spectrum. Based on the

degree of agreement among the three scoring functions, the spectra in

a metaproteomics measurement were divided into three classes: unan-

imous PSMs, majority/minority PSMs and discordant PSMs. A unani-

mous PSM had the same peptide ranked by all three scoring functions

as the best match for a spectrum. On average, 30% of spectra in soil

samples and 42% of spectra in marine samples had unanimous PSMs

(Table 1). The average percentages of decoy hits in these unanimous

PSMs were 7% for soil and 4% for marine. This showed that the

accuracy of identification was very high even without any score-based

filtering if the three scoring functions can all agree.

On average, 24% of spectra in soil samples and 21% of spectra

in marine samples had majority PSMs, which were agreed by two

out of the three scoring functions. The other dissenting scoring func-

tion provided minority PSMs for these spectra. These majority/

minority PSMs can be further divided into three sub-classes based

on the dissenting scoring functions (Table 1). The majority PSMs in

soil samples had an average of 34% decoy hits. There was no signifi-

cant difference in the decoy percentage among the three sub-classes

of majority PSMs. The minority PSMs in the three sub-classes all

had close to 45% decoy hits, which was �5% better than random

guesses since the protein databases contained the same number of

target and decoy proteins. The much higher percentages of decoys in
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majority PSMs than unanimous PSMs suggests that the disagree-

ment from one scoring function, no matter which one, was an indi-

cator for the low identification confidence of the majority PSMs

agreed on by the other two scoring functions.

The three scoring functions identified three different PSMs for each

spectrum in the remaining 46% of spectra in soil samples and 37% of

spectra in marine samples. These PSMs were referred to as discordant

PSMs. The percentages of decoy hits were calculated separately for the

PSMs selected by each scoring function, which were �47% on average

and �3% better than random guesses. Some of these discordant spectra

likely originated from peptides whose sequences were not represented in

the protein databases. This would result in the ranking of peptide candi-

dates based on divergent trivial preferences of the three scoring functions.

Overall, the results for the different classes of PSMs in Table 1

indicated a low degree of correlation among decoy PSMs and a high

degree of agreement among target PSMs identified by the three scor-

ing functions. Using three scoring functions provided significantly

better discrimination of target PSMs from decoy PSMs than using

only two scoring functions. For example, if only Xcorr and MVH

were considered in soil 1, the majority PSMs of MVH and Xcorr

would become unanimous PSMs, which would increase the number

of decoys in the unanimous PSM class by 75% from 8847 to 15 450.

This would also turn the majority PSMs of WDP and Xcorr and the

majority PSMs of WDP and MVH into discordant PSMs. Such loss

of discriminatory information from leaving out a third scoring func-

tion was generally consistent across samples and scoring functions.

3.2 Ensemble filtering with supervised classification
After ensemble searching, Sipros Ensemble extracts 10 features on

the obtained PSMs for ensemble filtering. Each scoring function

provides a score and a score differential as two PSM features. A con-

fident PSM should have three high scores and three large positive

score differentials. The MS1 analysis and the proteolysis provide the

mass errors of precursor ions and the numbers of missed cleavage

sites, respectively, as two features of PSMs. The target PSMs had

lower mass errors and less missed cleavage sites than the decoy

PSMs (Supplementary Fig. S1). The peptide and protein of a PSM

can be identified by other PSMs before filtering. The spectrum

counts of peptides and proteins before filtering were also included as

two features of PSMs. The target PSMs had higher peptide and pro-

tein spectrum counts than the decoy PSMs (Supplementary Fig. S1).

We also tested additional features, including precursor charge states,

mass windows, peptide length and others used in Percolator (Käll

et al., 2007), iProphet (Shteynberg et al., 2011) and PepArML

(Edwards, 2013). These features were not used by Sipros Ensemble

in production because the filtering results were not improved by

including these additional features.

Because of the low percentage of decoys before filtering in the

unanimous class, all target unanimous PSMs were incorporated into

the positive training data. Decoy PSMs from the reversed proteins

assigned to the training set were incorporated into the negative

training data. The positive and negative training data were used to

train supervised classifiers constructed with the above 10 features of

PSMs based on logistic regression, random forest, AdaBoost, deep

learning and stacking. Supplementary Table S1 shows the parame-

ters of the 10 features in these classifiers. The PSM identification

results at the 1% test FDR were compared between the five classi-

fiers in Supplementary Table S2. Logistic regression generated the

highest number of PSM identifications for five out of the six meta-

proteomes. The FDR training biases were calculated as the differen-

ces between the training FDRs estimated using reversed proteins in

Table 1. Consistency and accuracy of PSM identifications by three diverse scoring functions

Soil 1 Soil 2 Soil 3 Marine 1 Marine 2 Marine 3

Total
# Spectra 374 692 454 828 360 409 128 648 132 605 119 403

% Spectra 100% 100% 100% 100% 100% 100%

Unanimous PSM

# Spectraa 126 386 117 693 108 730 54 357 47 759 56 139

% Spectrab 34% 26% 30% 42% 36% 47%

% Decoyc 7% 8% 7% 4% 4% 3%

Majority PSM: # Spectra 42 721 53 157 43 706 13 343 15 053 12 014

WDP & Xcorr % Spectra 11% 12% 12% 10% 11% 10%

Minority PSM:

MVH

% Decoy, Majority 36% 36% 33% 29% 29% 27%

% Decoy, Minority 44% 45% 44% 41% 44% 40%

Majority PSM: # Spectra 25 558 29 713 23 414 8677 8231 7661

WDP & MVH % Spectra 7% 7% 6% 7% 6% 6%

Minority PSM:

Xcorr

% Decoy, Majority 37% 39% 37% 27% 32% 27%

% Decoy, Minority 43% 44% 42% 41% 42% 40%

Majority PSM: # Spectra 20 010 26 478 23 053 5353 7445 4836

MVH & Xcorr % Spectra 5% 6% 6% 4% 6% 4%

Minority PSM:

WDP

% Decoy, Majority 33% 32% 27% 30% 27% 31%

% Decoy, Minority 45% 46% 46% 41% 43% 38%

Discordant PSM

# Spectra 160 017 227 787 161 506 46 918 54 117 38 753

% Spectra 43% 50% 45% 36% 41% 32%

% Decoy, WDP 48% 48% 47% 46% 47% 46%

% Decoy, Xcorr 47% 48% 46% 47% 46% 46%

% Decoy, MVH 47% 47% 47% 48% 47% 47%

aNumber of spectra in a class.
bPercentage of spectra in a class out of all acquired spectra.
cPercentage of decoy PSMs out of all PSMs in a class or a sub-class.
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the training set and the test FDRs estimated using reversed proteins

in the test set. Logistic regression had the lower FDR training bias

than the other classification algorithms, which may reflect less over-

fitting of the training data. Because of the high PSM numbers, the

low FDR training biases, and the short computing time for training,

logistic regression was used in Sipros Ensemble for filtering PSMs.

On average, 77% of the unanimous PSMs, 22% of the majority

PSMs, 7% of the minority PSMs and 4% of the discordant PSMs

passed the filtering (Supplementary Table S3). This indicates that

the filtering algorithm needed to discard many unanimous forward

PSMs to reduce FDRs, but was able to recover small fractions of for-

ward PSMs from the majority/minority and discordant classes.

Furthermore, we tested a secondary filtering using the differences

between the measured and predicted retention times of PSMs. This

was not used in production due to the limited performance gain

(Supplementary Results).

3.3 Performance comparison of Sipros Ensemble with

existing algorithms
Sipros Ensemble was compared with seven different combinations

of existing database searching and filtering algorithms on the six soil

and marine samples (Table 2 and Supplementary Figs S3–S5). Table

2 shows the identifications of PSMs, peptides and proteins filtered at

1% FDR estimated using the reversed proteins in the test set which

was held out from all filtering algorithms. Details on the execution

of these algorithms are described in the Supplementary Methods.

Percolator has been shown to provide excellent performance with

Comet (Park et al., 2008) and MS-GFþ (Granholm et al., 2013).

For comparison, Percolator was also used here to filter the

MyriMatch results and the WDP scoring results from Sipros

Ensemble without Xcorr or MVH. Among the four individual algo-

rithms tested with Percolator, WDP generally provided the best

PSM and peptide identification results, and MS-GFþor Comet gen-

erally provided the best protein identification results. The features

from MyriMatch and WDP were not optimized for Percolator in

this study to the same extent as the previous studies (Granholm

et al., 2013; Park et al., 2008), which focused on combining a spe-

cific database searching algorithm with Percolator. Thus, the per-

formance of MyriMatch and WDP may not represent their best

achievable using Percolator. iProphet from Trans Proteomic Pipeline

(TPP) was used with two combinations of Comet, MyriMatch and

MS-GFþ. The combined search results of these three algorithms

were also filtered using the ensemble filtering algorithm in Sipros

Ensemble without extensive feature optimization.

Across the six metaproteomes, Sipros Ensemble generated more

PSM identifications, more peptide identifications and more protein

identifications than any other database searching and filtering algo-

rithms at 1% FDR. The iProphet filtering with a combination of

Comet, MyriMatch and MS-GFþ searching provided the next best

PSM identification results after Sipros Ensemble. The iProphet

filtering with a combination of Comet, MyriMatch and MS-

GFþ searching or the Percolator filtering with WDP scoring

provided the next best peptide identification results after Sipros

Ensemble. The Percolator filtering or Sipros Ensemble filtering

Table 2. Benchmarking of identification performance using six real-world metaproteomes

Metaproteomes Soil 1 Soil 2 Soil 3 Marine 1 Marine 2 Marine 3

Searcha Filterb # PSM Identifications at PSM FDR 1%c

W P 102 664 95 009 88 686 46 010 36 999 48 232

M P 87 328 74 647 69 213 39 576 26 249 41 465

C P 100 683 92 596 94 842 35 012 32 580 39 923

G P 97 702 94 341 94 373 36 328 33 241 40 220

C&M I 127 582 121 166 121 567 49 262 42 688 52 154

C&M&G I 130 601 124 965 125 293 54 625 48 916 57 347

C&M&G SE-F 96 220 99 579 90 507 42 811 40 282 46 603

SE-S SE-F 136 468 125 297 129 732 56 170 51 438 58 870

Searcha Filterb # Peptide Identifications at Peptide FDR 1%c

W P 34 049 31 233 25 618 28 619 25 868 31 708

M P 27 700 24 236 20 210 23 572 17 935 26 277

C P 30 165 27 165 23 680 21 726 22 823 26 173

G P 30 465 28 693 24 100 21 603 22 252 25 338

C&M I 35 303 32 594 27 557 27 154 27 403 30 948

C&M&G I 36 325 33 744 28 677 27 412 27 990 31 244

C&M&G SE-F 30 201 29 179 23 574 26 158 26 597 29 706

SE-S SE-F 43 914 40 287 35 013 34 576 35 479 38 451

Searcha Filterb # Protein Identifications at Protein FDR 1%c

W P 6660 5996 4636 7257 6173 7982

M P 7142 6546 5654 6536 5892 7101

C P 7752 7020 6517 6818 7532 8211

G P 8180 7138 6623 7086 7360 8067

C&M I 7103 6738 5929 6107 6622 7019

C&M&G I 7067 6800 5810 6129 6571 7198

C&M&G SE-F 7966 7404 6746 6717 7302 7702

SE-S SE-F 8868 7456 6979 8129 8430 9234

aSearching algorithms: W, WDP; M, Myrimatch; C, Comet; G, MS-GFþ; SE-S, Sipros Ensemble Searching.
bFiltering algorithms: P, Percolator; I, iProphet; SE-F, Sipros Ensemble Filtering.
cThe best entry was underlined and the second best was in bold.
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coupled with Comet, MS-GFþ and WDP provided the next best pro-

tein identification results after Sipros Ensemble. The improvement of

Sipros Ensemble over the best non-Sipros algorithms was 25% more

peptides and 13% more proteins at 1% FDR, for the marine samples

on average, and 21% more peptide identifications and 6% more pro-

tein identifications at 1% FDR for the soil samples on average.

These algorithms were also compared by searching an E.coli pro-

teomics dataset against three protein databases (Table 3). MS-GFþ/

Percolator identified the most proteins from this dataset at 1% pro-

tein FDR using the full E.coli database containing concatenated

forward-reversed proteins. The target E.coli proteins were then ran-

domly sub-sampled at 50% and concatenated with the full target

soil database from above and a 10% randomly sub-sampled target

soil database. All the target proteins were reversed and added to the

databases as decoys for the filtering algorithms. The two synthetic

databases simulated the challenges of missing true proteins and

overwhelming false proteins in metaproteomics databases.

Approximately 35% of spectra in this E.coli MS/MS dataset were

identified using the two synthetic databases, which was comparable

to the spectrum identification rates in the soil and marine datasets.

In this E.coli proteome sample, only E.coli proteins should be true

identifications and all non-E.coli proteins with no shared peptides

with any E.coli protein should be false identifications. This enabled

filtering the database searching results based on the percentage of

non-E.coli proteins. Sipros Ensemble identified the most E.coli pro-

teins at the 5% non-E.coli protein rate for both synthetic databases

(Table 3). All algorithms identified fewer proteins from the larger

synthetic database than the smaller one. Protein FDRs were also esti-

mated as shown in the parentheses in Table 3 using the test reversed

proteins in the two synthetic databases. Some benchmarked algo-

rithms filtered out all test reversed proteins and reached the 0%

lower bound for FDR estimation, but still falsely identified 5% non-

E.coli proteins. But Sipros Ensemble and WDP/Percolator retained

substantial numbers of reversed proteins in line with the presence of

5% non-E.coli proteins, which indicated their lower training biases

and lower FDR estimation errors based on reversed proteins.

To search large databases in complex metaproteomics, a compu-

tationally more efficient algorithm should use less CPU time and

require a lower amount of physical memory on a computer to

accommodate its peak memory footprint during execution. The

wall-clock time and the peak memory usage of database searching

were compared between these algorithms using the fifth LC-MS/MS

cycle out of the 22-cycle MudPIT analysis of soil 1 on a computer

with a 16-core Xeon CPU and 128 GB of memory (Fig. 1A). Sipros

Ensemble used more wall-clock time, but less peak memory usage,

than Comet. Sipros Ensemble used more peak memory, but less

wall-clock time, than MyriMatch. MS-GFþused much more wall-

clock time and more peak memory usage than Comet, MyriMatch

and Sipros Ensemble. The combination of multiple database

searches by iProphet would require the sum of their wall-clock times

and the maximum of their peak memory usage. The integration of

three scoring functions in Sipros Ensemble used a small fraction of

wall-clock time and peak memory usage needed for combining indi-

vidual database searching algorithms (Fig. 1A).

The computational architecture of Sipros Ensemble was designed

to scale up in supercomputers for PTM identifications (Li et al.,

2014, 2017), amino acid mutation detections (Hyatt and Pan, 2012)

and proteomic stable isotope probing (Bryson et al., 2016; Marlow

et al., 2016; Pan et al., 2011). Scalability of Sipros Ensemble was

tested on the Thunder HPC system for the soil 1 metaproteome.

Sipros Ensemble achieved close to linear speed-up of its computation

using up to 64 compute nodes and 2304 CPU cores (Fig. 1B).

4 Discussion

Many existing database searching algorithms incorporate multiple

scoring functions. For example, SEQUEST uses the Xcorr scoring

function and a preliminary scoring function. X! Tandem generates

hyperscore, bscore, yscore and E-value (Fenyo and Beavis, 2003).

MyriMatch includes the MVH and mzFidelity score functions.

Comet generates Xcorr and expectation values. However, a data-

base searching algorithm typically calculates multiple scores based

on similar spectrum preprocessing, fragmentation prediction and

scoring statistical models, which results in a high degree of correla-

tion among these scoring functions. To reduce such correlation, an

effective approach demonstrated in iProphet (Shteynberg et al.,

2011), PepArML (Edwards et al., 2009), MSblender (Kwon et al.,

2011) and IPP (Park et al., 2016) was to perform database searching

using multiple independent database searching algorithms and com-

bine the results for filtering. However, it is computationally expensive

and operationally difficult to search the same dataset with multiple

database searching algorithms. Thus, most proteomics studies have

been done using only a single database searching algorithm.

In this study, MVH from MyriMatch, Xcorr from Comet and

WDP from the original Sipros were integrated into a single database

searching algorithm. MyriMatch, Comet and Sipros were used here,

Table 3. Benchmarking of identification performance using E.coli and synthetic metaproteome databases

Databases 100% E.coli 50% E.coliþ 10% soil 50% E.coliþ 100% soil

Searcha Filterb 1% FDRc 5% Non-E.coli proteinsd,e

W P 2062 955 (0.9%) 888 (0.7%)

M P 2153 972 (0.0%) 776 (0.0%)

C P 2194 966 (0.0%) 836 (0.0%)

G P 2197 974 (0.0%) 803 (0.0%)

C&M I 2170 915 (0.3%) 807 (0.0%)

C&M&G I 2182 917 (0.3%) 815 (0.0%)

C&M&G SE-F 2158 854 (0.0%) 726 (0.0%)

SE-S SE-F 2137 1045 (0.9%) 920 (0.3%)

aSearching algorithms: W, WDP; M, Myrimatch; C, Comet; G, MS-GFþ; SE-S, Sipros Ensemble Searching.
bFiltering algorithms: P, Percolator; I, iProphet; SE-F, Sipros Ensemble Filtering.
cNumber of identified E.coli proteins filtered at 1% protein FDR estimated by target-decoy searches.
dNumber of identified E.coli proteins (and their FDRs estimated by target-decoy searches in parenthesis) filtered at 5% non-E.coli proteins.
eThe best entry was underlined and the second best was in bold.
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because of their excellent performance, compatible C/Cþþ code

bases, and open-source software licenses. Their scoring results were

highly diverse (Table 1). The added computational cost was mini-

mized using a two-tiered scoring strategy pioneered in SEQUEST

(Eng et al., 1994) by first scoring all peptide candidates of a spec-

trum by the CPU- and memory-efficient MVH and then scoring only

the top candidates with the other two scoring functions. To the best

of our knowledge, this is the first database searching algorithm that

has integrated such diverse scoring functions. This showcases the

value of collaborative open-source software development.

In previous studies, the parameterization of a statistical model or

the training of a machine learning algorithm for PSM filtering was

complicated by the fact that, while decoy PSMs must be false PSMs,

target PSMs may be true or false PSMs. To solve this problem,

Percolator iteratively trains and applies a Support Vector Machine

(SVM) classification algorithm, and iProphet also iteratively con-

structs statistical models using an expectation-maximization algo-

rithm. Here, we observed that the unanimous PSMs supported by all

three scoring functions have a very high probability of being true

PSMs and, therefore, can be directly used as positive training data.

This allowed the formulation of PSM filtering as a straightforward

supervised classification problem. Logistic regression was found to

provide better performance than other machine learning algorithms

for this problem (Supplementary Table S2).

Sipros Ensemble was compared with several combinations of

established database searching and filtering algorithms. Sipros

Ensemble can be used in general for shotgun proteomics of single

organisms and microbial communities. It achieved substantial

improvements over existing algorithms for complex metaproteomics

as shown here with six real-world metaproteomes (Table 2) and two

synthetic metaproteomic databases (Table 3). The higher identifica-

tion performance of Sipros Ensemble can be attributed to its ability

to handle the challenges of missing true proteins and overwhelming

false proteins in complex metaproteomics databases. Sipros

Ensemble was also computationally efficient and scaled well on

high-performance computers (Fig. 1) to reduce the computing time

needed for searching large protein databases in metaproteomics.
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