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The Acute Brain Response to Levodopa
Heralds Dyskinesias in Parkinson Disease

Damian M. Herz, MD,1,2 Brian N. Haagensen, MD,1 Mark S. Christensen, PhD,1,3,4

Kristoffer H. Madsen, PhD,1,5 James B. Rowe, MD, PhD,6,7,8

Annemette L�kkegaard, MD, PhD,2 and Hartwig R. Siebner, MD1,2,9

Objective: In Parkinson disease (PD), long-term treatment with the dopamine precursor levodopa gradually induces
involuntary “dyskinesia” movements. The neural mechanisms underlying the emergence of levodopa-induced dyski-
nesias in vivo are still poorly understood. Here, we applied functional magnetic resonance imaging (fMRI) to map the
emergence of peak-of-dose dyskinesias in patients with PD.
Methods: Thirteen PD patients with dyskinesias and 13 PD patients without dyskinesias received 200mg fast-acting oral
levodopa following prolonged withdrawal from their normal dopaminergic medication. Immediately before and after levo-
dopa intake, we performed fMRI, while patients produced a mouse click with the right or left hand or no action (No-Go)
contingent on 3 arbitrary cues. The scan was continued for 45 minutes after levodopa intake or until dyskinesias emerged.
Results: During No-Go trials, PD patients who would later develop dyskinesias showed an abnormal gradual increase
of activity in the presupplementary motor area (preSMA) and the bilateral putamen. This hyperactivity emerged dur-
ing the first 20 minutes after levodopa intake. At the individual level, the excessive No-Go activity in the predyskine-
sia period predicted whether an individual patient would subsequently develop dyskinesias (p < 0.001) as well as
severity of their day-to-day symptomatic dyskinesias (p < 0.001).
Interpretation: PD patients with dyskinesias display an immediate hypersensitivity of preSMA and putamen to levo-
dopa, which heralds the failure of neural networks to suppress involuntary dyskinetic movements.
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L-dopa is the most effective drug for the treatment of

Parkinson disease (PD).1 However, long-term L-dopa

treatment is complicated by the gradual development of

involuntary movements referred to as L-dopa–induced

dyskinesias.2,3 Progressive neurodegeneration of dopami-

nergic neurons leads to increased metabolism of L-dopa

by nondopaminergic neurons, which can release dopa-

mine into the striatal synaptic cleft, but lack a controlled

reuptake mechanism.4 Alternatively, increased dopamine

turnover has been proposed as a compensatory mecha-

nism that allows preserved dopaminergic levels in early

stages of PD.5,6 Both mechanisms result in nonphysio-

logic pulsatile stimulation of the putamen, which is

thought to induce dyskinesias.

Recent studies have evidenced a substantial progress

in understanding the cellular and molecular mechanisms

underlying dyskinesias.7,8 Although these studies have shed

important insights into the pathophysiology of dyskinesias,

they tell little about how synaptic and cellular changes

translate to in vivo dysfunction and behavior in patients

affected by PD. Neuroimaging studies of dyskinesias in

humans are sparse, because dyskinesias cause movement

View this article online at wileyonlinelibrary.com. DOI: 10.1002/ana.24138

Received Jan 10, 2014, and in revised form Mar 8, 2014. Accepted for publication Mar 13, 2014.

Address correspondence to Dr Siebner, Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research,

Copenhagen University Hospital Hvidovre, Kettegaard All�e 30, 2650 Hvidovre, Denmark. E-mail: h.siebner@drcmr.dk

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribu-

tion in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made

From the 1Danish Research Center for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospi-

tal Hvidovre, Hvidovre, Denmark; 2Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; 3Department of

Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark; 4Department of Neuroscience and Pharmacology, University of

Copenhagen, Copenhagen, Denmark; 5DTU Informatics, Technical University of Denmark, Lyngby, Denmark; 6Department of Clinical Neurosciences,

Cambridge University, Cambridge, United Kingdom; 7Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom;
8Behavioural and Clinical Neuroscience Institute, Cambridge, United Kingdom; 9Department of Clinical Medicine, Faculty of Health and Medical

Sciences, University of Copenhagen, Copenhagen, Denmark.

VC 2014 American Neurological Association 829



artifacts impairing data quality. In the current study, we

adopted a novel strategy to bypass this problem. We per-

formed functional magnetic resonance imaging (fMRI) in

the time window between the intake of 200mg fast-acting

soluble L-dopa and the onset of dyskinesias to avoid the

presence of dyskinesias during fMRI.

A previous fMRI study has demonstrated abnormal

neural activity in prefrontal areas in PD patients with dyski-

nesias after withdrawal of medication.9 However, it remains

unclear how intake of L-dopa modulates neural activity in

patients with dyskinesias. Based on previous studies in ani-

mals10,11 and humans,6,12 we hypothesized that PD patients

with dyskinesias would express abnormal dopaminergic

modulation of the putamen and cortical areas. We further

reasoned that this aberrant modulation of putaminal and

cortical activity would emerge shortly after exposure to L-

dopa13,14 and predict the later manifestation of dyskinesias.

Subjects and Methods

Participants
We enrolled 36 patients fulfilling a clinical diagnosis of PD15

with predominant akinetic-rigid symptoms. Patients had no

dementia, major psychiatric illness, pacemaker, or any contrain-

dication regarding MRI. They did not receive any sedatives or

serotonergic medication in their current treatment.

Ten of the 36 patients were not able to undergo the MRI

scan because they did not tolerate the withdrawal of dopaminergic

medication (n 5 8) or developed claustrophobia in the scanner (n

5 2). Thirteen of the remaining 26 PD patients had clinically

diagnosed choreiform peak-of-dose dyskinesias without off-

dyskinesias, or biphasic dyskinesias (L-dopa–induced dyskinesia

[LID] group), whereas the other 13 patients had no dyskinesias

(No-LID group). The presence and severity of dyskinesias were

quantified using the Unified Dyskinesia Rating Scale (UDysRS).

Dose of dopaminergic medication was higher in LID patients com-

pared to No-LID patients. However, the groups were closely

matched with regard to disease duration and severity off and on

medication. All clinical characteristics are listed in the Table. We

also studied 13 age-matched healthy individuals but without

administration of L-dopa. In accordance with the declaration of

Helsinki, all participants gave their informed consent before enter-

ing the study, which was approved by the ethics committee of the

Capital Region of Denmark (study No. H-2-2010-146).

Experimental Procedures
All PD patients underwent the same experimental procedures

(Fig 1A). A first set of MRI measurements was acquired in a

TABLE 1. Overview of Clinical and Demographic Characteristics

Variable LID, n 5 13 No-LID, n 5 13 Control, n 5 13 puncorrected

Gender 7 F 4 F 4 F >0.5

Handedness 11 R 12 R 12 R >0.5

Age, yr 68.9 6 10.4 67.5 6 6.5 68.4 6 4.9 >0.1

Education, yr 14.9 6 3.6 13.7 6 3.4 15.8 6 2.9 >0.1

MMSE 29.2 6 1 29.6 6 0.9 29.7 6 0.6 >0.5

MoCA 28.3 6 1.4 28.6 6 1 28.9 6 1.7 >0.5

BIS-11 57.4 6 7.5 55.5 6 7.6 53 6 6.6 >0.5

Disease duration, yr 7.5 6 4.2 6.1 6 3.3 — >0.1

Medicine, LEDD 974.2 6 415.9 672.3 6 256.7 — 0.036a

Medicine, agonists 10 12 >0.5

UPDRS-III-OFF 32.5 6 10.5 32.9 6 6.8 — >0.5

UPDRS-III-ON 20 6 7.5 21.2 6 5.1 — >0.5

D UPDRS-III 12.5 6 4.9 11.6 6 4 — >0.5

UDysRS, objective 15.46 6 8.7 — — —

Gender and handedness were compared using chi-square tests. Chi-square test was also used to compare whether dopamine ago-
nists were more frequently added to L-dopa therapy in LID (n 5 10/13) compared to No-LID patients (n 5 12/13). Analysis of
variance was used for comparison of age, education, MMSE, MoCA, and BIS-11. Disease duration, LEDD, and UPDRS-III were
compared using independent samples t tests. Handedness was assessed using the Edinburgh Handedness Inventory.
aIndicates a significant difference in LEDD between the LID and No-LID group. After dividing LEDD by body weight, the group
difference remained significant (p 5 0.002).
BIS-11 5 Barratt Impulsiveness Scale; F 5 female; LEDD 5 L-dopa–equivalent daily dose; LID 5 L-dopa–induced dyskinesia;
MMSE 5 Mini-Mental State Examination; MoCA 5 Montreal Cognitive Assessment; R 5 right; UDysRS 5 Unified Dyskinesia
Rating Scale; UPDRS 5 Unified Parkinson Disease Rating Scale.
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dopamine-deprived state after withdrawal of all dopaminergic

medication for a period corresponding to 6 half-lives of the

respective drug and at least 12 hours. In patients receiving

dopamine agonists, this medication had to be stopped several

days before the experiment. In these cases, we temporarily

increased dosage of L-dopa to maintain a similar level of L-

dopa–equivalent daily dose (LEDD) until 12 hours before the

fMRI experiment. Once OFF-scans were completed, patients

received 200mg of fast-acting soluble L-dopa 1 50mg bensera-

zide (Madopar Quick; La Roche, Basel, Switzerland), and a

second and third set of fMRI measurements were acquired after

L-dopa intake (post–L-dopa scans). Approximately 10 minutes

elapsed between application of L-dopa and initiation of the first

post–L-dopa scan.

In each session, a motor task (see below), which lasted 9

minutes, was followed by a 5-minute pause to avoid fatigue. A

physician (D.M.H.) was always present inside the scanner room

during MRI acquisition to visually observe whether dyskinesias

emerged after L-dopa intake. As soon as patients developed dys-

kinesias, MRI measurements were stopped.

Prior to the OFF-fMRI scans, we acquired T1-weighted

structural brain scans. We additionally recorded arterial spin

labeled (ASL) MRI to rule out putative differences in cerebral

perfusion underlying L-dopa–induced changes in the blood

oxygenation level–dependent (BOLD) signal measured in

fMRI.16 ASL scans were performed after acquisition of the T1-

weighted MRI and immediately after the post–L-dopa fMRI

scans (see Fig 1A). Healthy participants underwent the same set

of MRI scans as PD patients, but no L-dopa was given and the

set of MRI measurements was only repeated twice. The ration-

ale of including these healthy participants was to define a physi-

ological measure of normal task performance and task-related

neural activity in the OFF session.

Experimental Task
During fMRI, participants continuously performed a stimulus–

response mapping task (see Fig 1B). Participants pressed the

button of an MRI-compatible computer mouse with the index

finger of their right (Right condition) or left hand (Left condi-

tion), or refrained from any response (No-Go condition),

depending on arbitrary cues, which were presented pseudoran-

domly with equal probability.

Reaction times (RTs) and accuracy rates were analyzed to

test for between-group differences in task performance. Using

RT as dependent variable, we computed a 3 3 3 3 2 analysis

of variance (ANOVA) with the factors group (LID, No-LID,

control), run, and task laterality (left, right) after testing equal-

ity of distribution of error variance (p 5 0.902, Levene test).

Accuracy rates were compared using a nonparametric Kruskal–

Wallis test, because Levene test showed that distribution of

error variance was not equally distributed (p < 0.001).

Between-group differences in accuracy were assessed for the 3

conditions (Left, Right, No-Go) and sessions. All group data

are given in mean 6 standard deviation (SD), and the signifi-

cance threshold was set to p < 0.05 after Bonferroni correction.

MRI
We used a 3T Verio scanner (Siemens, Erlangen, Germany)

with a 32-channel head coil. MRI data were preprocessed and

analyzed using statistical parametric mapping software

(SPM8.4667; Wellcome Trust Centre for Neuroimaging, Lon-

don, UK).

A T1-weighted structural image of the brain was acquired

using a magnetization prepared rapid acquisition gradient echo

sequence (field of view 5 230mm, slice thickness 5 0.9mm,

repetition time [TR] 5 1,900 milliseconds, echo time [TE] 5

2.32 milliseconds, flip angle 5 9�). T1-weighted images were

segmented to create individual gray matter, white matter, and

cerebrospinal fluid masks for ASL analysis. ASL was used to

map regional cerebral perfusion before and after L-dopa

FIGURE 1: Experimental Procedures. (A) Timeline of experi-
mental procedures. A first set of magnetic resonance imag-
ing (MRI) scans was obtained after withdrawal of
dopaminergic medication (OFF-session). After initial struc-
tural and arterial spin labeling (ASL) scans, patients per-
formed a motor task during functional MRI (fMRI; see
below). The task-related fMRI run lasted approximately 9
minutes, followed by a 5-minute pause. Patients then
received 200mg fast-acting soluble oral L-dopa, and the
same sequence of fMRI scans was repeated twice after L-
dopa intake (post–L-dopa session), followed by a second
ASL scan. If dopaminergic levels reached the threshold for
triggering dyskinesias, fMRI measurements were immedi-
ately discontinued. At least 1 post–L-dopa fMRI scan after
intake of L-dopa could be acquired for all patients before
emergence of dyskinesias. (B) Stimulus–response mapping
task. The motor task consisted of 3 different stimuli indicat-
ing that participants should press a button with their left
index finger or right index finger, or refrain from any motor
response (No-Go). Stimuli were presented for 750 millisec-
onds followed by a central fixation cross with a variable
duration between 2,250 and 3,250 milliseconds, resulting in
a mean inter-trial interval of 3,500 milliseconds. Stimuli
were pseudorandomly generated using PsychoPy (www.psy-
chopy.org) with equal probability of each stimulus. Each ses-
sion included 50 Left, 50 Right, and 50 No-Go trials and
lasted �9 minutes. Associations between stimulus and
response were counterbalanced across participants and
groups (L-dopa–induced dyskinesia [LID], No-LID, Control),
but kept constant for each participant.
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intake.16 ASL involved FAIR-Q2TIPS17 sequences with 3D-

GRASE18 single-shot readout with background suppression

(TR 5 3,000 milliseconds, TE 5 12.6 milliseconds, inversion

time [TI] 5 200, 400, 600, 800, 1,000, 1,200, 1,400, 1,600,

1,800, 2,000, 2,200, and 2,400 milliseconds, 1 average per TI,

voxel size 5 3.6 3 3.6 3 3.0mm3, vessel suppression with

bipolar gradients, b 5 10 s=mm2, 36 slices, whole brain cover-

age). We used Fast ASL and BOLD Bayesian Estimation Routine

(FABBER) to analyze ASL-based perfusion measurements.19

Task-related BOLD signal changes were mapped using an

echo planar imaging sequence (TR 5 1,850 milliseconds, TE

5 26 milliseconds, flip angle 5 75�). A single fMRI volume

consisted of 36 slices covering the entire brain (field of view 5

192mm, slice thickness 5 3.5mm, slice spacing 5 0.2mm).

Preprocessing comprised realignment, normalization, and spatial

smoothing (full width at half-maximum 5 8mm), and high-

pass filtering (1=128Hz).

Univariate Statistical Analysis of fMRI data
Analysis of task-related BOLD signal changes was performed

using the general linear model. The first-level model specified 6

regressors of interest for each session, comprising Right, Left,

and No-Go and their first-order temporal derivative. The influ-

ence of head movement artifacts was modeled by including 24

nuisance regressors derived from realignment.20 We also

included recordings of respiration and cardiac pulsation as nui-

sance covariates.21

We performed independent samples t tests to assess

between-group differences in task-related activity at the group

level. Separate t tests were computed for Right, Left, and No-

Go after withdrawal of medication (OFF-scan) to test for dif-

ferences in task-related activation at baseline.

We expected a gradual change in task-related neural activ-

ity following L-dopa intake. Therefore, using the contrast maps

reflecting the temporal derivative of each regressor (Left, Right,

NoGo), we compared L-dopa–induced linear changes in task-

related activity in LID and No-LID patients. Here, we included

the first post–L-dopa scan, which was available for all patients

(see Results). This test enabled us to identify rapidly emerging

changes in task-related activity before the clinical manifestation

of dyskinesias.

All fMRI results were thresholded at a cluster-corrected

threshold of p < 0.05 using the familywise error correction

method. Given our a priori hypothesis that PD22 and dyskine-

sias23 would be associated with abnormal activity of the puta-

men, we defined the bilateral dorsocaudal putamen as a region

of interest (ROI) and applied small volume correction (SVC)

using a sphere 10mm in radius on the Montreal Neurologic

Institute coordinates 628, 2, 2 (x, y, z).24

Post Hoc Analyses
Using fMRI data from the first post–L-dopa scan, we per-

formed a post hoc regression analysis to assess whether the

gradually increasing neural response to L-dopa correlated with

severity of the day-to-day symptomatic dyskinesias as reflected

by the objective UDysRS scores. In each patient, we extracted

the first eigenvariate of regions, which displayed abnormal

modulation by L-dopa in the LID group (ie, the presupplemen-

tary motor area [preSMA] and bilateral putamen, see Results).

We then entered the individual values into a linear regression

model with severity of dyskinesias as dependent variable using

SPSS v20 (IBM, Armonk, NY). The same regression analysis

was repeated using the individual Unified Parkinson Disease

Rating Scale (UPDRS)-III as dependent variable. Results were

thresholded at p < 0.05 after Bonferroni correction.

We used the same regional eigenvariates as in the regres-

sion analysis to predict whether an individual PD patient was

diagnosed with LID. We entered the parameters of each region

(n 5 3) and patient (n 5 26) as predictors in a binary classifier

to see whether the parameters could classify a given patient as

dyskinetic or nondyskinetic. For classification analysis, we

applied a linear support vector machine (SVM; c-value 5 1)25

implemented in LIBSVM v3.17 as described previously.26 We

used leave-one-out cross-validation to assess classification accu-

racy, the true-positive rate (sensitivity), and false-positive rate

(1 2 specificity) and permutation tests (10,000 permutations)

to derive the corresponding probability value.

Additional post hoc analyses included voxelwise compari-

sons of the mean BOLD signal between groups to test whether

differences in task-related BOLD signal changes could be

explained by regional reduction in mean BOLD signal, for

instance due to regional iron accumulation.27 Because L-dopa

might induce regional changes in cerebral perfusion, we submit-

ted the ASL data to an ANOVA to test for putative interactions

between group (LID and No-LID) and state of medication

(OFF and post–L-dopa). These post hoc analyses had only one

purpose, namely to exclude that between-group differences in

task-related BOLD activity were associated with regional differ-

ences in mean BOLD signal or regional perfusion. Therefore,

we applied SVC using spherical ROIs with 10mm radius. ROIs

were centered on the peaks of the activation differences as

revealed by fMRI.

Results

Dyskinetic Effect of L-Dopa
The intake of 200mg L-dopa provoked mild to severe

peak-of-dose dyskinesias in 10 of 13 LID patients. Dys-

kinesias first developed in the foot on the side that was

most affected by PD. Four LID patients developed dyski-

nesias after the first post–L-dopa scan �20 minutes after

L-dopa intake. Patients with severe dyskinesias developed

dyskinesias more rapidly than patients with mild dyskine-

sias (rho 5 20.692, p 5 0.009, Pearson correlation).

There was no correlation between dyskinesia severity and

LEDD (p > 0.1). Three of the 13 LID patients did not

develop dyskinesias during the fMRI experiment, but

showed mild dyskinesias after the fMRI experiment.

These patients had the lowest objective UDysRS scores

(6 points) in the LID group and received average levels

ANNALS of Neurology
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of LEDD (mean 5 883mg). None of the patients in the

No-LID group developed dyskinesias.

Task Performance
Mean RT during the task was 667 6 72 (SD) millisec-

onds in the control group, 684 6 92 milliseconds in the

No-LID group, and 673 6 103 milliseconds in the LID

group. Error rates were <4% in all 3 groups and fMRI

runs regardless of response condition. There was no dif-

ference in RT between group (p 5 0.352), session (p 5

0.204), or response condition (p 5 0.222), and no sig-

nificant interactions among the 3 factors. Likewise, we

found no differences in accuracy rates between groups in

any task or session (lowest p 5 0.33).

Task-Related Activity in the OFF-Medication
State
PD patients without dyskinesias showed decreased activa-

tion of the left posterior putamen during right button

presses relative to healthy controls (peak at x, y, z 5

234, 22, 24; Zmax 5 3.4), whereas the magnitude of

activation in LID patients was in-between these two

groups (Fig 2). This difference is unlikely to be caused

by differences in lateralization of PD symptoms, with 5

of 13 LID patients and 7 of 13 No-LID patients present-

ing with right-lateralized symptoms. The mean BOLD

signal intensity in the left putamen did not differ among

groups. For left button presses and the No-Go condition,

there were no significant differences in task-related activ-

ity between groups in the OFF session.

Modulation of Task-Related Neural Activity
by L-Dopa
The first post–L-dopa fMRI scan yielded differences in

the responsiveness to L-dopa between LID and No-LID

patients (Fig 3A). Compared to the No-LID group, the

LID group displayed an increased linear enhancement of

task-related activity in the preSMA (extending to both

hemispheres; peak at x, y, z 5 24, 8, 58; Zmax 5 3.41),

left putamen (peak at x, y, z 5 228, 8, 26; Zmax 5

3.50), and right putamen (peak at x, y, z 5 34, 0, 4;

Zmax 5 3.05), which gradually emerged during the first

20 minutes after L-dopa intake.

The increased activity was only found in the No-

Go condition, where patients had to actively suppress a

motor response. By contrast, left or right button presses

were not associated with any between-group differences

in changes of task-related activity. ASL measurements did

not demonstrate significant differences in regional perfu-

sion in bilateral putamen and preSMA between the LID

and No-LID groups, indicating that the observed

changes in neural activity were not induced by perfusion

differences.

The L-dopa–induced linear increase of No-Go

activity in preSMA was a strong predictor of LID severity

(R2 5 0.70, adjusted R2 5 0.67, b 5 0.84, p < 0.001),

explaining �70% of the variance of individual dyskinesia

scores (see Fig 3B). The L-dopa–induced increase in pre-

SMA activation did not predict differences in disease

severity as indexed by UPDRS-III-scores (p 5 0.83; see

Fig 3C). In the putamen, L-dopa–induced linear increase

in No-Go activity did not predict individual dyskinesia

scores or UPDRS-III scores (all p > 0.25).

SVM-based classification revealed that the abnormal

L-dopa–induced response in preSMA and putamen dur-

ing No-Go trials significantly predicted whether patients

had a diagnosis of LID (accuracy 5 80.8%, sensitivity 5

FIGURE 2: Differences in neural activation between groups
in the OFF session. Parkinson disease patients without dys-
kinesias showed decreased activation in the left posterior
putamen compared to healthy controls during right button
presses. The effect sizes of the mean blood oxygenation
level–dependent signal change are shown in the lower
panel, demonstrating that magnitude of activation in L-
dopa–induced dyskinesia (LID) patients was in-between
patients without dyskinesias and healthy controls. L 5 left;
R 5 right. The asterisk indicates a statistical difference of
the mean at P < 0.05.
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69.2%, specificity 5 92.3%, area under the curve

[AUC] 5 0.87, p < 0.001; see Fig 3D). Interestingly, all

3 LID patients who did not develop dyskinesias during

the 3 post–L-dopa fMRI scans were labeled as No-LID

patients by the classifier. Considering only LID patients

who developed dyskinesias during the fMRI experiment

yielded a sensitivity of 90% and a specificity of 92.3%

(AUC 5 0.96, p < 0.001; see Fig 3E), corresponding to

1 false-positive and 1 false-negative prediction.

Head Movements and Physiological Noise
Overall, <0.1% of all fMRI volumes were affected by

head movements >1mm. Mean pulse rate (6SD) was 74

6 12=min and mean respiration frequency was 16 6

4=min. Separate ANOVAs yielded no differences between

groups and sessions with respect to head movements (ie,

relative shifts >1mm between consecutive scans), pulse

rate, or respiration frequency.

Discussion

Using the BOLD signal as index of regional neural activ-

ity, we show for the first time that exposure to L-dopa

leads to an excessive increase in activation of the puta-

men and preSMA in PD patients with peak-of-dose dys-

kinesias. Hyperactivity of the putamen and pre-SMA in

the predyskinesia period was only observed in the behav-

ioral context of response inhibition and was highly pre-

dictive of emergence and day-to-day severity of

dyskinesias.

Within the basal ganglia, excessive activation in PD

patients with dyskinesias was restricted to the bilateral

putamen. This part of the basal ganglia is most strongly

affected by dopaminergic denervation in PD28 and is

thought to play a central role in the pathophysiology of

dyskinesias.23 Hypersensitivity of striatal medium spiny

neurons to pulsatile dopamine receptor stimulation dur-

ing task-related corticostriatal activation of glutamate

receptors has been identified as a key alteration in animal

models of LID.8,23 Such a mechanism is in good agree-

ment with our observation that the putamen shows an

abnormal response to dopamine after prolonged dopami-

nergic withdrawal only in LID patients, but not in

patients without dyskinesias. Furthermore, our findings

are in accordance with previous raclopride positron emis-

sion tomography studies revealing that patients with dys-

kinesias display larger increases in striatal synaptic

dopamine levels after L-dopa administration.29,30

In the present study, putaminal hyperactivity

emerged rapidly within the first 20 minutes after L-dopa

intake. This predyskinesia response indicates that

FIGURE 3: Abnormal modulation of neural activity following L-dopa intake in L-dopa–induced dyskinesia (LID) patients. (A)
Analysis of time modulation of No-Go after L-dopa intake (first post–L-dopa scan) showed a significantly stronger increase in
activation of presupplementary motor area (preSMA) and bilateral putamen in LID patients compared to patients without dys-
kinesias. This was not observed during right or left button presses. Activations are shown in coronal, sagittal, and axial orienta-
tion. L 5 left; lPut 5 left putamen; R 5 right; rPut 5 right putamen. (B) Regression analysis showed that dopaminergic
modulation of preSMA activity during No-Go was a strong predictor of severity of emerging dyskinesia (R2 5 0.701, p <
0.001). (C) Dopaminergic modulation of preSMA activity did not predict severity of Parkinson symptoms (Unified Parkinson Dis-
ease Rating Scale-III scores; p 5 0.574). (D) The linear classifier significantly predicted whether an individual Parkinson disease
patient had a diagnose of LID (accuracy 5 80.8%, sensitivity 5 69.2%, specificity 5 92.3%, area under the curve [AUC] 5 0.87,
p < 0.001). (E) Three of 13 LID patients did not develop dyskinesias during the scan. Repeating the classifier for the LID
patients who developed dyskinesias during the scan yielded 90% sensitivity and 92.3% specificity (AUC 5 0.96, p < 0.001).
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abnormal dopaminergic stimulation is already present before

the threshold for dyskinesias has been reached and demon-

strates that excessive activity is not simply a consequence of

involuntary movements, which could be the case when com-

paring a dyskinetic with a nondyskinetic state.12,31

In the LID group, the putamen only became over-

active in a context where subjects had to block automatic

response tendencies (No-Go). Current models postulate

that the basal ganglia play a key role in motor control.32,33

The neural architecture of loops connecting the cortex and

basal ganglia allow rapid inhibition and release of motor

programs via the direct, indirect, and hyperdirect path-

ways.33,34 Importantly, these pathways are differentially

modulated by dopamine. Striatal dopamine release induces

movement-facilitating Go feedback via D1-type dopami-

nergic receptors and inhibitory No-Go feedback via D2-

type receptors.23 In PD, decreased dopamine release is

thought to impair movement facilitation, resulting in bra-

dykinesia. Conversely, the observed overactivity of the

putamen in a No-Go context in PD patients with dyski-

nesias might reflect an unphysiological facilitation or

impaired inhibition of motor programs resulting in aber-

rant activity in interconnected cortical areas.

At the cortical level, the preSMA was the only area

showing increased responsiveness to L-dopa in the LID

group. Moreover, the L-dopa–induced increase in No-Go

activity in preSMA, but not in putamen, predicted indi-

vidual severity of dyskinesias. Interestingly, activation of

preSMA has been linked to internally generated move-

ments and the intention to act,35,36 including the genera-

tion of involuntary actions.37 The connectivity of this

region to motor regions is abnormal in PD38 and modu-

lated by dopamine.39 Furthermore, preSMA is involved

in decreasing motor threshold during the speed–accuracy

tradeoff.40 The observed overactivity of preSMA might

therefore constitute an aberrant striatal feedback signal

that causes an abnormal induction of internally generated

movements and hereby contributes to the emergence of

dyskinesias.

Previous studies using transcranial magnetic stimu-

lation (TMS) have shown that interrupting function of

the caudal SMA alleviates dyskinesias, but only for a lim-

ited duration.41,42 The present results raise the question

whether the results of TMS might be better if TMS

directly targeted the more rostrally located preSMA.

In conclusion, we used a novel fMRI approach to

assess the dynamic response of neural regions to a stand-

ard dose of fast-acting soluble L-dopa. We demonstrate

that a rapidly emerging hypersensitivity of putamen and

preSMA in the context of movement suppression can be

used to predict the onset and severity of dyskinesias in

individual PD patients.
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