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Abstract: Non-destructive rail testing and evaluation based on guided waves need accurate
information about the mode propagation characteristics, which can be obtained numerically with the
exact material properties of the rails. However, for rails in service, it is difficult to accurately obtain
their material properties due to temperature fluctuation, material degradation and rail profile changes
caused by wear and grinding. In this study, an inverse method is proposed to identify the material
elastic constants of in-service rails by minimizing the discrepancy between the phase velocities
predicted by a semi-analytical finite element model and those measured using array transducers
attached to the rail. By selecting guided wave modes that are sensitive to moduli but not to rail profile
changes, the proposed method can make stable estimations for worn rails. Numerical experiments
using a three-dimensional finite element model in ABAQUS/Explicit demonstrate that reconstruction
accuracies of 0.36% for Young’s modulus and 0.87% for shear modulus can be achieved.

Keywords: Semi-analytical finite element; Ultrasonic guided waves; Rail; Inverse problem; Material
characterization

1. Introduction

In the process of long-term service, rails will experience deterioration of material properties,
fatigue damage, stress concentration, even excessive wear, breakage and other phenomena, which
seriously threaten the driving safety. Therefore, the monitoring and detection of rail safety status
has always been one of the key points of railway operation and maintenance. Among many testing
parameters, the elastic modulus of rail material is one of the parameters that are often examined in rail
testing. On the one hand, the change in the elastic modulus itself can directly reflect the decline of
rail material and fatigue damage. On the other hand, in many nondestructive testing technologies,
it is necessary to know the elastic modulus to establish the mathematical model of rail and obtain the
calibration coefficients for testing system. For example, ultrasonic-based monitoring and inspection
systems require accurate information regarding wave propagation characteristics, such as wavenumber,
phase and group velocity dispersion curves. For rails in service, the actual material and geometric
properties can significantly affect the propagation characteristics of wave modes in rails [1]. Hence,
this requires evaluating the material elastic properties of the in-service rail for the implementation of
guided wave-based monitoring and inspection system under different conditions of rail wear.

Various methods have been proposed to reconstruct the elastic properties of materials.
Conventional techniques are destructive in nature, e.g., shear, tensile and compressive tests. As a
non-destructive technique, the ultrasonic elastic wave method is more advantageous than conventional
techniques. Typically, bulk waves, guided waves or leaky guided waves [2–5] can be used. In recent
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years, Lamb wave or guided wave-based techniques have been applied to the inspection of various
wave guide structures, such as plates, pipes and rails.

The identification of elastic constants of plates with different materials has been extensively
studied. Rogers [5] proposed an inversion method based on a nonlinear least squares method to
reconstruct the elastic constants of isotropic plates by measuring the phase velocity and frequency of
Rayleigh–Lamb waves. Sale et al. [3] proposed an inverse approach using a simplex search method to
estimate the elastic constants of isotropic plates. Group velocity dispersion curves for A0 mode and S0
mode which are extracted using the continuous wavelet transform was employed. Both numerical
and experimental validations were presented. In numerical simulations, an estimation errors of shear
modulus and Young’s modulus were 1.05% and 0.29%, respectively. The best estimation error of
1.01% was achieved during the experimental validation. Ambrozinski et al. [6] proposed an approach
based on guided wave propagation and spatial multiple signal classification to reconstruct the Young’s
modulus of an isotropic aluminum plate. Pabisek et al. [4] developed a hybrid computational system
for elastic moduli identification for the identification of isotropic plates. An artificial neural network
(ANN) was trained in advance and experimental dispersion curves were treated as inputs of the
ANN. Yan et al. presented an inversion method of hybrid particle swarm-based-simulated annealing
(PS-B-SA) optimization to estimate the elastic properties and thickness of an isotropic thin plate.
Webersen et al. [7] also used a simplex search method to determine the elastic constants of orthotropic
plate-like materials. Rao [8] and Vishnuvardhan et al. [2] proposed a genetic algorithm (GA)-based
approach to reconstruct all nine unknown elastic moduli of orthotropic plates. Eremin et al. [9]
proposed an approach to estimate the five effective elastic constants of laminate composite plates using
a genetic algorithm. Bochud et al. [10] also used a genetic algorithm to recover the elastic properties
of anisotropic plates. An objective function was built from the dispersion equation which allows for
accounting for higher-order modes without the need to pair each experimental data point to a specific
guided mode. Single transmitter and multiple receivers were employed to obtain the wave velocity of
A0 and S0 modes. Rokhlin and Chimenti [11] described a nonlinear inversion scheme to reconstruct the
full matrix of elastic constants of orthotropic composite plate using experimental data on reflectivity
from a plate immersed in a fluid. Liu et al. [12,13] proposed inversion schemes based on nonlinear
least squares and uniform micro-genetic algorithm to determine the material constants of composite
laminates and functionally graded material plates.

The identification of the elastic properties of other structures has also been investigated.
Karim et al. [14] proposed inversion procedures based on a modified simplex algorithm to invert
leaky Lamb wave velocities to estimate the thickness and material elastic constants of an adhesive
layer between two aluminum plates and elastic properties of a unidirectional graphite–epoxy
composite laminate. Cui et al. [15] proposed a property inversion scheme to reconstruct the elastic
moduli of fiber-reinforced composite laminates with a single wave propagation direction and a
simulated annealing optimization algorithm with the best accuracy <1% in numerical simulations.
Yu et al. [16] proposed an artificial neural network (ANN)-based method to estimate the elastic
properties of functionally graded material pipes. The inputs of the ANN model are the group velocities
of three fundamental guided circumferential waves at several lower frequencies. More recently,
Setshedi et al. [17] proposed an automatic procedure to estimate material and geometric properties of
an isotropic homogeneous rail based on the Latin hypercube sampling search strategy. The procedure
was developed for an elastic isotropic homogeneous rail and combined elastic moduli, density and
frequency as one parameter in the eigenvalue problem. Dispersion curves were computed with
different Poisson’s ratio and three geometric parameters. A technique was developed to determine
which semi-analytical finite element (SAFE) model best matches the experimental measurements.

So far, most studies on reconstruction of elastic moduli have been aimed at structures with
simple geometry like plates and pipes. However, the reconstruction of elastic moduli of structures
with complex geometry like in-service rails is not well investigated. Unlike plates or pipes, it is a
challenge to select optimal modes and accomplish the excitation and receiving of desired guiding
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wave modes propagating in rails. What makes the situation more complicated is that, for in-service
rail, the cross-section of rail is always changing due to rail wear or rail grinding, which has not been
investigated in the literature. In this paper, we proposed an inverse method for the identification of
the elastic constants of in-service rail from phase velocities of selected ultrasonic guided wave modes
that propagate in specific areas. The forward wave propagation solution here is obtained by the SAFE
formulation [18–21], which is coupled with an improved genetic algorithm (IGA) to match the phase
velocities of selected wave modes obtained by the SAFE method to the numerical model which is
performed using a commercially available software ABAQUS/Explicit.

It should be noted that the effects of axial load, Young’s modulus and rail wear on the phase
velocity of the ultrasonic guided wave in rails had been investigated in our previous studies [18–20],
where the guided wave modes were selected specifically for estimating the longitudinal axial load
of the locked rail experiencing temperature fluctuations, without the prior knowledge of Young’s
modulus. In this paper, the focus is on the estimation of elastic moduli, e.g., the Young’s modulus
and the shear modulus, in worn rails using guided waves, which has not been studied before. The
method proposed in this paper takes into account the sensitivities of different wave modes to the elastic
constants and the degree of wear, as well as the single-mode excitation strategy [21,22], in the selection
of wave modes. Numerical experiments prove the effectiveness of the method.

The paper is organized as follows. The methodology for the inversion process is presented
in Section 2, which consists of the theoretical background of the SAFE formulation and 2-D FFT
(two-dimensional fast Fourier transformation) analysis. Modes selection and the excitation method for
in-service rail are presented in Section 3. To validate the method, the reconstruction of elastic moduli
of 2-meter length worn rails is carried out based on a commercial finite element analysis software
ABAQUS/Explicit. The numerical setups and results are described in Section 4. Discussions and
conclusions are given in Section 5.

2. Methodology for the Inversion Process

2.1. SAFE method for Estimating Guided Wave Propagation in Rail

The SAFE method is widely used to calculate ultrasonic guided wave propagation solutions for
waveguides with a constant cross-section in the wave propagation direction, especially for complex
waveguides, e.g., rail [18,22–24]. As shown in Figure 1, SAFE treats propagating waves as harmonic
waves along the propagating direction, z, and utilizes a two-dimensional mesh of the rail cross-section
in plane, (x, y) [20].
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According to the virtual work’s principle without considering external forces and traction [25]:∫
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∫
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where u, ε and σ are the displacement, strain and stress array, respectively. ρ is the mass density,
upper script T indicates a Hermitian matrix,

..
• is the second derivative with respect to time t, and V is

the volume.
For an arbitrary point (x, y, z) in the element of a rail, the strain–displacement formulation can be

written as:

ε =

[
Lx
∂u
∂x

+ Ly
∂u
∂y

+ Lz
∂u
∂z

]
(2)

where

Lx =



1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0


, Ly =



0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0


, Lz =



0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0


(3)

According to the elastic constitutive equation, the stress vector σ can be written as:

σ = Cε (4)

where C is the elastic constant stiffness coefficient matrix. According to Hooke’s law, stiffness matrices
for isotropic can be represented by only two independent variables, Young’s modulus E and Passion’s
ratio υ [26,27] as

C =
E

(1 + υ)(1− 2υ)



(1− υ) υ υ
υ (1− υ) υ
υ υ (1− υ)

(1−2υ)
2

(1−2υ)
2

(1−2υ)
2


(5)

It should be noted that the actual rail may not be isotropic, and Matrix C of the the rail under
investigation needs to be measured in advance in real applications.

The rail cross-section can be meshed using triangle or quadratic elements. In this paper, quadratic
elements were employed for both SAFE and ABAQUS, as shown in Figure 2. The displacement vector
of arbitrary point along the propagating direction is obtained:

u = N(x, y)q(e)ei(ξz−ωt) (6)

where N(x, y) is the shape function matrix depends on the type of mesh element, q(e) is nodal
displacements of arbitrary point, i = sprt(−1) is the imaginary unit, ξ is the wavenumber and ω is the
angular frequency.
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Figure 2. Rail cross-section and sub-divisions.

We substitute Equation (4) and Equation (6) into Equation (1) and apply the standard finite element
assembling procedures [20], resulting in:(

ξ2K2 + iξK1 + K0
)
Q = ω2MQ (7)

where M is the mass matrix,K0, K1, K2 are the stiffness matrix and Q is the global nodal
displacement vector.

To eliminate the imaginary unit contained in element stiffness matrix K1, a transformation diagonal
matrix T is used:

T =



i
1

1
. . .

i
1

1


(8)

The final form of eigenvalue equation is obtained:(
ξ2K2 + ξK̂1 + K0

)
U = ω2MU (9)

where K̂1 = TTK1T
−i and U = TQ is a new global nodal displacements vector.

The dispersion characteristics of guided waves in rails can be obtained by solving Equation (9).
The wave structures of wave modes can also be obtained from the eigenvectors. The phase velocity
and wavenumber dispersion curves of CHN60 rail are displayed in Figure 3 with Young’s modulus
E = 210 GPa, shear modulus G = 80.77 GPa, density ρ = 700 kg/m3 and Poisson’s ratio υ = 0.3. The
guided wave modes are numbered as mode 1 to mode 10 according to the rule of the phase velocity
from small to large (the wavenumber from large to small).
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2.2. Extraction Method of Phase Velocity

The phase velocities can be obtained by transducer array employing the 2-D FFT method, which
was developed by Sachse and Alleyne [28,29]. One needs to acquire an array of time-based waveform
with equal space arranged transducers. The 2-D FFT then successively performs temporal and spatial
Fourier transformation to transform the time series signal to the frequency-wavenumber domain.

The results of the two-dimensional transformation are an amplitudes matrix corresponding to
discrete frequencies and wavenumbers. It should be noted that the spatial resolution should satisfy the
sampling criterion and avoid the risks of spatial aliasing. The resolution of the wavenumber depends
on the number of transducers and the distance between two transducers. Hanning window function
and the zero padded method can be performed to improve the spatial and frequency resolution of the
2-D FFT results. More details of the application of 2-D FFT technique can be found in Ref. [30].

2.3. Optimization Approach for Identification of Elastic Constants

The proposed optimization approach estimates the isotropic rail material elastic constants by
matching the estimated SAFE-based phase velocities and the measured velocities of selected guided
wave mode set. The SAFE-based phase velocities are obtained using the SAFE method, while measured
phase velocities are obtained from time series signals by the 2-D FFT.

The genetic algorithm (GA) has been widely used in identifying the elastic moduli [2,9,10]. The
common problem occurring in application of GA is premature convergence. The population tends
to converge to suboptimal solutions during the process of evolution. To overcome the premature
convergence, an improved version of genetic algorithm was used.

Stochastic Universal Sampling (SUS) is used in selection operator. The elitist preservation strategy
is also added in selection operator [31,32] to directly copy elitist individual to next generation without
performing crossover and mutation operators. The solutions use real-value encoding with arithmetic
crossover and uniform mutation. Parent chromosomes are linearly combined during the operation
of arithmetic crossover. If the two parent chromosomes are X and Y, then the offspring individuals
are X′ = rX + (1− r)Y, Y′ = rY + (1− r)X, where r is a random number between 0 and 1. Uniform
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mutation means that the individual is replaced by a random individual in the value space. Based
on the difference of average and best fitness value of the population (∆), the adaptive probabilities
of crossover (Pc) and mutation (Pm) operators are used, where k1 and k2 are constants greater than
zero [33,34]. The detailed parameters of improved genetic algorithm (IGA) are shown in Table 1.

Table 1. Parameters used in IGA.

Parameters Settings

Size of Population 10
Max Generations 20

Selection Stochastic Universal Sampling and Elitist Preservation
Crossover Arithmetic crossover
Mutation Uniform mutation

Probability of Crossover Pc =
(
1 + e(−k1∗∆)

)−1

Probability of Mutation Pm = 1−
(
1 + e(−k2∗∆)

)−1

According to the searching range, a randomly guessed population of elastic constants set is
generated first and then all the individuals of population are evaluated using the error function. The
error function to be minimized can be represented as follows,

ERR f (E, G) =
n∑

m=1


∣∣∣∣∣∣∣c

m,ABAQUS
p ( f ) − cm,SAFE

p ( f )

cm,SAFE
p ( f )

∣∣∣∣∣∣∣
 (10)

where cm,SAFE
p and cm,ABAQUS

p are the phase velocities at frequency f of m-th guided wave mode obtained
by SAFE formulation and measured data, respectively.

The evolution process of reconstruction of elastic moduli using IGA can be concluded as follows.
Step 1: Obtain the rail profile J using a two-dimensional laser scanner and phase velocity cm,SAFE

p
of wave mode set with phase array transducer and 2-D FFT technique, respectively.

Step 2: Generate the initial population according to the parameters used in IGA and searching
range for elastic constants.

Step 3: Calculate the phase velocities of selected wave mode set of each individual in the
population, using the SAFE model with measured rail profile or standard rail profile.

Step 4: Use error function in Equation (10) to evaluate the fitness of each individual in current
generation. If the value of error function is less than the preset tolerance (toll = 10−3), the iteration will
stop and then output the optimal elastic moduli set. Otherwise, proceed to the next step.

Step 5: We compare the fitness value of optimal individual in current population with the optimal
individual found in last generation. Directly copy the elite which has the bigger fitness value into the
next population.

Step 6: Remaining individuals in the population need to perform crossover and uniform mutation
operations. The optimal individual copied from Step 5 and individuals after crossover and mutation
form the new population. Then jump to Step 3.

The inversion procedures are illustrated in Figure 4.
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3. Mode Selection and Excitation Method

3.1. Mode Selection

Any guided wave modes can be used to reconstruct the elastic moduli of rail, theoretically.
However, different modes at 36 kHz have different mode shapes and propagate in different regions of
rail cross section with different sensitivities to elastic moduli. In general, for a standard rail profile,
one can choose the mode which is most sensitive to elastic moduli. The phase velocities of the first
ten wave modes are listed in Tables 2 and 3, varying with Young’s modulus [35] and shear modulus,
respectively. The differences ∆cp1 and ∆cp2 indicate the sensitivities of different modes.

Table 2. Phase velocities (m/s) variation with different Young’s modulus.

Mode number E = 212 GPa E = 216 GPa ∆cp1

1 1953.916 1969.959 16.043
2 1956.276 1972.344 16.067
3 2205.867 2225.191 19.324
4 2517.632 2544.668 27.036
5 2580.399 2609.510 29.111
6 2651.980 2684.784 32.805
7 2659.204 2686.379 27.175
8 2816.061 2846.475 30.414
9 2970.044 3006.502 36.458
10 3173.780 3222.459 48.679



Sensors 2020, 20, 1769 9 of 24

Table 3. Phase velocities (m/s) variation with different shear modulus.

Mode Number G = 84.0 GPa G = 81.4 GPa ∆cp2

1 1936.983 1933.119 3.864
2 1937.294 1933.419 3.875
3 2143.746 2145.276 1.530
4 2463.301 2455.438 7.863
5 2506.153 2501.901 4.252
6 2562.416 2554.812 7.604
7 2711.886 2689.929 21.957
8 2831.896 2811.611 20.285
9 2999.006 2967.924 31.082
10 3152.497 3124.218 28.278

As suggested by the data in Tables 2 and 3, modes 7, 9 and 10 are more sensitive to elastic
moduli and should be selected to reconstruct the elastic moduli of rail, if three modes were to be
used. For in-service rail, the profile of in-service rail gradually changes as a result of rail wear or rail
grinding, which will change the propagating characteristics of guided wave modes, especially the
ones propagating in the rail head. On the other hand, the excitation of wave modes propagating in
the rail head is also affected by the changes in the rail profile. Therefore, we need to optimize the
criteria in selecting the wave modes used for reconstruction of elastic moduli of in-service rails. For
the identification of material elastic constants of in-service rail, there are three aspects we have to take
into consideration in selecting an optimal set of wave modes.

First, we should select the wave modes that are sensitive to elastic moduli. An efficient
reconstruction will be obtained with these wave modes which have phase velocities that are sensitive
to elastic constants. Second, the phase velocities of selected wave modes should be unaffected or less
affected by the changes in rail profile in order to design equipment that maintains stable performance
for worn rails. Third, the selected wave modes should have relatively simple wave structures which
means the excitation and receive are easy to accomplish. It also helps us to get a better accuracy in
measuring phase velocities of selected wave modes and improve the accuracy of reconstruction of
elastic moduli.

Here, we choose three profiles of worn in-service rail to investigate the effect to wave modes
caused by rail wear or rail grinding. Side wear and vertical wear are the two main parameters to
quantify the rail wear. The rule of measuring the rail wear is shown in Figure 5. The railway regulations
defined that vertical wear and side wear are measured at one-third of the width of railhead to the
working side and 16mm under the top surface of rail (according to the standard rail profile) [35,36].
The total wear is the sum of half of the side wear and vertical wear.
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Three typical rail profiles of worn rails are shown in Figure 6 [35]. Only the profile of the rail head
is shown. The standard rail profiles are in blue and worn rail profiles are in red. The asterisk and
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triangle markers are wear measurement points and the limits of rail wear. The detailed parameters of
the three worn profiles are listed in Table 4.
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Table 4. Details of three worn in-service rails.

Profile Number Vertical Wear Side Wear Total Wear

a 1.50 mm 0.39 mm 1.70 mm
b 2.50 mm 3.66 mm 4.33 mm
c 6.00 mm 5.43 mm 8.72 mm

Phase velocities of some guided wave modes of the three worn rails at 36 kHz are obtained using
SAFE formulation. The comparison of phase velocities and wavenumber are listed in Tables 5 and 6.
Modes are numbered according to the value of phase velocities. ∆cpa, ∆cpb, ∆cpc and ∆ka, ∆kb, ∆kc are
the difference (in percent) of the phase velocities and wavenumbers of modes propagating in worn
rails to the reference phase velocities and wavenumbers of pristine rails, respectively.

Table 5. Phase velocities (m/s) with different rail profiles.

Mode
Number Profile a ∆cpa

(in percent) Profile b ∆cpb
(in percent) Profile c ∆cpc

(in percent)

1 1951.8007 0.2115 1951.8007 0.2115 1951.8007 0.2115
2 1952.0716 0.2116 1952.0716 0.2116 1952.0716 0.2116
3 2171.8942 0.1184 2171.8911 0.1183 2171.9765 0.1222
7 2688.0976 0.6833 2689.5073 0.6312 2651.4328 2.0380
9 2957.0585 0.5539 2967.3489 0.2087 2926.0728 1.5960
10 3112.6723 0.2611 3116.1250 0.1504 3108.9001 0.3819

Table 6. Wavenumbers (mm) with different rail profiles.

Mode
Number Profile a ∆ka

(in percent) Profile b ∆kb
(in percent) Profile c ∆kc

(in percent)

1 115.8902 0.2119 115.8902 0.2119 115.8902 0.2119
2 115.8742 0.2121 115.8742 0.2121 115.8742 0.2121
3 104.1463 0.1183 104.1464 0.1181 104.1423 0.1220
7 84.1467 0.6880 84.1026 0.6352 85.3104 2.0804
9 76.4931 0.5570 76.2279 0.2083 77.3032 1.6218
10 72.6690 0.2617 72.5884 0.1506 72.7571 0.3834

It can be seen from the Tables 5 and 6 that the phase velocities and wavenumbers of modes 1, 2
and 3 are insensitive to rail wear, while the ones of modes 7, 9 and 10 are slightly changed. The reason
behind this phenomenon can be found in the wave structures of these guided modes. By solving
Equation (9), we can obtain the wave structures of wave modes. Figure 7 shows the wave structures of
wave modes at 36 kHz [35]. As shown in Figure 7, low order wave modes 1, 2, 3 have simple vibration
modes that are confined to a specific area of rail web or rail foot and thus insensitive to the rail wear.
The vibration mode of high order wave modes 7, 9, 10 are complex and distributed in the whole
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rail cross-section which is difficult to excite and easily affected by rail wear. From the perspective
of equipment design, these low-order modes are also preferred. As their wavenumbers are almost
unchanged when the rail profile changes, the arrangement of excitation equipment does not need to
change for different rails, especially for the application of phased delay arrays. Therefore, modes 1, 2,
and 3 wereused as the optimal set in the inversion procedure. The modes 7, 9 and 10 were chosen
as the comparison set. It should be noted that modes 1, 2 and 3 are also less sensitive to a change in
elastic moduli when compared to modes 7, 9 and 10.
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Figure 7. Wave structures of some guided wave modes.

3.2. Excitation Method of Specific Mode

The excitation of desired guided wave modes is the foundation to realize the non-destructive
testing of rails. Unlike simple structures like plates and pipes, it is more complicated to excite single
specific wave mode in rail. There are many propagating wave modes in rails, especially at high
frequencies, as shown in Figure 3 and different cares are needed in exciting and receiving for different
wave modes.

The wave structure contains the displacement information of all nodes of rail cross-section.
By analyzing the wave structure information of specific wave modes, we can determine the exact
excitation nodes and directions [37]. It is obvious that the guided wave modes can only be excited and
received on external nodes of an in-service rail. All the external nodes of a worn in-service rail with
profile (b) in the numerical model are marked and shown in Figure 8.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 24 

 11  
 

simple vibration modes that are confined to a specific area of rail web or rail foot and thus insensitive 

to the rail wear. The vibration mode of high order wave modes 7, 9, 10 are complex and distributed 

in the whole rail cross-section which is difficult to excite and easily affected by rail wear. From the 

perspective of equipment design, these low-order modes are also preferred. As their wavenumbers 

are almost unchanged when the rail profile changes, the arrangement of excitation equipment does 

not need to change for different rails, especially for the application of phased delay arrays. Therefore, 

modes 1, 2, and 3 wereused as the optimal set in the inversion procedure. The modes 7, 9 and 10 were 

chosen as the comparison set. It should be noted that modes 1, 2 and 3 are also less sensitive to a 

change in elastic moduli when compared to modes 7, 9 and 10. 

 

Figure 7. Wave structures of some guided wave modes. 

3.2. Excitation Method of Specific Mode 

The excitation of desired guided wave modes is the foundation to realize the non-destructive 

testing of rails. Unlike simple structures like plates and pipes, it is more complicated to excite single 

specific wave mode in rail. There are many propagating wave modes in rails, especially at high 

frequencies, as shown in Figure 3 and different cares are needed in exciting and receiving for different 

wave modes. 

The wave structure contains the displacement information of all nodes of rail cross-section. By 

analyzing the wave structure information of specific wave modes, we can determine the exact 

excitation nodes and directions [37]. It is obvious that the guided wave modes can only be excited 

and received on external nodes of an in-service rail. All the external nodes of a worn in-service rail 

with profile (b) in the numerical model are marked and shown in Figure 8. 

 

Figure 8. Mesh of worn in-service rail with profile (b) with external nodes marked. Figure 8. Mesh of worn in-service rail with profile (b) with external nodes marked.

The wave structures of guided wave modes contain displacement information of three directions
of different wave modes. We introduce Euclidean distance to represent the difference between wave
modes in three dimensional space [38].
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The Euclidean distance Xdmn between two wave modes m and n in x direction can be defined as:

Xdmn =

√√√ p∑
i=1

(xim − xin)
2 (11)

where p is the total number of external nodes in the rail profile.
Then, we can get a Euclidean distance matrix to indicate the difference in x direction between

wave modes:

Xd =


Xd11 Xd12 · · · Xd1k
Xd21 Xd22 · · · Xd2k

...
...

. . .
...

Xdk1 Xdk2 · · · Xdkk

 (12)

In a similar way, the Euclidean distance matrix in the other two directions can also be calculated
with an excitation frequency of 36 kHz. The Euclidean distance indicates the difference between the
two modes of vibration in different directions. The greater the Euclidean distance in one direction
between the two modes, the more likely it is to get a single mode in this direction.

By comparing the Euclidean distance between the desired wave modes and other wave modes in
three directions, the best excitation direction is the one with maximum Euclidean distance.

Then we choose the external nodes that have the maximum positive or negative displacement in
the best excitation direction as the excitation nodes, where the positive and negative signs indicate the
direction of excitation. For low-order wave modes like mode 1, 2 and 3, which have relatively simple
wave structures, we are able to achieve nearly “pure” desired low-order modes by exciting only one or
two nodes with the help of phase array excitation. However, for high-order wave modes, more nodes
need to be excited to achieve “dominant” desired wave modes. This method is a simplified version of
the method proposed by Xu Xining. More details can be found in reference [37].

The best excitation direction and nodes of modes 1, 2 and 3 are obtained using the described
excitation method, as shown in Figure 9. Table 7 gives the detail of the excitation of three wave modes.
The receiving nodes and direction of each mode are the same as the excitation.

Table 7. Excitation details of modes 1, 2, and 3.

Mode 1 Mode 2 Mode 3

Nodes 364, 602 364, 602 674
Direction y axis negative y axis positive and negative x axis negative

Excitation Type
Two-sided symmetric

excitation
Two-sided anti-symmetric

excitation Single point excitation
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The setup of excitation of mode 7, 9 and 10 was also calculated. It is more complex to excite
modes 7, 9 and 10, which need more exciting points due to their complex wave structures. The details
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of excitation are shown in Table 8 and Figure 10, where red and blue points represent displacements
along z positive and negative direction, respectively.

Table 8. Excitation details of modes 7, 9, and 10.

Mode 7 Mode 9 Mode 10

Nodes 198, 233 / 210, 220 231, 342, 674, 251 / 200, 624,
261, 684

603, 266, 679, 202 / 363, 669,
256, 229

Direction z axis positive and
negative z axis positive and negative z axis positive and negative

Excitation Type Four points excitation Two-sided eight points
anti-symmetric excitation

Two-sided eight points
anti-symmetric excitation
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In addition, phased delay array excitation along the z direction is implemented based on the comb
transducer model proposed by Rose [39], as shown in Figure 11. The phased delay array contains five
elements and the spacing between each element is d = λm, where λm is the wavelength of the mode m.
The time delay of i-th element for mode m is

Tdm = (i− 1)Tm (13)

where Tm is the period of mode m.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 24 

 13  
 

The setup of excitation of mode 7, 9 and 10 was also calculated. It is more complex to excite 

modes 7, 9 and 10, which need more exciting points due to their complex wave structures. The details 

of excitation are shown in Table 8 and Figure 10, where red and blue points represent displacements 

along z  positive and negative direction, respectively. 

Table 8. Excitation details of modes 7, 9, and 10. 

 Mode 7 Mode 9 Mode 10 

Nodes 198, 233 / 210, 220 
231, 342, 674, 251 / 200, 624, 

261, 684 

603, 266, 679, 202 / 363, 669, 

256, 229 

Direction 
z  axis positive 

and negative 
z  axis positive and negative z  axis positive and negative 

Excitation 

Type 

Four points 

excitation 

Two-sided eight points anti-

symmetric excitation 

Two-sided eight points anti-

symmetric excitation 

 

Figure 10. Position of excitation nodes of (a) mode 7 (b) mode 9 and (c) mode 10. 

In addition, phased delay array excitation along the z  direction is implemented based on the 

comb transducer model proposed by Rose [39], as shown in Figure 11. The phased delay array 

contains five elements and the spacing between each element is md = , where m  is the wavelength 

of the mode m . The time delay of i-th element for mode m  is 

 ( )1m mTd i T= −  (13) 

where mT  is the period of mode m . 

. 

Figure 11. Schematic of phase delay excitation. 

4. Numerical Validation: Finite Element Analysis 

4.1. Three-Dimensional Finite Element Model of Continuously Welded Rail 

The finite element method has been demonstrated to be efficient in modeling the propagation of 

elastic guided waves in various structures [3,29,40,41]. Similarly, a commercial finite element 

package, ABAQUS/Explicit, was used in this study. To ensure the accuracy and stability of numerical 

Figure 11. Schematic of phase delay excitation.

4. Numerical Validation: Finite Element Analysis

4.1. Three-Dimensional Finite Element Model of Continuously Welded Rail

The finite element method has been demonstrated to be efficient in modeling the propagation of
elastic guided waves in various structures [3,29,40,41]. Similarly, a commercial finite element package,
ABAQUS/Explicit, was used in this study. To ensure the accuracy and stability of numerical results,
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appropriate element size and time step should be applied. The time step resolution should be satisfied
the Courant–Friendrichs–Lewy (CFL) stability criterion [40–42]:

∆t ≤
1

cmax

1√
1

∆x2 +
1

∆y2 +
1

∆z2

(14)

where cmax is the group velocity of the fastest mode which will propagate in the modelled structure;
∆x, ∆y, ∆z are the dimensions of finite elements.

The size of the finite element should be smaller than one twentieth of the smallest wavelength to
be analyzed to get a good spatial resolution:

Le =
λmin

20
(15)

where the λmin is the smallest wavelength to be analyzed and Le is the maximum value of the size of
the 3-D finite element.

Figure 12 shows the overall FE simulation setup, where a 2-m long worn CHN60 rail was created
using C3D8 element and the time step was set as 1ns. The element size in the longitudinal direction z
and cross-sectional directions, x and y were 2 mm and less than 4 mm, respectively.
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An absorbing layer using increasing damping (ALID) of 200 mm in length was attached to both
ends of the rail to absorb waves entering them instead of reflection by the rail end. The ALID consists
of a number of layers made of the same material of rail but a gradually increasing damping, and is able
to absorb elastic waves propagating into it. The ALID can efficiently suppress the reflected waves and
is easily implemented in the commercial finite package [43–45].

The excitation area was located at one end of the rail (Position A in Figure 12) and displacement
monitoring area of 1.2 m in length was 0.5 m away from Position A. There were, in total,600 points in
the monitoring area. The excitation signal was an 8-cycle Hanning-windowed sinusoidal signal at a
center frequency of 36 kHz. The wave mode set containing three wave modes was excited and received
with appropriate manners described in Section 3. The displacements occurring at the monitoring area
were recorded for measurement of the mode’s phase velocities by applying the 2-D FFT technique. The
directions of displacement in Figure 13 are the y direction for mode 1 and mode 2, and the x direction
for mode 3 which are decided by the wave structures of these modes. The directions of displacement
in Figure 14 are all z direction for mode 7, mode 9 and mode 10 which are also decided by the wave
structures of these modes.

To validate the applicability of the proposed method, the worn rail profiles a, b and c, as shown
in Figure 6, were employed. The excitation setups can be determined with the method described
in Section 3. The following material properties are used: density ρ = 7800 kg/m3, shear modulus
G = 81.92 GPa (Poisson’s ratio υ = 0.30), Young’s modulus E = 213 GPa.
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4.2. Finite Element Analysis Results

When rail profile b is used and modes 1, 2, 3, 7, 9 and 10 are excited individually, the time series
of displacements at Position B (1 m away from Position A) are shown in Figures 13a–c and 14a–c
respectively. Figures 15 and 16 show the corresponding 2-D FFT contours with wavenumber dispersion
curves of rail obtained by SAFE method with same elastic constants superimposed. The lines on the top
with a smaller phase velocity represent the low-order guided wave modes. Scalograms of three modes
are in accordance with the frequency-wavenumber dispersion curves in Figures 15 and 16, suggesting
that the excitation method accomplishes nearly “pure” desired low-order modes and “dominant”
desired high-order modes with a ratio of 3.5 in worn in-service rail. The first wave packet in all the
time domain waveforms is dominated by the desired wave mode which can be verified from 2-D FFT
contours shown in Figures 15 and 16. These modes have similar but not equal group velocity. The
differences in group velocities between modes 1, 2, and 3 are less than 60 m/s, and the differences in
group velocities between modes 7, 9, and 10 are less than 200 m/s. It is difficult to distinguish these
modes in time signals in Figures 15 and 16 because of the propagating distance of these modes in
models less than 1 m in length. Moreover, among these modes, mode 1 and mode 2 also have similar
phase velocities (the difference in phase velocities is less than 1 m/s). However, without verifying the
group velocities of these modes, we can still distinguish them with the wave structures obtained from
ABAQUS which are presented in the top left corner of Figures 15 and 16.
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Each scalogram provides the amplitude–wavenumber–frequency information of wave modes.
The phase velocities can be obtained with the frequency and wavenumber of the scalogram peak with
biggest amplitude as follows

cp =
2π f

k
(16)

where f is the frequency of the wave mode and k is the wavenumber.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 24 

 17  
 

 
2

p

f
c

k


=  (15) 

where f  is the frequency of the wave mode and k  is the wavenumber. 

 

Figure 15. Two-dimensional fast Fourier transformation contours of (a) mode 1, (b) mode 2 

and (c) mode 3 with wavenumber dispersion curves superimposed. 
Figure 15. Two-dimensional fast Fourier transformation contours of (a) mode 1, (b) mode 2 and
(c) mode 3 with wavenumber dispersion curves superimposed.



Sensors 2020, 20, 1769 18 of 24
Sensors 2020, 20, x FOR PEER REVIEW 18 of 24 

 18  
 

 

Figure 16. Two-dimensional fast Fourier transformation contours of (a) mode 7, (b) mode 9 

and (c) mode 10 with wavenumber dispersion curves superimposed. 

4.3. Identification of Material Properties Based on the FEM Simulation 

The modes phase velocities obtained in Figures 15 and 16 are considered as measured phase 

velocities. There are two approaches to obtain the SAFE-predicted phase velocities, using standard rail 

profiles or measured worn rail profiles. It is more convenient to use standard rail profiles, but this 

usually gets lower precision results than using measured worn rail profiles in practice. 

As for the practical application of in-service rails, the measured rail profile obtained by two-

dimensional laser scanning sensors is not exactly the same as the real rail profile. Therefore, a 0.6 mm 

Figure 16. Two-dimensional fast Fourier transformation contours of (a) mode 7, (b) mode 9 and
(c) mode 10 with wavenumber dispersion curves superimposed.

4.3. Identification of Material Properties Based on the FEM Simulation

The modes phase velocities obtained in Figures 15 and 16 are considered as measured phase
velocities. There are two approaches to obtain the SAFE-predicted phase velocities, using standard rail
profiles or measured worn rail profiles. It is more convenient to use standard rail profiles, but this
usually gets lower precision results than using measured worn rail profiles in practice.

As for the practical application of in-service rails, the measured rail profile obtained by
two-dimensional laser scanning sensors is not exactly the same as the real rail profile. Therefore,
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a 0.6 mm random deviation from the real rail profile is added to the rail model of SAFE according to
the typical accuracy of rail wear gauge, as shown in Figure 17. Furthermore, we also added random
white noise to the phase velocities obtained with finite element model to simulate the phase velocity
measurement error and the maximum amplitude is 1 m/s.
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Figure 17. Worn rail profile with simulated measured rail profile.

It should be noted that, except for the rail head, the meshes in the rail web and rail foot of the
standard rail profile and worn rail profiles are exactly the same, and the other settings of inversion
procedure are also the same.

At the beginning of the procedure, a randomly initialized population of elastic moduli set are
generated within (206.00~220.00) for Young’s modulus and (71.03~95.65) for shear modulus (0.15~0.45
for Poisson’s ratio). The relative error and standard deviation of the estimated elastic moduli are used
to demonstrate the accuracy of the estimation. The IGA method used in this paper is able to coverage
within twenty iterations. The convergence process is shown in Figure 18, where different curves are
examples from different simulations.
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Figure 18. The convergence process of normalized ERR f (E, G) of some examples.

Tables 9 and 10 show the results of the inversion procedure applied to simulations of three rail
profiles with standard and measured rail profile used in SAFE model, respectively. The estimated
values are the average of ten runs of GA estimations.
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Table 9. Estimated elastic moduli of rail (GPa) and relative errors (%) with standard rail profiles using
mode 1, 2, 3.

Rail Profile a b c

E expected value 215.0000 213.0000 214.0000
E estimated value 213.4162 211.7086 214.2204

Relative error 0.6918 0.6063 0.1030
Standard deviation σ 0.0281 0.2852 0.3102

G expected value 79.6296 81.9231 83.5938
G estimated value 77.0549 79.3510 81.8056

Relative error 2.5748 3.1397 2.1391
Standard deviation σ 0.1325 0.1950 0.7457

Table 10. Estimated elastic moduli of rail (GPa) and relative errors (%) with measured worn rail profiles
using mode 1, 2, 3.

Rail Profile a b c

E expected value 215.0000 213.0000 214.0000
E estimated value 215.1166 212.2261 213.7712

Relative error 0.0542 0.3633 0.1069
Standard deviation σ 0.0790 0.1502 0.2009

G expected value 79.6296 81.9231 83.5938
G estimated value 79.6635 81.4885 84.3168

Relative error 0.0339 0.5183 0.8649
Standard deviation σ 0.0425 0.2447 0.1858

The maximum relative error of reconstruction of Young’s modulus and shear modulus using
standard rail profile is <0.69% and <3.14%, respectively. The maximum standard deviation is 0.31
and 0.75 from the mean of elastic moduli, respectively. When the measured rail profile is used, the
maximum relative error in shear modulus and Young’s modulus is found to be <0.87% and <0.36%,
respectively. The maximum standard deviation is found to be 0.25 and 0.20, respectively.

To see the effectiveness of the optimal mode set consisting of modes 1, 2 and 3, we now consider
another mode set to reconstruct the elastic moduli of in-service rail for comparison. Tables 11 and 12
show the estimation results of the elastic moduli with standard rail profile and measured worn
rail profiles using mode 7, 9 and 10, respectively. The estimated values are also averaged over
ten estimations.

Table 11. Rail elastic moduli (GPa) and corresponding errors (%) with standard rail profiles using
mode 7, 9, 10.

Rail Profile a b c

E expected value 215.0000 213.0000 214.0000
E estimated value 213.0220 215.5720 217.7630

Relative error 0.9200 1.2075 1.7584
Standard deviation σ 0.0879 0.2060 0.1702

G expected value 79.6296 81.9231 83.5938
G estimated value 72.9987 74.4484 75.6311

Relative error 8.3272 9.1240 9.5254
Standard deviation σ 0.1931 0.8450 0.5368
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Table 12. Rail elastic moduli (GPa) and corresponding errors (%) with measured worn rail profiles
using mode 7, 9, 10.

Rail Profile a b c

E expected value 215.0000 213.0000 214.0000
estimated value 213.6946 211.6890 215.0104
Relative error 0.6072 0.6155 0.4721

Standard deviation σ 0.1163 0.0922 0.2090
G expected value 79.6296 81.9231 83.5938
G estimated value 73.2284 78.0646 74.8453

Relative error 8.0388 4.7099 10.4654
Standard deviation σ 0.8046 0.1264 0.6393

The maximum relative error of the reconstruction of Young’s modulus and shear modulus using
standard rail profile is <1.76% and <9.53%, respectively. The maximum standard deviation is 0.21
and 0.85 from the mean of elastic moduli, respectively. When measured rail profiles are used, the
maximum relative error in shear modulus and Young’s modulus is found to be <10.47% and <0.62%,
respectively. The maximum standard deviation is found to be 0.81 and 0.21, respectively. The relative
errors obtained with standard rail profile are bigger than measured rail profiles.

The optimal mode set we selected obtains a much better performance compared to the mode set
consisting of modes 7, 9, 10 in the estimation of elastic moduli using data obtained from numerical
simulations. Even if the optimal mode set and standard rail profile in SAFE model are used in the
reconstruction process of worn rails, it can make better estimations than the mode set of modes 7, 9
and 10 and measured rail profile in the SAFE model.

5. Discussions and Conclusions

An inverse approach to estimate the elastic constants of the material of in-service rails is proposed
in this paper. A mode selection method is proposed to achieve a wide applicability for in-service
rails which have changing rail profiles due to re-grinding or rail wear. The proposed mode selection
approach takes into consideration the influence of the rail profile as well as the excitation and reception
of the desired mode which can be realized in practice. The optimal wave mode set, consisting of three
low-order wave modes, is selected. Another comparative mode wave set is selected according to the
sensitivity to elastic moduli as usual. Comparative numerical studies are carried out to validate the
effectiveness and necessity of the mode selection method.

Unlike dispersion curves used in many other studies, the proposed method relies on the measured
phase velocities of only three wave modes at one frequency, resulting in more efficient operation in
practice. However, on the other hand, the proposed method requires high measurement accuracy
of phase velocity. So, the guided wave modes should be carefully selected, and single mode should
be excited as purely as possible. There are still some challenges of implementing this strategy in a
practical setting. One is the excitation of the pure single mode. The excitation method used in the
ABAQUS is based on the displacement imposed on nodes. Due to the size of the real transducer,
the results of excitation may be poor. The acquisition of phase velocity of specific modes would be
another challenge. The accurate measurement of phase velocity relies on the high resolution of the
wavenumber and frequency which need special customized equipments on demand.

The identification of the elastic constants of the materials was achieved through inversion
procedures based on an improved genetic algorithm that match the phase velocities of the selected
wave mode set obtained from SAFE formulation and numerical simulations. It has to be noted that
although the material of in-service rails is treated as isotropic and homogeneous in this paper, the
proposed inversion method is suitable for all kinds of materials, as long as the appropriate constitutive
relationship of the material can be obtained.
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