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Conditioned medium of human adipose-derived mesenchymal
stem cells mediates protection in neurons following glutamate
excitotoxicity by regulating energy metabolism and GAP-43

expression
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Abstract Glutamate excitotoxicity has been implicated as
one of the pathological mechanisms contributing to neuronal
cell death and is involved in many neurological disorders.
Stem cell transplantation is a promising approach for the
treatment of nervous system damage or diseases. Previous
studies have shown that mesenchymal stem cells (MSCs) have
important therapeutic effects in experimental animal and pre-
clinical disease model of central nervous system pathology.
However, it is not well understood whether neurogenesis of
MSCs or MSC conditioned-medium (CM) containing micro-
particles mediates therapeutic effects. Here, we investigated
the neuroprotective effects of human adipose-derived MSCs
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(AMSCs) on cortical neurons using models of glutamate
excitotoxicity. Following exposure to glutamate (100 puM,
15 min), cortical neurons were co-cultured with either AMSCs
separated by a semiporous membrane (prohibiting direct cell-
cell contact) or with AMSC-CM for 18 h. Compared to
untreated control groups, AMSCs and AMSC-CM partially
and similarly reduced neuronal cell damages, as indicated by
reduced LDH release, a decreased number of trypan-positive
cells and a decline in the number of apoptotic nuclei. Protec-
tion by CM was associated with increased GAP-43 expression
and an elevated number of GAP-43-positive neurites. Further-
more, CM increased levels of ATP, NAD" and NADH and the
ratio of NAD/NADH, while preventing a glutamate-induced
decline in mitochondrial membrane potential. These results
demonstrate that AMSC-CM mediates direct neuroprotection
by inhibiting neuronal cell damage/apoptosis, promoting
nerve regeneration and repair, and restoring bioenergy follow-
ing energy depletion caused by glutamate excitotoxicity.

Keywords Excitotoxicity - Cortical neurons - AMSCs -
Neuroprotection - GAP-43 - Energy metabolism

Abbreviations
CNS Central nervous system

NMDA  N-Methyl-D-aspartic acid

GAP-43  Growth associated protein-43

MSCs Mesenchymal stem cells

AMSCs  Adipose-derived mesenchymal stem cells

CM Conditioned medium

BDNF  Brain derived neurotrophic factor
bFGF Basic fibroblast growth factor
IGF-1 Insulin-like growth factor

VEGF Vascular endothelial growth factor
HGF Hepatocyte growth factor
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NGF Nerve growth factor

DMEM  Dulbecco’s modified Eagle medium
FBS Fetal bovine serum

EDTA  Ethylenediaminetetraacetic acid

PDL Poly-D-lysine

PBS Phosphate-buffered saline

LDH Lactate dehydrogenase

TUNEL TdT-mediated dUTP nick-end labeling
PVDF Polyvinylidene fluoride

SDS Sodium dodecyl sulfate

NAD"  Nicotinamide adenosine denucleotide
NADH  Nicotinamide adenine denucleotide hydrogen
TMRE  Tetramethylrhodamine ethyl ester
ATP Adenosine triphosphate

MMP Mitochondrial membrane potential
PTP Permeability transition pore

TCA Tricarboxylic acid

Introduction

Excitotoxicity is defined as cell death resulting from the toxic
action of excitatory amino acids. Glutamate is the major
excitatory neurotransmitter in the mammalian central nervous
system (CNS) and it is involved in many physiological func-
tions including development of the nervous system, learning
and memory. However, excessive and prolonged exposure to
glutamate under pathological circumstances can lead to over-
stimulation of glutamate receptors and excitotoxic cell death
(Lau and Tymianski 2010). Glutamate excitotoxicity is impli-
cated as a common pathological mechanism contributing to
neuronal cell injury in a number of neurological disorders as it
plays a critical role in the pathogenesis of stroke, epilepsy,
brain trauma and neurodegenerative diseases (Lipton and
Rosenberg 1994; Dong et al. 2009).

It is clear that the glutamate-induced neuronal death is
mediated by the entry of extracellular Ca®" as a result of the
activation of N-Methyl-D-aspartic acid (NMDA) subtype of
glutamate receptors and a resultant calcium overload
(Arundine and Tymianski 2003). Excessive intracellular cal-
cium triggers pathways leading to cell death. Indeed, it has
been suggested that intracellular calcium overload may result
in mitochondrial dysfunction, energy metabolism disorder,
oxidative stress and apoptosis. Recent studies have suggested
that mitochondrial dysfunction and subsequent energetic col-
lapse are critical steps in the progression to cell death in
glutamate excitotoxicity (Nicholls 2004; Smaili et al. 2011).

Bioenergy homeostasis is foundational for maintaining
normal cell function and survival. Neurons are excitable cells
that require a large amount of energy to maintain membrane
potential and synaptic transmission, making the brain the most
energy -consuming organ in the body. Thus, neurons are
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extremely susceptible to bioenergetic stress. Irreversible neu-
ronal death occurs if the brain is deprived of oxygen for more
than 5 min. Among many neural activities, the excitatory
glutamatergic systems use the most energy (Sibson et al.
1998; Shen et al. 1999; Raichle and Gusnard 2002). The
energy consumption of neurons increases following activation
by glutamate. Energy metabolism disorder is involved in
multiple acute and chronic neurological diseases including
Alzheimer’s disease, Parkinson’s disease, Huntington’s dis-
ease, stroke and brain trauma (Mattson et al. 1999; Ferreira
et al. 2010; Amato and Man 2011; Mochel et al. 2012).
Reduced cell energy supply is one of the early and primary
pathological events in these diseases. Furthermore, under
these pathological conditions, neural energy depletion is ac-
companied by a massive release of glutamate and excitotoxic
cell injury (Del Rio et al. 2007; Nicholls et al. 2007). Hence,
minimizing glutamate-induced neuronal cell injury and rescu-
ing glutamate-induced neuronal energy depletion is a direct
and effective therapeutic approach.

One repair strategy following nerve injury is to promote
axonal regeneration or outgrowth. In recent years, several
molecules have been found associated with axonal regenera-
tion, and among them the most well-known is the growth-
associated protein 43 (GAP-43) (Frey et al. 2000). GAP-43,
which was discovered in the early 1980s, is a membrane-
bound protein expressed mainly in the growth cores, axons
and presynaptic terminals of neurons (Benowitz etal. 1987). It
is particularly abundant in periods of neurite outgrowth during
development and regeneration in the central and peripheral
nervous systems. GAP-43 is closely related to neural devel-
opment, axonal regeneration and synaptic reorganization, and
is regarded as an intrinsic factor during development and
regeneration (Benowitz and Routtenberg 1997). Therefore,
GAP-43 is considered as an axonal regeneration marker
(Aoki et al. 2007) and a neural restoration marker (Lopatina
etal. 2011).

As the capacity of the CNS to regenerate after acute or
chronic lesions is limited, there are currently no effective
therapeutic strategies for many neurological diseases. Recent-
ly, however, many studies indicate that stem cell transplanta-
tion is a promising approach for the treatment of nervous
system damages or diseases. Somatic stem cells, especially
neural stem cells and mesenchymal stem cells (MSCs), have
demonstrated the character to reduce neurological defects and
promote functional recovery in experimental animal models
of CNS pathology (Hofstetter et al. 2002; Zhang et al. 2006;
Ohtaki et al. 2008) and in preclinical trials for stroke and
multiple sclerosis (Bang et al. 2005; Freedman et al. 2010;
Martino et al. 2010).

The mechanisms by which MSCs provide neuroprotection
under CNS pathological conditions are not well known. Early
research showed that MSCs could differentiate into CNS glial
cells and neurons in vitro and in vivo (Kopen et al. 1999;
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Sanchez-Ramos 2002). But it is controversial whether MSCs
are able to functionally replace damaged neural cells besides
expressed neuronal or glial markers (Phinney and Prockop
2007). There is evidence that MSCs stimulate endogenous
protective and restorative responses via paracrine mechanisms
(Uccelli et al. 2008). Recent studies on MSCs secretome
suggest that MSCs secrete numerous bioactive factors that
mediate neuroprotection via trophic support,
immunomodulation, anti-apoptosis, anti-fibrosis and angio-
genesis (Singer and Caplan 2011; Skalnikova et al. 2011).
MSCs were found to protect against glutamate-induced apo-
ptosis in rat pheochromocytoma cell line PC12 cells through
the secretion of neurotrophic factors (Lu et al. 2011). Growth
factors such as BDNF and bFGF protected cerebellar granular
neurons against glutamate excitotoxicity by increasing glu-
cose reuptake and stabilizing intracellular Ca?* and the mito-
chondrial electrochemical gradient (El Idrissi and Trenkner
1999). IGF-1 was demonstrated to reverse a decrease in GAP-
43 expression induced by glutamate in dorsal root ganglion
neurons (Liu et al. 2012). Adult adipose-derived MSCs
(AMSCs) are particularly attractive for use in cell transplan-
tation as they can be obtained and expanded in vitro with a
relative ease. However, it is still unknown whether
neurogenesis of MSCs or MSC-CM containing rich micro-
particles can prevent glutamate-induced energy depletion in
neurons.

In the present study, in vitro models of glutamate
excitotoxicity were used to investigate whether AMSC-CM
mediate neuroprotection in cultured cortical neurons by regu-
lating GAP-43 expression and energy metabolism, in order to
provide an experimental basis for further exploration of
AMSC:s use for clinical applications.

Experimental procedures
Cell culture
Culture and identification of human AMSCs

Human adipose tissue (lipoaspirate) from healthy 35 to 45
year-old donors was obtained by liposuction procedures under
anesthesia. All donors were informed and gave their written
consent with procedures approved by the Ethics Committee
on the Use of Human Subjects (Dalian Medical University
and affiliated hospitals). AMSCs were isolated as previously
described (Zuk et al. 2002). In brief, adipose tissue was
washed in phosphate-buffered saline (PBS) and digested with
0.1 % collagenase type I (sigma) in PBS for 30 min at 37 °C in
a water-bath shaker. The digested tissue was centrifuged for
5 min at 1,000 rpm at room temperature and the supernatant
containing mature adipocytes, debris and connective tissue
was aspirated. The pellet was resuspended and plated in T25

culture flasks in Dulbecco’s modified Eagle medium
(DMEM; supplemented with D-glucose 4,500 mg/l,
4 mM L-glutamine and 110 mg/l sodium pyruvate; GIBCO,
Invitrogen), 10 % fetal bovine serum (FBS; GIBCO,
Invitrogen) and 100 U penicillin/100 pg streptomycin
(GIBCO, Invitrogen) at a density of 2x10°%cm?. Cultures
were maintained at 37 °C in a humidified atmosphere of
95 % O, and 5 % CO,_After reaching 80—100 % confluence,
cells were passaged using 0.25 % trypsin/0.38 % EDTA
(GIBCO, Invitrogen) and kept in medium as described above.
All experiments were performed with cells passages 4-6.

AMSCs were routinely characterized by flow cytometry
analysis using antibodies to the surface markers CD13, CD34,
CD106 (PE-conjugated mouse anti-human; BD Biosciences)
and CD44, CD45, CD90 (FITC-conjugated mouse anti-
human; BD Biosciences). AMSCs were positive (>95 %) for
CD13, CD44 and CD90 and negative (<5 %) for CD34, CD45
and CD106, indicating their mesenchymal nature. AMSCs
differentiation into adipocytes and osteoblasts was performed
as follows. AMSCs were seeded at a density of 10°/ml in
35 mm dishes and grown in DMEM growth medium. After
reaching 80—-100 % confluence, mediums were replaced with
adipocyte or osteoblast induction mediums (Hyclone). After
14 days of differentiation, adipocytes were stained with Oil
Red O (Sigma) and fresh red lipid vacuoles were observed in
the cytoplasm of nearly all AMSCs. After 28 days of osteo-
blast differentiation, cells were stained with Von Kossa and
showed the mineralized matrix deposition.

Primary neuron culture

All protocols were performed in accordance with the guide-
lines of the Animal Care Committee of Dalian Medical Uni-
versity. Primary neuronal cultures were obtained from cerebral
cortices of neonatal Sprague—Dawley rats (Laboratory Animal
Center of Dalian Medical University) as described previously
(Brewer 1997; Beaudoin et al. 2012). Briefly, tissue was
digested in DMEM/F-12 (GIBCO, Invitrogen) with 2 mg/ml
papain (Worthington) and 2 U/ml DNase I (Worthington) at
37 °C for 30 min and dissociated by mild trituration in
DMEM/F12 containing 10 % FBS (GIBCO, Invitrogen) and
10 % donor equine serum (Hyclone). For survival analysis
and immunocytochemistry, 5—7x10°/ml dissociated cells
were plated in 24-well plates or coverslips previously coated
with poly-D-lysine (PDL; Sigma). For biochemical proce-
dures, 1-2x 10%/ml cells were seeded in six-well plates coated
with PDL. Cultures were maintained at 37 °C in a humidified
atmosphere of 95 % O, and 5 % CO,. After 4 h, mediums
were replaced and cells were maintained with neurobasal
medium (Invitrogen) supplemented with 2 % B-27 supple-
ment (PAA Laboratories) and 0.5 mM glutamine. Half of the
medium was refreshed every 3 days. All experimental treat-
ments were performed in vitro on day 9 (DIV9).
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Immunofluorescence staining with anti-microtubule associat-
ed protein-2 (MAP-2; Sigma) antibody and anti-glial fibrillary
acidic protein (GFAP; Millipore Chemicon) antibody revealed
that cultures contained more than 90 % neurons.

Preparation of conditioned medium from AMSCs

AMSC:s at passages 4—6 were seeded on 35 mm culture dishes
with DMEM at a density of 10°/ml. After 48 h, the confluent
cells were washed once with PBS and then incubated in
neurobasal medium containing B-27 supplement. After anoth-
er 18-20 h, the medium was collected and designated as
conditioned medium (CM).

Experimental treatments

Excitotoxic death was induced in DIV rat cortical neurons by
exposure to different concentrations of glutamate (10, 50 and
100 uM) supplemented with 10 uM glycine (assist agonist of
NMDA receptors) for 15 min at 37 °C. The medium was then
replaced with either the original culture medium or different
concentrations of AMSC-CM ranging from 10 to 100 % (v/v)
and cells continued to be cultured for 18 h. Control groups
were treated under the same conditions but in absence of
glutamate and glycine.

Co-culture of AMSCs and neurons

Following exposure to glutamate for 15 min, neurons were co-
cultured with AMSCs. AMSCs were separated from neurons
with a porous membrane (0.4 wm) which allowed for the
exchange of molecules but prohibited cell-cell direct contact.
Cortical neurons were cultured in 12- or 6-well plates for 9
days in vitro prior to excitotoxicity. AMSCs were plated in 12-
or 6-well inserts (polyester, 1.12 cm?; Corning) and grown to
80—-100 % confluence in serum-containing growth medium.
Prior to placing AMSCs-containing inserts into plates con-
taining neurons, AMSCs were rinsed twice with PBS and
medium was changed to neuronal medium, consequently
removing serum from the co-culture. Cells were co-cultured
for 18 h and then neural damages were assessed.

Assessments of cell damages

After cortical neurons were cultured in 24-well plates for 9
days, 100 uM glutamate and 10 uM glycine was added and
cultured for 15 min at 37 °C. The medium was then replaced
with either the original culture medium or the optimum con-
centration of CM, or inserts containing AMSCs were added to
damaged neurons. After 18 h, cell damages were evaluated by
trypan blue dye (Sigma) and lactate dehydrogenase (LDH)
release. Trypan blue dye was performed as previously de-
scribed with modification. 18 h after insult, culture medium
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was removed and replaced with 0.12 mg/ml trypan blue
dissolved in PBS. Cells were incubated at room temperature
for 10 min and washed with PBS. Cultures were then fixed
with 4 % paraformaldehyde for 30 min and cells were visual-
ized under a phase-contrast microscope. Total numbers of
dead and intact neurons were counted and expressed as a
percentage of the total number of cells. For statistical pur-
poses, the average of ten neighbor fields for each condition
was used as a single data. LDH was assayed using the Cyto-
toxicity Detection Kit P (Roche Applied Science) according
to the manufacturer’s instructions. Results were read on an
EL808 microplate assay reader (Gene Company Limited).
Untreated cells were used for control groups and the culture
medium without cells was used as background control. Data
represent the percentage relative to control treated with lysis
buffer. Each group contained three samples and experiments
were repeated at least three times.

TUNEL and Nissl Staining

An In Situ Cell Death Detection Kit (Fluorescein, Roche
Applied Science) based on the TUNEL assay was used to
evaluate apoptotic cell death following the manufacturer’s
instructions. For negative controls, reactions were performed
by omitting TUNEL enzyme TdT and cells were incubated
with the label solution provided in the kit. No reactivity was
observed when TdT was absent. Cells were stained with
fluorescent Nissl dye (TRITC, Molecular Probe) to label the
total neurons and were observed with a fluorescence micro-
scope (LEICA, DFC500). The number of TUNEL-positive
cells and Nissl-positive cells were counted in at least three
separate experiments per treatment condition without knowl-
edge of treatment history.

Immunofluorescent labeling of GAP-43

Briefly, cultured neurons were fixed with 4 % paraformalde-
hyde for 30 min and permeabilized with 0.3 % Triton X-100
for 20 min at room temperature. After blocking unspecific
binding sites with 10 % bovine serum albumin (BSA; Sigma),
cells were incubated overnight with monoclonal rabbit anti-
GAP-43 (1:200; Abcam) antibody at 4 °C. Cells were then
washed for three times in 0.01 M PBS and incubated with
specific secondary antibody conjugated FITC (1:100; goat
anti-rabbit; Sigma) for 60 min at room temperature. For neg-
ative controls, reactions were performed by omitting the pri-
mary antibody. No reactivity was observed when the primary
antibody was absent. Nuclei were counterstained with
Hoechst33258 (10 pg/ml; Sigma). Cells were observed and
photographed with a fluorescence microscope (LEICA,
DFC500).
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Western blotting analysis for detection of the protein levels
of GAP-43

Protein levels of GAP-43 under different experiment condi-
tions were detected by Western blot assay with 3-actin as an
internal control. Cultured neurons in six-well plates were
washed three times with cold PBS and lysed on ice with RIPA
buffer containing protease inhibitor for 30 min. Samples were
centrifuged at 12,000 rpm for 20 min at 4 °C and the super-
natant was collected for Western blot assays. Protein levels in
the supernatant were determined using a BCA kit (Beyotime
Biotechnology). 35 pg of protein from each sample was
loaded on 12 % SDS-PAGE gels. After separation by electro-
phoresis, proteins were transferred to PVDF membranes
(Millipore) and blocked unspecific binding with 5 % non-fat
dry milk. Membranes were incubated with rabbit anti-GAP-43
monoclonal antibody (1:500; Abcam) overnight at 4 °C. Fol-
lowing three washes with TBST, the blots were incubated with
goat anti-rabbit IgG-HRP (1:1,000) for 1 h at room tempera-
ture. Immunoreactive bands were visualized with an ECL
detection kit (Thermo) on light sensitive film. Bands were
analyzed with Gel-Pro Analyze4 software. Data represent the
percentage relative to the control group.

Measurement of ATP levels

Total intracellular ATP concentrations in neurons were mea-
sured with a luciferin-luciferase assay-based commercial kit
(Bioassay). Briefly, neurons grown in 6-well plates were
washed three times with cold PBS and then lysis buffer was
added to each well. Cells were collected after thoroughly
scraping the culture at the well bottom. Cell lysates were
centrifuged at 12,000 rpm for 20 min. The supernatant was
used for ATP assay. Luminescence was measured using a
luminometer (Corning). A standard curve and equation were
generated using an ATP standard and used to calculate ATP
concentrations in samples.

Measurement of NAD" and NADH levels

Total intracellular NAD'/NADH concentrations in neurons
were measured using an Enzychrom™ NAD'/NADH assay
kit (Bioassay). The assay is based on an enzyme-catalyzed
kinetic reaction. Briefly, NAD/NADH was extracted from
cells at 60 °C for 5 min, neutralized with the opposite extrac-
tion and then centrifuged at 14,000 rpm for 5 min. NAD"
extracts in the supernatant were converted to NADH by en-
zymatic cycling with lactate dehydrogenase, which reduces
MTT to formazan. Optical density was measured at 560 nm
using a plate reader (Gene Company Limited). The intensity
of the reduced produce color is proportional to the NAD"/
NADH concentration in the sample. A standard curve and

equation were generated using an NAD standard and used to
calculate NAD /NADH concentrations in samples.

Determination of mitochondrial membrane potential

Mitochondrial membrane potential (MMP) was evaluated
with the fluorescent probe tetramethylrhodamine ethyl ester
(TMRE, Invitrogen) using methods described previously.
Cells were loaded with 10nM TMRE at 37 °C for 30 min,
washed, and maintained in culture medium throughout exper-
iments. Images of TMRE fluorescence were captured with a
phase-contrast fluorescent microscope (LEICA, DFC500) at
excitation and emission wavelengths of 488 nm and 525 nm
respectively. The mean intensity of fluorescence was mea-
sured and calculated using Image-Pro Plus 6.0 software.

Statistical analysis

Statistical analysis was performed using SPSS 11.5. Datas are
presented as meantSEM. The difference between mean
values was determined by one-way ANOVA. P values of less
than 0.05 were considered statistically significant.

Results

AMSC-CM attenuated neuronal damages
in a concentration-dependent manner

To examine the glutamate excitotoxicity on neurons, DIV9
primary cultured cortical neurons were treated with glutamate
(10-100 uM) supplemented with 10 uM glycine for 15 min
and neurobasal medium was replaced and maintained for 18 h.
Cell damage was measured by LDH release. The results
showed that glutamate exposure displayed evident toxicity
in cultured cortical neurons and led to cell damage in a dose-
dependent manner (Fig. 1a). 50 uM glutamate induced a
modest but significant LDH release (19.48+0.77 %). More
extensive damage occurred with 100 uM glutamate (40.26+
0.60 %). 100 uM glutamate supplemented with 10 uM gly-
cine was used as an excitotoxicity model for subsequent
experiments because of LDH release from nearly half of the
cells at this dose.

In order to investigate whether AMSC-CM could protect
neurons against glutamate excitotoxicity, different concentra-
tions of CM (10-100 %) were added to damaged neurons
caused by 15 min of exposure to glutamate. Cells were incu-
bated for another 18 h. The neuroprotective effect of CM was
evaluated by LDH release. As shown in Fig. 1b and Table 1,
CM reduced glutamate-induced neuronal injury in a
concentration- dependent manner with a maximum protective
effect at 50 % CM. At CM contents lower than 50 % or at
70 % CM, protective effects were less pronounced. Note that
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Fig. 1 Glutamate was toxic to cultured cortical neurons and AMSC-CM
reduced glutamate-induced neuronal damage in a concentration-dependent
manner. a Cortical neurons at DIV9 were exposed to glutamate (10—
100 uM) supplemented with 10 uM glycine for 15 min and the original
culture medium was replaced. Cell damage was determined by LDH
release after 18 h. Glutamate induced a dose-dependent neuronal damage.
100 uM glutamate supplemented with 10 uM glycine was chosen for all
subsequent experiments. b Different concentrations of CM were added to

100 % CM (all medium replaced with CM) did not mediate
any protection. 50 % CM was used for all subsequent exper-
iments because of the optimal neuroprotection (lowest LDH
release).

AMSCs and CM protected cortical neurons
against glutamate-induced damages and apoptosis

To investigate whether AMSCs could mediate neuroprotec-
tion, conditioned medium or a transwell co-culture system, in
which cortical neurons were co-cultured in indirect contact
with AMSCs and separated by a semiporous membrane (pore
size 0.4 pum) allowing for the exchange of small molecules,
were used. As shown in Fig. 2a, glutamate induced cortical
neurons death as measured 18 h post-incubation by LDH
release and trypan blue assay. However, when neurons were
co-cultured with AMSCs or CM, LDH release and the number
of trypan-positive cells significantly decreased compared with
glutamate treated group. But comparing with uninjured con-
trols, cell damage was only partially preserved, indicating a
limitation of the protective effect of AMSCs on injured neu-
rons. Furthermore, there was no significant difference in cell
damage between neurons co-cultured with AMSCs and those
incubated with CM (P>0.05 in all cases).

Glu 100pM
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HH
ﬁ |f£‘
30 50 70
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damaged neurons following glutamate exposure and cell damage was
evaluated by LDH release after 18 h. Note that glutamate-induced neuron
injury was attenuated most effectively by 50 % CM, whereas 100 % CM
did not mediate any neuroprotective effects. As the optimal concentration
of CM, 50 % CM was used for all subsequent experiments. Data are
presented as mean+SD. ~*P<0.001 versus control group, *P<0.05,
#Pp<0.01, ¥ P<0.001 versus glutamate treated group. One-Way ANOVA

To further explore whether AMSCs could reduce glutamate-
induced neuron apoptosis, TUNEL and Nissl co-staining were
performed. A low number of apoptotic cells was seen in the
control group (9.80+2.12 %, Fig. 2b [a—]). The percentage of
apoptotic cells increased dramatically in the glutamate group
(52.36+2.8 %, Fig. 2b [d—f]). However, apoptosis was sup-
pressed in the AMSCs co-culture (34.32+3.3 %, Fig. 2b [g—i])
and CM groups (30.08+3.5 %, Fig. 2b [j-1]). The reduced
percentage of apoptotic cells was still significantly higher
(P<0.05) than those in the uninjured control group (Fig. 3c).
Similarly, no significant difference was seen in the percentage
of apoptotic cells between neurons co-cultured with AMSCs
and those incubated with CM.

AMSCs and CM rescued GAP-43 expression and distribution
in cortical neurons

To test the effects of glutamate on GAP-43 expression and
distribution within cortical neurons, neurons were processed
for GAP-43 immunofluorescent labeling and levels of GAP-
43 were detected by Western blot. In the control group, GAP-
43 was mainly distributed in neuronal bodies and processes.
The fluorescence intensity of GAP-43 was homogeneously
spread throughout the cytoplasm with weaker dotted

Table 1 AMSC-CM reduced glutamate-induced neuronal damage in a concentration-dependent manner

Group Control Glu 10 % CM 30 % CM 50 % CM 70 % CM 100 % CM
LDH release (%) 4.37+0.89 34.34+0.23 24.79+0.33 24.67+1.18 21.78+0.86 22.29+1.13 32.14+0.54
Pvalue 0.000""" 0.022" 0.006" 0.000%# 0.002" 0.733

Different concentrations of CM were added to damaged neurons and cell damage was evaluated by LDH release after 18 h. Data are presented as mean+SD.

ek
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P<0.001 compared to control group, * P<0.05, ™ P<0.01, ** P<0.001 compared to glutamate treated group. One-Way ANOVA
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Fig. 2 AMSCs reduced glutamate-induced damage and apoptosis in
cortical neurons. Following 15 min of glutamate treatment, neurons were
co-cultured with AMSCs or medium was replaced with AMSC-CM. Cell
damages and apoptosis were determined by LDH release, trypan blue dye
and TUNEL staining after 18 h. a Quantitative analysis of trypan blue dye
and the result of LDH release. b Representative photomicrographs of total
neurons stained with Nissl (red) and apoptotic nuclei stained with TUNEL

distribution in the processes (Fig. 3a[a]). However, in gluta-
mate treated group, GAP-43 intensity decreased markedly and
GAP-43 was located neuronal bodies with little expression in
processes (Fig. 3a[b]). AMSCs or CM caused an increase in
GAP-43 fluorescence intensity and restored typical GAP-43
distribution in the presence of glutamate as compared with the
glutamate-only treated group. The GAP-43 fluorescent signal
was strong and the distribution in the cytoplasm remained
homogeneous. The number of GAP-43-positive neurites in-
creased in the co-culture and CM groups (Fig. 3a[c, d]). The
results of Western blot analysis showed that glutamate reduced
the level of GAP-43 protein compared with control group
(Fig. 3b, 65.18+12.96 %). GAP-43 expression increased
markedly when damaged neurons were co-cultured with
AMSCs (Fig. 3b, 91.08+£2.46 %) or CM (Fig. 3b, 111.62+
3.74 %). There was no significant difference (P>0.05) in GAP-
43 expression between the three experimental groups.

AMSCs and CM prevented glutamate-induced reduction
in ATP concentration

To examine the effect of glutamate on neuronal bioenergy
homeostasis, a luciferase -based ATP assay was used to eval-
uate total ATP levels in cortical neurons. As a control, a
standard curve showed a linear relationship between ATP
concentration and fluorescence intensity (Fig. 4a). 100 uM
glutamate induced a drastic and significant total ATP
reduction (Fig. 4b, 9.07+£0.06 uM for control group,
2.89+£0.09 uM for glutamate group). AMSCs or CM

Apoptotic cells

9 a
8O
0 H
o E
-
w
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(green) and merged photos were shown. (a—c) untreated control group;
(d—f) neurons treated with glutamate alone; (g—) damaged neurons co-
cultured with AMSCs; (j—/) glutamate-treated neurons in the presence of
AMSC-CM. ¢ Quantitative analyses of Nissl and TUNEL co-staining.
Data are presented as meantSD. ~"P<0.001 versus control group,
#P<0.05, #P<0.01, ¥ P<0.001 versus glutamate treated group. One-
Way ANOVA. Scar bar 200 pm

restored partially the decrease in ATP levels after gluta-
mate exposure (Fig. 4b, 5.28+0.19 uM for co-culture
group, 5.66+0.42 uM for CM group).

AMSCs and CM prevented NAD" and NADH depletion
and increased the ratio of NAD/NADH

Following excitotoxic insult, total cellular NAD" and NADH
levels were measured using an enzymatic cyclic assay. When
cortical neurons were exposed to glutamate (100 pM) in
combination with glycine (10 pM), a significant decrease of
total cellular NAD" (Fig. 5a, 6.65+0.41 uM for control group,
1.99+£0.07 uM for glutamate group) and NADH levels
(Fig. 5b, 0.64+0.01 uM for control group, 0.36+0.01 uM
for glutamate group) occurred within 18 h. Noticed that ratio
of NAD"/NADH was also reduced following glutamate ex-
posure (Fig. 5c, 10.36%£0.51 % for control group, 5.48+
0.39 % for glutamate group). When neurons were co-
cultured with AMSCs or incubated with CM for 18 h, cellular
NAD" and NADH levels sharply increased to 4.60+0.12 uM
and 0.54+0.04 uM in the co-culture group, respectively, and
4.42+0.06 uM and 0.46+0.05 uM in the CM group, respec-
tively. The ratio of NAD'/NADH rose to 8.51+0.48 % or
9.70+1.09 % compared to the glutamate treated group.

AMSCs and CM reversed glutamate-induced MMP collapse

To test the impact of glutamate on mitochondrial function,
changes in MMP in cultured cortical neurons were estimated
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GAP-43 expression
(% of control)

Glu+AMSC

Control Glu Glu+CM

Fig. 3 AMSC:s restored GAP-43 expression and distribution in cortical
neurons. After exposure to glutamate for 15 min, GAP-43 expression and
distribution in neurons were measured by immunofluorescence labeling
and Western blot. a Representative photomicrographs of GAP-43 (a)
control group; (b) glutamate treated group; (¢) AMSCs co-culture group;
(d) AMSC-CM group. b GAP-43 levels were analyzed using Western
blot. Protein loading was checked by stripping and re-probing the mem-
brane with anti-actin antibody. Data are presented as mean+SD. *P<0.05
versus control group, “P<0.05, #P<0.01 versus glutamate treated group.
One-Way ANOVA. Scar bar 200 pm

using the fluorescent cationic dye TMRE, which preferentially
labels active mitochondria based on the highly negative MMP.
As shown in Fig. 6, glutamate caused a sharp reduction in
active mitochondria (47.74+8.42 % for control group). How-
ever, AMSCs or CM treatment resulted in a relative increase
in active mitochondria compared to the glutamate treated
group (73.0+7.46 % and 63.24+2.33 %, respectively).

@ Springer

Discussion

Glutamate excitotoxicity is caused by a massive influx of
calcium into neurons due to overstimulation of glutamate
receptors and is closely related to neuronal cell injury in
stroke, trauma and other chronic neurodegenerative diseases
(Lipton and Rosenberg 1994; Lau and Tymianski 2010). In
the present study, an in vitro model of glutamate excitotoxicity
was used to investigate the neuroprotective effects of MSCs-
CM on cortical neurons. The results indicate that AMSCs-CM
are able to protect cortical neurons against glutamate
excitotoxicity and give the first evidence that AMSCs-CM
act by regulating GAP-43 expression and rescuing energy
depletion and mitochondrial function.

Our understanding of how the nervous system repair occurs
through somatic stem cells, particularly MSCs, has recently
changed. MSCs appear to exert their therapeutic effects not
because of their intrinsic ‘stemness’, but due to their capacity
to release therapeutic molecules that can interact with the host
environment (Prockop 2007). Indeed, studies of the MSCs
secretome using high performance liquid chromatography-
mass spectrometry (HPLC-MS) and antibody-related technol-
ogies have demonstrated that MSCs can secrete many kinds of
neuro-regulatory molecules, cytokines, growth factors and
chemokines which show neuroprotecive and neurorestorative
effects, including increasing neuronal viability, inducing the
proliferation and differentiation of endogenous neural
stem/progenitor cells and promoting regeneration of nerve
fibers at sites of injured (Salgado et al. 2009; Singer and
Caplan 2011; Skalnikova et al. 2011). The co-culture system
used in the present study allowed for the separation of AMSCs
from neurons with a semiporous membrane, which prevented
direct cell-cell contact and showed that trophic support plays
an important role in protecting damaged neurons. In order to
further evident the effects of trophic support, AMSC-CM was
used for its ability to reduce neural cells injury. The findings
reported here show that the neuroprotective effects of AMSC
co-culture and CM are not significantly different and both
prevent neuronal injury induced by glutamate excitotoxicity
in the same extent. This suggests that the observed beneficial
effects of AMSCs are mediated by soluble factors secreted by
these AMSCs in their conditioned medium. Previous research
supports this conclusion. Lu et al. found that MSCs protected
PC12 cells from glutamate-induced apoptosis by secreting
VEGF, HGF, BDNF and NGF, and neutralization antibody
of these factors weakened the protective function of MSCs
(Lu et al. 2011). Furthermore, in a recent paper Voulgari-
Kokota et al. removed cell-derived microparticles from
freshly-prepared MSC-CM using a step-wise centrifugation
protocol and found that microvesicle-depleted CM had similar
neuroprotective effects against NMDA as complete CM in
cortical neurons (Voulgari-Kokota et al. 2012). These finding
further indicates that soluble factors secreted by MSCs are
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Fig. 4 Glutamate caused a reduction in ATP concentration in cultured cellular ATP concentrations were evaluitgd with a luciferase-based ATP
cortical neurons. AMSCs or CM prevented glutamate-induced ATP de- assay. Data are presented as meantSD. — P<0.001 compared to control
pletion. a A standard curve from an ATP assay showing a linear relation- group, “P<0.01, #P<0.001 compared to glutamate treated group. One-
ship between ATP levels and luminometer measurement values. b Total Way ANOVA
what provide neuroprotection against neuronal injury. Thisis  effect at 50 % CM. At CM concentrations lower than 50 % or
consistent with the view that effects of MSCs are not depen- 70 %, the protective effect was diminished. Pure CM (100 %),
dent on their fully integration into the damaged organs after ~ however, did not lend any neuroprotection. Similarly, Isele
transplantation. NB et al. showed that 100 % BMSC-CM appeared to accel-
One potential advantage of cell-based therapy to treat neu-  erate STS-mediated apoptosis (Isele et al. 2007). Other re-
rological disorders is the ability of transplanted cells to sense  searchers have shown that AMSCs can release chemokine and
environmental factors related to tissue damages and response  pro-inflammatory factors that are detrimental to damaged
to the injured organs. Previous study has shown that trophic tissues (Kilroy et al. 2007; Skalnikova et al. 2011). Adverse
factors released by MSCs increase when they are co-cultured  effects from MSCs may hasten neuronal death and increase
with the injured brain tissue extract (Chen et al. 2002). Isele tissue lesions, particularly when MSCs accumulate at the site
et al. showed that the protective effects of MSCs on rat  of lesions. Recent observations demonstrated that intra-
neurons against staurosporine (STS) or amyloid-beta  cerebroventricular transplantation of MSCs in mice with se-
peptide-induced apoptosis increased significantly if MSCs  vere experimental autoimmune encephalomyelitis (EAE), an
were first exposed to neurobasal medium from apoptotic ~ experimental model of multiple sclerosis, can induce the
neurons (Isele et al. 2007). But in the present study, remark- ~ formation of cellular masses with collagen/fibronectin depo-
able differences in neuron damages were not found between  sition in the brain parenchyma (Grigoriadis et al. 2011). Pre-
AMSCs co-culture and CM treatment, indicating that any  vious studies also indicated that MSCs migrated to and accu-
cross-talking between AMSCs and damaged neurons was  mulated in brain lesion areas after systemically administered
not detectable under this system. The impact of an injured ~ MSCs (Chen et al. 2001). However, Liu et al. had reviewed
environment on the ability of MSCs to repair neural cells  exosomes, a kind of microparticles secreted from cells and
requires further investigation. without immunogenicity to targeted cells, might be a potential
It is important to note that AMSC-CM reduced neural  therapeutic vector for metabolic brain diseases (Liu et al.
injury induced by glutamate excitotoxicity in a  2013). Thus, microparticles from the AMSC-CM might me-
concentration-dependent manner, with an optimal protective  diate neuroprotective effects, reduce the toxic substance of
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Fig. 5 Glutamate resulted in a reduction in levels of NAD* and NADH
and a decrease in the ratio of NAD+/NADH in cortical neurons. AMSCs
or CM prevented NAD" and NADH depletion. a and b Total cellular
NAD" and NADH levels were measured with an enzymatic cycling

assay. ¢ Total cellular ratio of NAD"/NADH. Data are presented as
mean+SD. *"P<0.001 compared to control group,”*P<0.01,"#P<0.001
compared to glutamate treated group. One-Way ANOVA
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Fig. 6 Glutamate reduced MMP in cultured cortical neurons. AMSCs or
CM preserved MMP collapse following glutamate treatment. MMP was
observed using a TMRE fluorescent probe. Image Pro-Plus 6.0 software
was used for quantitative TMRE fluorescent density analysis. Data are
presented as mean+SD. ~~ P<0.001 compared to control group, *P<0.05,
#P<0.01 compared to glutamate treated group. One-Way ANOVA

conditioned medium and thus avoid the risk of stem cells
differentiation into neoplasms.

The foremost regenerative targets following the CNS inju-
ry include increasing cell viability, promoting regeneration of
axon and myelin and reorganizing synapses. GAP-43 is an
intracellular growth-associated protein which appears to assist
neuronal path-finding and branching during development and
regeneration (Benowitz and Routtenberg 1997). In adults,
GAP-43 induces neurotransmitter release, endocytosis and
synaptic vesicle recycling by changing the presynaptic mem-
brane. It is involved in neuronal differentiation, plasticity,
axonal growth and regeneration and synaptic reconstruction
after nerve injury. In vivo and in vitro experiments have
demonstrated that GAP-43 plays an important role in the
processes of regeneration following central and peripheral
nervous system damage. Increased expression of GAP-43 in
lesion areas after brain ischemia or trauma was related to the
activation of endogenous repair mechanism and the promo-
tion of axonal regeneration in the injured nervous system
(Gianola and Rossi 2004). Additionally, GAP-43 was shown
to trigger a significant increase in the regeneration of dorsal
root ganglion (DRG) axons in adult mice after spinal cord
injury in vivo (Bareyre et al. 2002). In the present study, the
expression and distribution of GAP-43 after glutamate expo-
sure and the effect of AMSCs on axonal regeneration was
observed. The result showed the expression of GAP-43 and
the number of GAP-43 positive neurites decreased significant-
ly following glutamate treatment. These indicators increased
dramatically to the normal levels when injured neurons were
treated with AMSCs or CM, suggesting that AMSCs are able
to promote axonal regeneration or outgrowth. The mecha-
nisms may be correlated with neurotrophins or neuro-
regulatory factors released by AMSCs which act as positive
guidance molecules for axonal growth cone, inducing neurites

@ Springer

sprouting and growth following injury. Previous work dem-
onstrated that AMSCs transplantation induced peripheral
nerve repair and activated nerve sprout growth in vivo and
this ability of AMSCs depended on BDNF secretion
(Lopatina et al. 2011). Earlier data indicated that activation
of NMDA receptors suppressed GAP-43 expression and axo-
nal outgrowth in hippocampal slice cultures and IGF-1 ele-
vated GAP-43 expression (McKinney et al. 1999). Recently
(Lietal. 2013) and (Liu et al. 2012). demonstrated that growth
factors neuregulin-13 and IGF-1 could partially reverse de-
creased GAP-43 expression induced by glutamate in DRG
neurons and these effects were involved in activation of
PI3K/Akt and ERK1/2 signaling pathways. These reports
suggest that AMSCs are able to secrete some soluble factors
that activate endogenous restorative and survival mechanisms,
increase GAP-43 expression and promote axonal regeneration
after nerve injury.

Another important aspect of the present study is that
AMSC-CM can reverse the energy depletion induced by
glutamate exitotoxicity, as indicated by enhanced MMP, in-
creased ATP, NAD" and NADH concentrations, and elevated
ratio of NAD/NADH. Increasing evidences suggest that mi-
tochondrial dysfunction play a vital role in glutamate
excitotoxicity (Nicholls 2004; Nicholls et al. 2007). Recently,
mitochondria have been recognized as the key organelle de-
termining the fate of cells because of their central functions
such as ATP synthesis, Ca>* accumulation, superoxide gener-
ation and detoxification and storage of pro-apoptotic proteins
(Orrenius 2004; Smaili et al. 2011). MMP is the key parameter
controlling these mitochondrial functions, which are of great
relevance to neuronal survival. When glutamate-induced ele-
vation of cytoplasmic free calcium ([Ca®'],) exceeds the mi-
tochondrial Ca”" set-point at which the organelle behaves as a
buffer of [Ca®']., mitochondrial Ca** overloading occurs
(Kiedrowski 1999). Consequently, it leads to decline of
MMP and the opening of permeability transition pore (PTP)
which disrupts the proton gradient across the inner mitochon-
drial membrane and causes the bioenergetic collapse and cell
death. Several studies indicate that glutamate decreases the
ATP concentration in neurons (De Cristobal et al. 2002;
Parihar et al. 2008; Foo et al. 2012). The reason for this may
be falling of ATP production or increasing of ATP consump-
tion or both. It has been shown that glutamate continues to
reduce ATP concentrations even after mitochondrial oxidative
phosphorylation and ATP genesis is blocked, indicating that
ATP depletion caused by glutamate is associated with in-
creased ATP consumption (Foo et al. 2012). Other data
showed a decrease in ATP production following glutamate
excitotoxicity (Parihar et al. 2008). Glutamate reduces MMP
contributing to a loss of the proton gradient across the mito-
chondrial membrane, uncoupling of the electron transport
chain, inhibition of oxidative phosphorylation and reduction
of ATP production. During excitotoxic cell injury, impaired
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oxidative phosphorylation results in the release of NAD" from
mitochondria, which is finally cleaved by glycohydrolases
(Belenky et al. 2007; Soane et al. 2007). It is widely accepted
that NAD" is not only an important energy substrate and
cofactor involved in many metabolic reactions (Bieganowski
and Brenner 2004; Belenky et al. 2007), but acts as an aden-
osine donor and source of high energy phosphate for ATP
synthesis (Sheline et al. 2000). NAD" depletion inhibits gly-
colysis, the tricarboxylic acid (TCA) cycle and mitochondrial
oxidative phosphorylation, all of which reduce ATP levels and
lead to energy depletion in neurons (Sheline et al. 2000).
Therefore, neuronal NAD" bioenergetic state and NAD"/
NADH redox state are pivotal factors for cell survival after
excitotoxic insults (Liu et al. 2008, 2009).

Growth factors such as bFGF, BDNF and taurine have been
shown to protect cerebellar granule neurons against
excitotoxicity by increasing the glucose uptake and stabilizing
the cytoplasmic calcium and mitochondrial electrochemical
activity (El Idrissi and Trenkner 1999). A recent study report-
ed that BMSCs genetically modified by Akt elevated ratios of
phosphocreatine/ATP and increased phosphocreatine levels in
surviving myocardial cells (Gnecchi et al. 2009). More recent
data shows that MSC-mediated protection against glutamate
excitotoxicity involves the reduction of glutamatergic signal-
ing (Voulgari-Kokota et al. 2012). Changes in gene expression
from an activity-dependent mature neuron to a more immature
one that is associated with survival and regeneration plasticity,
may be a cause of neuronal desensitization to glutamate. Fu H
et al. by analyzing neuronal mitochondrial proteomics found
that glutamate altered the expression patterns of mitochondrial
proteins involved in energy metabolism (electron transport
chain, TCA cycle and glucose metabolism), oxidative stress
and apoptosis (Fu et al. 2007). Tacrine reversed the expression
pattern of these proteins, as well as the decline in MMP, ATP
production and neuronal cell death following glutamate treat-
ment. Based on these results and those of previous studies, we
surmise that the protective effect of AMSCs against glutamate
excitotoxicity observed in the present study might be due to
AMSCs themselves or bioactive molecules secreted by them
changing the gene expression associated with energy metab-
olism in neurons, maintaining normal mitochondrial functions
and regulating mitochondrial-associated apoptotic signaling
pathways. However, the exact mechanisms of MSC-
mediated benefit in energy depletion during excitotoxicity
need further be explored.

In conclusion, we report that AMSC-CM is able to protect
cortical neurons against damage and apoptosis caused by
glutamate excitotoxicity, ameliorate a decrease in both GAP-
43 expression and the number of GAP-43 positive neurites
and prevent glutamate-induced energy depletion. The neuro-
protective effects of AMSCs may be related to the release of
soluble factors. These findings may provide a new stem cell
application method for the treatment of nervous system

diseases. But a detailed understanding of the mechanisms of
MSC-mediated benefits within the CNS and the identification
of the soluble factors mediating MSCs protection will be
necessary for further development of the clinical application
of MSC-based therapy for neurological disorders.
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