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Abstract

The AMPK/Snf1 kinase has a central role in carbon metabolism homeostasis in Saccharomyces cerevisiae. In this study, we
show that Snf1 activity, which requires phosphorylation of the Thr210 residue, is needed for protection against selenite
toxicity. Such protection involves the Elm1 kinase, which acts upstream of Snf1 to activate it. Basal Snf1 activity is sufficient
for the defense against selenite, although Snf1 Thr210 phosphorylation levels become increased at advanced treatment
times, probably by inhibition of the Snf1 dephosphorylation function of the Reg1 phosphatase. Contrary to glucose
deprivation, Snf1 remains cytosolic during selenite treatment, and the protective function of the kinase does not require its
known nuclear effectors. Upon selenite treatment, a null snf1 mutant displays higher levels of oxidized versus reduced
glutathione compared to wild type cells, and its hypersensitivity to the agent is rescued by overexpression of the
glutathione reductase gene GLR1. In the presence of agents such as diethyl maleate or diamide, which cause alterations in
glutathione redox homeostasis by increasing the levels of oxidized glutathione, yeast cells also require Snf1 in an Elm1-
dependent manner for growth. These observations demonstrate a role of Snf1 to protect yeast cells in situations where
glutathione-dependent redox homeostasis is altered to a more oxidant intracellular environment and associates AMPK to
responses against oxidative stress.
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Introduction

The AMP-activated protein kinase (AMPK) family is constituted

by protein complexes that participate in metabolic stress responses

addressed to maintain cellular ATP levels in eukaryotes [1]. Full

activity of the catalytic a subunit of the AMPK complex requires

phosphorylation of a T-loop threonine residue, as well as binding

of the b and c subunits. The only member of the AMPK family in

Saccharomyces cerevisiae is Snf1, which plays a key role in adaptation

of cells to glucose limitation and use of alternative carbon sources

[2,3]. Snf1 activity requires the participation of the regulatory c
subunit Snf4 and one of the three b subunits Gal83, Sip1 or Sip2.

Upon glucose limitation, activation of Snf1 needs phosphorylation

of the T-loop Thr210 residue. This is carried out by one of the

three redundant kinases Sak1, Elm1 or Tos3 [4,5]. Although Sak1

plays the most relevant role in such activation, only the absence of

the three upstream Snf1-activating kinases causes complete

inability for growth on carbon sources other than glucose, which

indicates a partially redundant function of Sak1, Elm1 and Tos3

on Snf1 activation in glucose-limited conditions [4,5]. On the

other hand, the phosphorylation state of Thr210 is negatively

regulated by the protein phosphatase 1 (PP1) complex. This is

composed by the Glc7 catalytic subunit and the Reg1 regulatory

subunit [6]. This complex seems to be the direct or indirect sensor

of the cellular glucose status [7,8]. Recently, PP2A-type phospha-

tases have also been implicated in regulating Snf1 phosphorylation

and activity [8,9]. Activated Snf1 in glucose limitation conditions

regulates the expression of multiple genes, which are not

necessarily related to carbon source metabolism [10]. Among

the best-characterized nuclear protein targets of Snf1 are the Mig1

repressor and the Cat8, Sip4 and Adr1 transcriptional activators

[3].

In addition to glucose limitation Snf1 also participates in the

response of yeast cells to other environmental stresses. Thus, a null

snf1 mutant is hypersensitive to sodium and lithium or to

hygromicin B [11–13], calcium excess [14], alkaline pH conditions

[15], genotoxics such as hydroxyurea and methyl methane

sulfonate [16], and cadmium [17]. Most of these stresses, when

applied in normal glucose concentration conditions, cause

phosphorylation of Snf1 Thr210, with Sak1 playing the major

but not exclusive Snf1-activation role. Nevertheless, the levels of

Snf1 activity required for responding to the above stresses are

lower than those required for responding to glucose depletion [12–

14,16]. In some cases, such as the response to hydroxyurea or

cadmium, the detectable phosphorylation levels of Snf1 upon

stress do not rise over basal levels [14,16] and a Snf1 mutant

protein in which the Thr210 residue has been replaced with

alanine is still able to protect against hygromicin B [11].

Selenium (Se) is an essential microelement in human cells

present as selenocysteine in selenoproteins [18]. Among the latter,

there are enzymes protecting against oxidation of macromolecules

by reactive oxygen species. On the other hand, at high

concentrations Se may be toxic because of the generation of

oxidative stress conditions and DNA damage [18,19]. S. cerevisiae is
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an adequate model to study the molecular basis of Se toxicity since

this yeast lacks selenoproteins and therefore, Se is not required as

growth factor. In S. cerevisiae the more toxic form of Se is selenide.

This can be formed from other Se forms such as selenite [20], the

predominant environmental form. In the presence of glucose,

selenite enters the yeast cell through the high affinity phosphate

transporter Pho84 in low phosphate conditions and through both

Pho84 and the low affinity transporters Pho87/Pho90/Pho91 in

high phosphate conditions [21]. Once inside the cell, selenite

causes double-strand breaks, high mutagenicity rate, cell cycle

arrest and protein hypercarbonylation which is indicative of

extensive protein oxidative damage [22–24]. Overall, these effects

may be indicative of intracellular oxidative stress caused by

selenite. Transcriptomic studies [25] have demonstrated selenite-

mediated upregulation of genes involved in high affinity iron

uptake (whose expression is under the control of the Aft1

transcription factor) and in stress and protein degradation

responses.

Based on the stress effects caused by selenite in yeast cells and

on the protective role of Snf1 in defense against a diversity of

stresses in addition to glucose depletion, this led us to explore the

role of the Snf1 pathway in the response to selenite stress and in a

broader perspective, in the response to changes in the redox state

of the cell. Our results show that Snf1 activity is required to protect

yeast cells against situations that decrease the ratio of reduced

versus oxidized glutathione, including selenite treatment. We also

demonstrate that such protective role of Snf1 takes place at the

cytosol and does not correlate with extensive phosphorylation of

Thr210 upon selenite addition. Overall, this study reveals a

relationship between Snf1 kinase and redox regulation processes in

yeast cells.

Materials and Methods

Strains and Plasmids
Strains employed in this study (W303 genetic background unless

otherwise indicated) are listed in Table 1. Plasmids pWS93 and its

derivatives pWS-Snf1, pWS-Snf1-T210A and pWS-Snf1-K84R,

as well as pHA-Mig1 have been described [26]. Plasmid pYCp414

overexpresses TRK1 and derives from vector pCM262 [27].

Plasmid pOV84 expresses a Snf1-GFP protein under the SNF1

promoter [28]. Plasmid pMM1039 was obtained in this study by

cloning the GLR1 open reading frame under the control of the

tetO7 promoter in the centromeric vector pCM189 [29]. P1116 is a

multicopy plasmid overexpressing GLR1 under its own promoter

[22].

Growth Media and Culture Conditions
YPD (1% yeast extract, 2% peptone, 2% glucose) or synthetic

SC medium were usually employed for S. cerevisiae cell growth. For

glucose starvation conditions, concentration of glucose in the

medium was 0.05%. YPGal and YPGly contain respectively 2%

galactose or 3% glycerol instead of glucose. When required, YPD

medium was supplemented with exogenous iron by addition of

90 mM BPS (phosphate buffered saline) plus 100 mM FeSO4 [40].

To control phosphate concentration in the growth medium, SD

broth with 2% glucose w/o phosphate (Formedium) was employed

as phosphate-depleted basal medium, to which KH2PO4 was

added at 0.2 mM (low phosphate conditions) or 7.3 mM (normal

phosphate conditions). In the former case, KCl was added up to

7.3 mM final concentration. Media were solidified with 2% agar.

Sodium selenite (Sigma) was added at the concentration indicated

in each case. Cells were grown at 30uC, with shaking in the case of

liquid cultures.

Genetic Methods
Standard protocols were used for DNA manipulations and

transformation of yeast cells. Single null mutants were generated

using the short-flanking homology approach after PCR amplifi-

cation of the natMX4 cassette and selection for nouseothricin

resistance [30]. Disruptions were confirmed by PCR analysis. Null

mutations in some genes were moved from the BY4741 or other

genetic backgrounds to the W303 background after PCR

amplification of the corresponding disruption cassette plus about

300 bp flanking genomic regions in the donor mutant, and

subsequent transformation of the amplified fragment into wild

type W303 cells. Multiple mutants were obtained by crossing the

parental mutant strains, followed by diploid sporulation, tetrad

analysis, and selection of the mutant combinations.

Determination of Growth Sensitivities
Sensitivity to selenite was determined in plate growth assays by

spotting serial 1:10 dilutions of exponential cultures onto YPD or

SC plates containing sodium selenite, and recording growth after 2

or 3 days of incubation at 30uC. Growth of several strains in liquid

medium under parallel separate treatments was automatically

recorded (optical density at 600 nm) at one-hour intervals during

24 hours, using individual 0.5 ml cultures in shaken microtiter

plates sealed with oxygen-permeable plastic sheets, in a Power-

Wave XS (Biotek) apparatus at controlled temperature. Identical

cell numbers (26105) were inoculated initially in each parallel

culture.

Northern Blot Analyses
RNA isolation and electrophoresis, probe labeling with digox-

igenin, hybridization, and signal detection were done as described

previously [29]. Gene probes were generated by PCR from

genomic DNA, using oligonucleotides designed to amplify internal

open reading frame sequences. SNR19 mRNA was employed as

loading control.

Immunoblot Analyses of Snf1 Phosphorylation at Thr210
From cell samples obtained at the indicated times in each

experiment, protein extracts were prepared by the heat inactiva-

tion/alkaline treatment method [31]. They were separated by

SDS-PAGE and analyzed by immunoblotting with anti-phospho-

Thr172-AMPK (Cell Signaling Technology) at 1:1,000 dilution.

Membranes were reprobed to determine total Snf1 levels with

rabbit polyclonal anti-Snf1 antibodies [12] at 1:1,000 dilution.

Microscopy Methods
GFP-tagged proteins were visualized with an Olimpus BZ51

fluorescence microscope, after nuclear staining of cell samples with

Hoesch (5 mg ml21, 6 min). U-MNUA2 and U-MNUA3 filters

were employed respectively for Hoesch and GFP staining.

Immunofluorescence experiments to localize HA-tagged Mig1

were done with 3F10 rat anti-HA (Roche) and Alexa488 goat anti-

rat (Molecular Probes) and parallel nuclear staining with DAPI.

Analytical Methods
Cellular concentrations of oxidized and reduced glutathione

were determined by using the Ellman’s reagent method in culture

samples quenched by 5-sulfosalicylic acid [32]. Cell concentration

and cell volume values were respectively determined in formalde-

hyde-fixed and non-fixed samples using a Coulter Z2 analyzer,

and were employed to calculate glutathione concentrations.

Glucose-6-phosphate intracellular concentration was determined

by electrospray mass spectrometry from 20 mg cells (dry weight).

Snf1 Kinase and Glutathione Oxidation in Yeast
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Sample quenching and extraction was made using tricine buffer

pH 7.4 [33]. The methanol/water phase was evaporated in

vacuum and resuspended in 100 ml of water/ethanol (50/50, v/v).

An Agilent 1290 LC system coupled to an ESI-Q-TOF MS/MS

6520 instrument (Agilent Technologies) was used, employing a

column with 1.8 mM particle size. MassHunter Qualitative

Analysis Software (Agilent Technologies) was used for integration

and extraction of peak intensities. The m/z value for quantifica-

tion was 259.0224 [M-H]2. Levels were adjusted to internal

standard (phenylalanine-C13, m/z 165.076 [M-H]2).

Results

Snf1 Activity Protects Against Selenite Toxicity
We initially determined the sensitivity of a S. cerevisiae Dsnf1 null

mutant to selenite stress. The mutant was more sensitive to the

agent than wild type cells (Figure 1A). Given that selenite

treatment of yeast cells induces expression of Aft1-dependent

genes of the high affinity mechanism for iron uptake [25], in

parallel we determined the selenite sensitivity of a Daft1 mutant.

This was also hypersensitive to the agent, but while its

hypersensitivity to selenite was rescued in iron-repletion condi-

tions, this was not the case for the Dsnf1 mutant (Figure 1A). The

observation supports an iron-independent protective role of the

Snf1 kinase against selenite toxicity.

Next, we determined whether Snf1 activity is required for

protection after selenite treatment, by employing yeast mutants

expressing two mutated forms of Snf1. The snf1-K84R mutant

expresses a Snf1 form which lacks a Lys84 residue required for

ATP binding, and consequently has a very low kinase activity,

while the snf1-T210A mutant expresses a Snf1 form lacking the

Thr210 residue subjected to activating phosphorylation [3–5].

None of the two Snf1 mutant forms expressed from a plasmid

rescued the selenite hypersensitivity of the Dsnf1 null strain,

compared with a control wild type Snf1 form (Figure 1B). This

therefore confirms that the Snf1 kinase activity is needed either for

the response or for recovery from selenite stress.

. Snf1 activity requires one of the three b subunits Sip1, Sip2 or

Gal83, which confer substrate specificity to the complex [28,34].

Under glucose deprivation, Gal83 internalizes into the nucleus

together with Snf1, while Sip1 becomes vacuole-associated and

Sip2 remains dispersed at the cytosol [28,35]. Although in these

glucose-minus conditions Gal83 seems to be the main Snf1

activator, the other two b subunits may have redundant roles as

shown from the growth phenotypes of the respective single and

double mutants in glucose-deprived medium [34]. Using a similar

approach, we explored the participation of the three b subunits in

protection against selenite. The strain lacking all three b subunits

was as sensitive to selenite as the Dsnf1 mutant, while the strains

Table 1. Strains employed in this study.

Strain Genotype Source and comments

W303-1A MATa ura3-1ade2-1 leu2-3,112 trp1-1 his3-11,15 can1-1 Wild type

Wsnf1 W303-1A snf1::HIS3 From Francisco Estruch

WD3 W303-1A trk1::LEU2 trk2::HIS3. From Joaquin Ariño

MML348 W303-1A aft1-D5::URA3 From our laboratory

MML1304 W303-1A pho84::natMX4 This work

MML1370 W303-1A sak1::natMX4 This work

MML1387 W303-1A sak1::natMX4 elm1::kanMX4 This work, elm1::kanNX4 mutation from YPDahl21

MML1389 W303-1A sak1::natMX4 tos3::TRP1 This work, tos3::TRP1 mutation from YPDahl19

MML1390 W303-1A elm1::kanMX4 tos3::TRP1 This work, elm1::kan MX4 and tos3::TRP1 mutations from YPDahl21 and YPDah19

MML1392 W303-1A sak1::natMX4 elm1::kanMX4 tos3::TRP1 This work, elm1::kan MX4 and tos3::TRP1 mutations from YPDahl21 and YPDahl19

MML1396 W303-1A sip4::kanMX4. This work

MML1401 W303-1A snf1::HIS3 pho84::natMX4 This work

MML1407 W303-1A snf4::kanMX4 This work

MML1408 W303-1A mig1::kanMX4 This work

MML1417 W303-1A cat8::natMX4 This work

MML1419 W303-1A adr1::natMX4. This work

MML1442 W303-1A reg1::URA3 This work, from MCY3278 [6]

MML1445 W303-1A sip1::natMX4 sip2::kanMX4 This work

MML1447 W303-1A snf1::HIS3 trk1::LEU2 trk2::HIS3 This work, from WD3

MML1452 W303-1A sip1::natMX4 gal83::HIS3 This work, gal83::HIS3 mutation from MSY558 [34]

MML1454 W303-1A sip2::kanMX4 gal83::HIS3 This work, gal83::HIS3 mutation from MSY558 [34]

MML1459 W303-1A sip1::natMX4 sip2::kanMX4 gal83::HIS3 This work, gal83::HIS3 mutation from MSY558 [34]

MML1724 W303-1A snf1::HIS3 elm1::kanMX4 This work

YPDahl19 W303-1A tos3::TRP1 From Stefan Hohmann [13]

YPDahl21 W303-1A elm1::kanMX4 From Stefan Hohmann [13]

DLY4033 MATa his3 ura3 lys2 trp1 Wild type, from Gislene Pereira [38]

AKY516 MATa his3 ura3 lys2 trp1 ELM1-GFP::kanMX4 Derived from DLY4033 [38]

doi:10.1371/journal.pone.0058283.t001
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expressing only one of the three subunits displayed a wild type

phenotype (Figure 1C). Therefore, any of the Sip1, Sip2 and

Gal83 proteins alone may activate Snf1 with full efficiency against

selenite toxicity. Consistently with the role of the Snf4 c subunit on

Snf1, a Dsnf4 strain was also hypersensitive to selenite, although it

displayed a slightly milder phenotype than mutants in the a or b
subunits (Figure 1C).

Elm1 Kinase Plays an Important Role in Protection
Against Selenite Toxicity

Three upstream kinases (Sak1, Elm1 and Tos3) participate in

Thr210 phosphorylation and activation of Snf1 in response to

glucose depletion and other stresses. They act redundantly,

although in many cases (for instance in glucose-minus conditions)

Sak1 plays the most relevant role [3]. We tested the selenite

sensitivity of the individual null mutants in each of the three Snf1

Figure 1. Snf1 activity is required for protection against selenite. (A) Growth assays of serial dilutions of the respective strains on YPD
medium with the indicated additions. Growth was recorded after 48 hours at 30uC. Strains employed: wild type (W303-1A), Dsnf1 (Wsnf1) and Daft1
(MML348). (B) Growth assays of serial dilutions of the following strains, plated on SC medium with sodium selenite: wild type (W303-1A) and Dsnf1
(Wsnf1) cells transformed with vector pWS93, and Dsnf1 cells transformed with pWS-Snf1, pWS-Snf1-T210A and pWS-Snf1-K84R. Growth was
recorded after 3 days at 30uC. (C) As in (A), with the following strains in addition to wild type and Dsnf1: Dsip1Dsip2 (MML1445), Dsip1Dgal83
(MML1452), Dsip2Dgal83 (MML1454), Dsip1Dsip2Dgal83 (MML1459) and Dsnf4 (MML1407).
doi:10.1371/journal.pone.0058283.g001

Snf1 Kinase and Glutathione Oxidation in Yeast

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e58283



kinases (Figure 2A). Only the Delm1 mutant was more sensitive

than the wild type strain, displaying almost the same sensitivity

levels as the Dsnf1 mutant, which suggests an important role for

Elm1 in the selenite stress response. This was confirmed when the

sensitivity of the double mutants was tested (Figure 2A). Cells

expressing only Tos3 were as sensitive to selenite as the Dsnf1

mutant or the mutant lacking all three upstream kinases,

indicating that Tos3 plays no protective role at all. Cells expressing

only Sak1 displayed an intermediate sensitivity phenotype, while

cells expressing only Elm1 had the same sensitivity to selenite as

wild type cells. Therefore, Elm1 is sufficient for protection against

this agent, although in its absence Sak1 would perform some

protection.

Elm1 and Snf1 carry out partially independent parallel roles in

the response to sodium stress [13], contrary to the response to

glucose deprivation in which both kinases participate in the same

pathway. We therefore determined whether the former was also

the case in the protective response to selenite. With this objective,

we studied the sensitivity to the agent in the double Dsnf1Delm1

mutant compared to the single Dsnf1 and Delm1 mutants. The

double mutant displayed additive sensitivity (Figure 2B), indicating

that besides its activating role on Snf1, Elm1 carries out protective

functions against selenite which are Snf1-independent.

Snf1 Remains at the Cytosol Upon Selenite Treatment
A fraction of Snf1 molecules localize to the nucleus upon

glucose depletion, under regulation by Gal83 [28]. Alkaline stress

also causes Snf1 nuclear localization [12]. Using a Snf1-GFP

construction, we determined its location after application of a

selenite stress. Snf1 remained at the cytosol during the entire

period of treatment, contrary to cells that had been shifted to

glycerol medium (Figure 3A). These results suggested that

protection against selenite does not require the nuclear pool of

activated Snf1, and are in accordance with the main role of Elm1

as activator of Snf1 upon selenite stress. In fact, Elm1 has been

characterized as a bud neck-associated kinase playing important

roles in septin organization and cytokinesis [36,37] and in the

spindle position checkpoint [38,39]. Using a functional Elm1-GFP

Figure 2. Protection against selenite preferentially requires the Elm1 kinase. (A) Growth assays of serial dilutions of the following strains on
YPD medium with sodium selenite: wild type (W303-1A), Dsnf1 (Wsnf1), Dsak1 (MML1370), Delm1 (YPDahl21), Dtos3 (YPDahl19), Dsak1Delm1
(MML1387), Dsak1Dtos3 (MML1389), Delm1Dtos3 (MML1390) and Dsak1Delm1Dtos3 (MML1392). (B) As in (A) with the strains: wild type, Dsnf1, Delm1
and Dsnf1Delm1 (MML1724).
doi:10.1371/journal.pone.0058283.g002
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form [38], we could determine that Elm1 protein remains at the

bud neck in selenite-treated cells (Figure S1).

Other experiments confirmed the nucleus-independent function

of Snf1 in selenite stress signaling. First, mutants in nuclear

effectors of Snf1 such as Cat8, Mig1, Sip4 or Adr1 [3,10] were as

sensitive to selenite as wild type cells (Figure 3B), supporting that

none of them is involved in protection against the agent. Next, we

employed Mig1 localization as reporter of Snf1-mediated signal

transduction to the nucleus. Thus, upon glucose depletion Snf1

phosphorylates Mig1 promoting its export from the nucleus and

consequent derepression of glucose-repressed genes [26]. While

shifting the cells from glucose to galactose-based medium caused

rapid exit of Mig1 from the nucleus, extensive nuclear Mig1

staining was still observed after 3 hours of selenite treatment

(Figure 3C). In parallel, we determined the mRNA levels of two

genes, HXT2 and SUC2, whose expression is repressed by Mig1 in

glucose medium and activated in a Snf1-dependent manner upon

shifting to alternative carbon sources. In contrast to control cells

after 1 hour in galactose medium, no detectable derepression of

the expression of HXT2 and SUC2 was observed even after 3 hours

of treatment with selenite (Figure 3D). Overall, these experiments

support that the selenite-induced signal does not regulate the

activity of nuclear effectors of Snf1 such as Mig1, and that Snf1

plays its protective role at the cytosol.

Phosphorylation of Snf1 does not Correlate with
Protection Against Selenite Toxicity

We next studied whether Snf1 becomes phosphorylated at

Thr210 upon selenite addition. Western blot analyses using an

antibody specifically recognizing the Snf1 form phosphorylated at

the T-loop Thr residue demonstrated a moderate phosphorylation

of Thr210 after selenite addition, which was only manifested after

2 hours of treatment and at later times (Figure 4A). This Snf1

phosphorylation therefore occurred in growth medium with

normal glucose levels (2% concentration), and did not reach the

Thr210 phosphorylation levels observed upon glucose depletion.

Lower selenite concentrations provoked a weaker and less

sustained response (data not shown). The delayed Snf1 phosphor-

Figure 3. Protection against selenite toxicity does not require activity of the known nuclear effectors of Snf1. (A) Localization of Snf1
upon different treatments. The Snf1-GFP protein expressed in pOV84-transformed wild type cells was visualized by fluorescence microscopy in cells
growing in SC medium without treatment (Glucose) or after 2 hours treatment with 4 mM sodium selenite or 1 mM DEM. In parallel, cell samples
were shifted to YPGly and observed one hour later (Glycerol). Prior to observations, samples were stained with Hoesch for nuclei localization. The
corresponding phase contrast fields (PC) are shown. (B) Growth assays of serial dilutions of the following strains on YPD medium with sodium
selenite: wild type (W303-1A), Dsnf1 (Wsnf1), Dcat8 (MML1417), Dmig1 (MML1408), Dsip4 (MML1396) and Dadr1 (MML1419). (C) Localization of HA-
Mig1 upon different treatments. Cells transformed with pHA-Mig1 were grown in SC medium and treated with selenite for the indicated times or
shifted to medium with 2% galactose instead of glucose. Cells were observed by immunofluorescence experiments with anti-HA antibodies, with
parallel nuclear staining with DAPI. (D) Northern blot expression analysis of the indicated genes in wild type (W303-1A) cells growing in YPD medium
without (Glucose) or with selenite for the indicated times (hours), or in YPGal medium (Galactose) for 1 hour. SNR19 was employed as loading control.
The same blotted membrane was successively hybridized with the three probes after extensive washings.
doi:10.1371/journal.pone.0058283.g003
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ylation response upon selenite treatment could reflect indirect

effects not necessarily related to the protective role of Snf1 against

the agent. Additional observations by us confirmed that phos-

phorylation of Snf1 is not required for protection against selenite.

Thus, in spite of the fact that Snf1 becomes phosphorylated at

Thr210 when yeast cells are grown in carbon sources alternative to

glucose, the sensitivity of the yeast cells in front of selenite was

increased when growing with galactose (Figure 4B) or glycerol [24]

as only carbon sources compared to cells growing in glucose-based

medium. We also determined the sensitivity to selenite of a null

Dreg1 mutant that displays constitutive Snf1 phosphorylation in

glucose medium [7,8]. In this mutant, selenite caused additional

phosphorylation of Snf1 over the basal levels at earlier times than

in wild type cells (Figure 4C). However, the Dreg1 mutant did not

display higher resistance to selenite than wild type cells, and in fact

was as sensitive to the agent as Dsnf1 cells (Figure 4D). This may

point to interfering effects of selenite on Reg1 and probably other

phosphatases (see Discussion). In any case, the above results

together indicate that although Snf1 activity mediated by Thr210

phosphorylation is required for protection against selenite toxicity,

increased phosphorylation over the basal levels does not cause

further protection.

The Selenite Toxic Effects are not Due to Glucose
Deprivation by the Agent

The delayed phosphorylation of Snf1 upon selenite treatment

seems to indicate that this agent does not cause immediate glucose

deprivation effects and therefore discards this as an explanation for

the growth sensitivity effects of the mutant. That selenite does not

induce expression of HXT2 or SUC2 also argues against

occurrence of glucose deprivation effects caused by the agent.

However, we further addressed this point using several approach-

es. First, we asked whether the hypersensitivity of the Dsnf1 mutant

could be caused by selenite effects at the cell surface not able to be

counteracted in the absence of Snf1 function. Thus, plasma

membrane depolarization induced by selenite could inhibit

glucose uptake and consequently activate Snf1. The high affinity

potassium transport system formed by Trk1 and Trk2 is a main

determinant of the yeast plasma membrane electrochemical

potential [40]. In case that selenite provokes membrane depolar-

ization, hyperpolarized Dtrk1Dtrk2 mutants would be less sensitive

to selenite and the absence of Trk1 and Trk2 would at least

partially rescue the selenite sensitivity of Dsnf1 cells [11]. Similarly,

overexpression of TRK1 depolarizes the plasma membrane [27]

and this would exacerbate the selenite sensitivity of Dsnf1 cells.

However, these hypothesis were not confirmed (Figure S2A),

which argues against selenite effects on plasma membrane

polarization. Next, we determined whether growing cells in

medium with higher glucose concentration than normal rescued

selenite toxicity. Contrary to other stresses such as alkaline

treatment [15], the selenite sensitivity of Dsnf1 compared to wild

type cells was not affected by growing cells in 5% glucose (Figure

S2B). Finally, we determined intracellular glucose-6-phosphate

levels upon selenite treatment to determine possible effects of the

agent on glucose uptake. Wild type cells treated during 4 hours did

not show a decrease of the levels of glucose-6-phosphate (Figure

S2C). On the contrary, intracellular levels of this metabolite

increased at initial times to regain the initial levels at 4 hours. This

initial increase may be related to the selenite-mediated transcrip-

tional upregulation of carbohydrate synthesis genes described in

Ref. 25. In Dsnf1 cells, a similar kinetics of the evolution of

intracellular glucose-6-phosphate was observed, although concen-

trations of the metabolite were lower than in wild type cells at all

treatment times as well as in untreated cultures (Figure S2C),

indicating that this is a selenite-independent effect. In summary,

the experiments argue against an intracellular glucose-depletion

effect by selenite, and support that Snf1 phosphorylation at

advanced treatment times is not due to glucose deprivation.

Figure 4. Phosphorylation levels of Snf1 at Thr210 do not correlate with protection against selenite treatment. (A) Western blot
analysis of phosphorylated Snf1 at Thr210 with anti-phospho-Thr172-AMPK (upper panel). Blots were rehybridized with anti-Snf1 antibodies for total
Snf1 (lower panel). Samples were obtained from wild type (W303-1A) exponential cultures in YPD treated with sodium selenite for the indicated
times. Control samples were run from YPD-grown wild type cells that were shifted for 1 hour to YPGly (-Glu). (B) Growth assays of serial dilutions of
wild type (W303-1A) cells in YPGal medium with the indicated concentrations of selenite. (C) As in (A) with samples from wild type and Dreg1
(MML1442) cells. (D) Growth assays of serial culture dilutions of wild type (W303-1A), Dsnf1 (Wsnf1) and Dreg1 (MML1442) strains on YPD medium
with selenite.
doi:10.1371/journal.pone.0058283.g004
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Toxicity by Selenite Requires Entry of the Agent into the
Cells

To further address the causes of the hypersensitivity of Dsnf1

mutant cells to selenite, we studied whether the mutant was still

hypersensitive to selenite when entry of this agent into the cells was

inhibited. In fermentative growth conditions such as those

employed in the current study, selenite enters S. cerevisiae cells

through the high affinity phosphate transporters Pho84 in low

phosphate medium, and through both the high affinity and the low

affinity transporters in normal phosphate medium [21]. We took

advantage of the fact that expression of PHO89, which codes for

the alternative high affinity transporter Pho89, is induced by

selenite and is under the control of Snf1 in both low and normal

phosphate medium (Figure S3). Therefore, in Dsnf1Dpho84 cells in

low phosphate conditions no expression of the high affinity

phosphate transporters occurs and phosphate transport may be

compromised. This situation would be exacerbated in the presence

of 3 mM selenite, which competes with the low phosphate

amounts for entrance through the poorly operational low affinity

transport system [21]. The resulting phosphate starvation condi-

tions would explain the poor growth displayed by the Dsnf1Dpho84

cells in the presence of selenite under low phosphate conditions

(Figure 5). However, in normal phosphate conditions the

susceptibility of the double mutant to selenite is similar to wild

type cells (Figure 5). That is, in the absence of the Pho84/Pho89

high affinity transporter and when the high phosphate concentra-

tion (7.3 mM) is advantageously competing with 3 mM selenite for

the low affinity transporter [21], then selenite toxicity is decreased

in a Dsnf1 background. Altogether, these observations support that

the severe effects of selenite on Dsnf1 cells require entry of the

agent into the cells.

Sensitivity of Snf1-deficient Cells to Selenite is Related to
Alterations in Glutathione Metabolism

The tripeptide glutathione (L-c-glutamyl-L-cysteinylglycine,

GSH and GSSG respectively in its reduced and oxidized forms)

is an essential thiol redox regulator [41]. Selenite causes depletion

of GSH in yeast [20] as well as in other organisms [18].

Accordingly, overexpression of the S. cerevisiae glutathione reduc-

tase gene (GLR1) rescues selenite sensitivity [22]. In addition, in

yeast cells selenite induces expression of GLR1 and another key

gene for GSH metabolism, GSH1 (for L-c-glutamyl-L-cysteine

synthetase) [25]. Alteration of GSH metabolism could therefore

explain the differential toxic effects of selenite on Dsnf1 cells, and

we explored this possibility.

First, we observed that selenite causes a more pronounced

transitory induction of GLR1 and GSH1 expression in Dsnf1 than

in wild type cells, which may be indicative of more intense

alteration in glutathione pools in the mutant (Figure S4). In order

to confirm this, we measured GSH and GSSG intracellular

concentration upon selenite treatment in the wild type and mutant

strains (Figure 6A). The GSH pool decreased in both strains

during the next 6 hours after selenite addition, following similar

kinetics. On the contrary, GSSG accumulated at significantly

higher levels in Dsnf1 cells, particularly during the initial 4 hours of

treatment. Consequently, the mutant cells exhibited a lower

GSH/GSSG ratio during initial treatment times (Figure 6B).

When the GSH redox potential (EGSH) was calculated from the

GSH/GSSG concentrations, it began with almost identical values

in untreated cultures of both strains but increased ,16 mV in wild

type cells and ,24 mV in mutant cells after one hour of selenite

treatment, and only returned to similar values for both strains after

6 hours of treatment (Figure 6C). These results confirmed that

glutathione homeostasis is more dramatically altered by selenite in

the absence of Snf1. To correlate the effects on the GSH/GSSG

ratio with the growth effects of selenite, we overexpressed GLR1

from a multicopy plasmid or from the tetO7 promoter in both wild

type and Dsnf1 cells. With both overexpression strategies the

relative hypersensitivity of Dsnf1 cells in selenite plates was

significantly rescued (Figure 6D). This therefore supported the

explanation that the inhibitory effects of selenite on Dsnf1 cells are

caused by the accumulation of GSSG relative to GSH.

Snf1 Kinase Activity Protects Against Agents Causing
GSH Oxidation

The previous observations pointed to a general role of Snf1

in the defense against glutathione oxidation. To test this

hypothesis, we carried out several experiments. First, we

employed other agents that provoke changes in GSH homeo-

stasis by oxidizing this molecule, such as diethyl maleate (DEM)

[42] or diamide [43]. Absence of the Snf1 activity either in cells

lacking Snf1 or the three b subunit components caused

hypersensitivity to both DEM and diamide (Figure 7A). This

is in contrast with the normal sensitivity of the mutants to t-

butyl hydroperoxide (t-BOOH), which discards a general

protective role of Snf1 activity in oxidative stress conditions.

To confirm that Snf1 activity is required to counteract the

Figure 5. Effect of selenite on growth in low or normal phosphate conditions. Relative growth of wild type (W303-1A), Dsnf1 (Wsnf1),
Dpho84 (MML1304) and Dsnf1Dpho84 (MML1401) cells in low or normal phosphate medium without or with 3 mM selenite. Growth in shaken
microtiter plates was automatically recorded and the growth values reached by each strain after 24 hours were made relative to the growth of wild
type cells, which was given the unit value for each growth condition considered. The mean of three independent experiments (6 s.d.) is represented.
Note that different scales of the y-axis are employed in both panels.
doi:10.1371/journal.pone.0058283.g005
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effects of GSH-oxidizing agents, we showed that the snf1-K84R

and snf1-T210A mutations do not complement the DEM-

sensitive phenotype of a Dsnf1 mutant, in contrast to the wild

type form (Figure 7B). As in the case of selenite, the presence of

the upstream kinase Elm1 alone was sufficient to confer wild

type levels of DEM sensitivity to yeast cells (Figure 7C), and

DEM did not provoke migration of Snf1 into the nucleus

(Figure 3). Also as with selenite, both DEM and diamide caused

phosphorylation at Snf1 Thr210 but only after 2 hours of

treatment (Figure 7D). Finally, we confirmed that overexpres-

sion of GLR1 protected the mutant against DEM toxicity

(Figure 7E).

Summarizing, our results showed that Snf1 activity has a

general protective role in yeast cells in situations that lead to

glutathione oxidation such as the presence of selenite, DEM or

diamide.

Discussion

AMPK/Snf1 responds to metabolic stress in yeast cells, its

kinase activity being required for adaptation to glucose limitation

and growth in alternative carbon sources [3]. Snf1 also plays a

defense function against a number of environmental stresses (see

Introduction), although this role does not always require additional

Figure 6. The ratio of reduced vs oxidized glutathione is altered upon selenite treatment. (A) Intracellular concentration of GSH (left) and
GSSG (right) in cells treated with 2 mM sodium selenite for the indicated times. Wild type (W303-1A, continuous lines) and mutant Dsnf1 (Wsnf1,
dashed lines) cells were grown in SC medium. Values (6 s.d.) are the mean of three independent experiments. (B) GSH/GSSG ratio as determined
from the concentration values shown in part (A). (C) GSH redox potential (EGSH) in wild type (continuous lines) and mutant Dsnf1 (dashed lines) cells
treated with selenite. EGSH was calculated from the GSH and GSSG concentration values in each of the three experiments indicated in part (A), using
the Nernst equation for the GSH/GSSG pair. The mean (6 s.d.) is represented. (D) Growth assays in SC medium of serial dilutions of the strains
indicated in part (A) transformed with vector pCM189 or its derivative pMM1039 (tetO-GLR1), or of the same strains transformed with the multicopy
vector YEplac195 or its derivative P1116 overexpressing GLR1 (right panels).
doi:10.1371/journal.pone.0058283.g006
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activation of Snf1 over basal levels [14,16]. In contrast, oxidative

stress by peroxide also activates Snf1, but in this case the kinase

does not seem to participate in protection of yeast cells against

peroxide toxicity [12,16, and this work]. In the present study we

have shown that Snf1 activity is required for defense of S. cerevisiae

cells upon selenite treatment. Although we observed phosphory-

lation of Snf1 Thr210 at advanced treatment times, the basal

activity of Snf1 is sufficient to protect against the agent, and

nutritionally or genetically provoked situations where Snf1

becomes permanently phosphorylated at Thr210 do not provide

additional selenite resistance. Since Snf1 phosphorylation levels

are mainly regulated by the activity of Reg1 [7,8], the late

phosphorylation of Snf1 provoked by selenite could be due to

inactivation of Reg1 (and alternative PP1- or PP2A-type

phosphatases) by the agent. Inhibitory modulation of the activity

of PP1 phosphatases by selenite has been described in human cells

[44]. The proposition that in yeast cells selenite could affect the

activity of Reg1 and other phosphatases is supported by the

observations that: (i) a Dreg1 mutant is also hypersensitive to the

agent (this work), and (ii) a Dppz1 mutant is also unable to grow in

the presence of selenite (our unpublished results). Ppz1 is a

phosphatase with large homology to PP1-type phosphatases whose

roles in the regulation of cation homeostasis and other yeast cell

processes have been characterized [40].

We have shown that selenite toxicity and the requirement of Snf1

for protection against it is not related to plasma membrane

depolarization effects and/or glucose depletion, and that such

protection requires the entry of the agent into the cell mostly through

the high affinity mechanism of phosphate uptake, which is the main

mediator of selenite entry in glucose-grown yeast cells [21]. Once

into the cell, selenite does not provoke migration of Snf1 into the

nucleus, in contrast to the activation of Snf1 by glucose deprivation

and the consequent response. Thus, at least the upstream steps of the

Snf1-mediated response to selenite seem to occur entirely at the

cytoplasm. In addition, none of the characterized transcription

regulators participating in the response to metabolic stress by

glucose deprivation (Cat8, Mig1, Sip4 or Adr1) appear to be

individually important in protection against selenite. Our results are

reminiscent of earlier studies [4,13] which showed that exposure of

cells to high sodium led to increased phosphorylation of Snf1 without

phosphorylation of Mig1 and without induction of glucose-

controlled genes. Noteworthy, Snf1 does not only regulate nuclear

targets, but also modulates the function of cytosolic proteins, such as

the arrestin-related protein Rod1, which coordinates endocytosis of

alternative carbon source transporters in response to glucose

Figure 7. Snf1 is required for protection against glutathione-oxidizing agents. (A) Growth assays of serial dilutions of the following strains
on YPD medium with DEM, diamide or t-BOOH: wild type (W303-1A), Dsnf1 (Wsnf1) and Dsip1Dsip2Dgal83 (MML1459). (B) Growth assays of serial
dilutions of the following strains, plated on SC medium with DEM: wild type (W303-1A) and Dsnf1 (Wsnf1) cells transformed with vector pWS93, and
Dsnf1 cells transformed with pWS-Snf1, pWS-Snf1-T210A and pWS-Snf1-K84R. (C) Growth assays of serial dilutions of the following strains on YPD
medium with DEM: wild type (W303-1A), Dsak1Delm1 (MML1387), Dsak1Dtos3 (MML1389), Delm1Dtos3 (MML1390) and Dsak1Delm1Dtos3
(MML1392). (D) Western blot analysis of Thr210-phosphorylated Snf1 (Snf1-P) and of total Snf1. The same membrane was successively hybridized
with the corresponding antibodies. Samples were from wild type (W303-1A) exponential cultures in YPD treated with DEM or diamide. Control
samples were from YPD-grown wild type cells shifted for 1 hour to YPGly (-Glu). (E) Growth assays of wild type (W303-1A) and Dsnf1 (Wsnf1) cells
transformed with multicopy vector YEplac195 or its derivative P1116 overexpressing GLR1, in SC medium with DEM.
doi:10.1371/journal.pone.0058283.g007
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presence in the medium [45]. Thus, Snf1 may have a wider range of

targets (both cytosolic and nuclear) than previously expected. The

important function of Elm1 during the selenite response seems

surprising. In addition to its overlapping role with Sak1 and Tos3 in

Snf1 activation during glucose depletion, Elm1 is required for the

organization of the septin network at the bud neck [36,37] and

coordinates the spindle position checkpoint through activation of the

Kin4 kinase [38,39]. Different regions of the protein molecule could

participate in such diversity of Elm1 functions [38,39,46]. Selenite

does not provoke significant alterations in the yeast cell cycle or in

cell morphogenesis [22,24], neither delocalizes Elm1 from the bud

neck (Figure S1). This argues against, although it does not entirely

prove, the participation of the bud neck-associated Elm1 pool in the

selenite response, and supports additional functions for cytoplasmic

Elm1 molecules. In any case, Elm1 has a role in defense against

selenite which is in part independent of the Snf1 role, a similar

situation to the participation of Snf1 and Elm1 in protection against

salt stress [13].

How selenite signaling is related to Snf1 activity? Selenite

provokes a reduction of GSH and an increase of GSSG in yeast

cells [20,47]. Such decrease of the ratio GSH/GSSG is

exacerbated in cells lacking Snf1 up to four hours of treatment.

Differences between wild type and mutant cells were mainly due to

a relative increase of GSSG in the latter rather than to differences

in the GSH pool between both strains. Overexpression of the

GLR1 glutathione reductase gene protects yeast cells against the

toxic effects of selenite [22]. Along this line, overexpression of

GLR1 in Dsnf1 cells allows growth of the mutant in the presence of

selenite up to similar levels as the wild type. This fact points to the

changes (compared to wild type cells) of the redox potential of the

GSH/GSSG pair as the cause of the hypersensitivity of Dsnf1 cells

to selenite. Accordingly, yeast cells lacking Snf1 are also

hypersensitive to agents such as DEM or diamide, which increase

the GSSG pools relative to GSH. In addition, overexpression of

GLR1 also allows growth of Dsnf1 cells at the same level as wild

type cells in the presence of DEM. Therefore, the relationship

between selenite toxicity and cell protection mediated by Snf1

reflects a more general role of this kinase in sensing and

responding to intracellular redox changes due to an increase of

oxidized glutathione. Again, both DEM and diamide provoke a

late phosphorylation of Snf1, which indicates that the possible

alteration of the modulatory mechanisms of Snf1 phosphorylation

is not circumscribed to selenite, but extends to a broader range of

agents acting on intracellular redox homeostasis.

The signaling role of Elm1/Snf1 in inducing a protective response

to a sudden increase of the GSSG/GSH ratio does not seem to

involve previous functions assigned to Elm1 and Snf1, and as

discussed above such role would not require the already character-

ized nuclear effectors of Snf1. Recent studies point to functions of

Snf1 other than those previously characterized as metabolic

regulator. Thus, analysis of the yeast kinase-protein interactome

using protein microarrays has revealed common targets between

Snf1 and the Akl1 kinase involved in cytoskeletal functions [48].

Another study integrating transcriptomic, proteomic and metabo-

lomic data using a systemic a revealed that in addition to modulating

other metabolic processes, Snf1 could be a regulator of redox

homeostasis through the activity of Yap1, a transcription factor of

genes participating in the oxidative stress response [49]. In human

cell lines, hydrogen peroxide activates AMPK as part of a protective

signaling mechanism mediated by mTORC1 [50]. In another study

with human colon cancer cells, selenate provoked a late activation of

AMPK through ROS formation and this AMPK activation was

essential to inhibit cell proliferation by downregulating the COX2-

mediated pathway [51]. An additional work with human cell lines

also demonstrated activation of AMPK by redox changes in the a
and b subunits induced by hydrogen peroxide [52]. The present

study in yeast cells suggests that changing the redox pair GSH/

GSSG to a more oxidant status induces a pathway mediated by Snf1

resulting in cell protection against oxidant conditions, for instance by

rescuing the function of some redox-sensitive molecule essential for

cell proliferation. Alternatively, although not in contradiction with

the previous hypothesis, Snf1 could activate cell functions cooper-

ating with the GSH-reducing system in maintenance of the GSH

redox homeostasis in the presence of selenite and other oxidants.

Based on all those observations, the participation of AMPK activity

in regulation of cellular redox homeostasis could be a general

property in eukaryotic cells. Further studies are required to

characterize the downstream effectors of Snf1/AMPK that are

important in the response to changes in the GSH/GSSG ratio, as

well as to determine how the complex senses such changes.

Supporting Information

Figure S1 Location of Elm1 protein upon selenite
treatment. Strain AKY516 expressing ELM1-GFP derivative

was grown in YPD medium with 4 mM selenite for the indicated

times. Cells were immediately visualized by fluorescence and

phase contrast microscopy using an Olympus BZ51 apparatus.

(TIF)

Figure S2 Selenite sensitivity is not associated to alterations in

plasma membrane polarization or intracellular glucose depriva-

tion. (A, left) Growth assays of serial dilutions of the following

strains on YPD medium with selenite: wild type (W303-1A), Dsnf1

(Wsnf1), Dtrk1Dtrk2 (WD3) and Dsnf1Dtrk1Dtrk2 (MML1447). The

medium was supplemented with 100 mM NaCl to improve

growth of Dtrk cells. (A, right) Growth assays of serial dilutions of

wild type (W303-1A) and Dsnf1 (Wsnf1) cells transformed with

vector pCM262 or its derivative pYCp414 overexpressing TRK1,

in SC medium with selenite. (B) Growth assays of serial dilutions of

wild type (W303-1A) and Dsnf1 (Wsnf1) cells in YPD medium with

the indicated concentrations of glucose plus selenite. (C) Relative

amount of glucose-6-phosphate per cell. Samples were taken from

wild type (W303-1A) or Dsnf1 (Wsnf1) cells growing exponentially

in YPD medium and treated with selenite for the indicated times.

Values (6 s.d., mean of six experiments) were made relative to the

unit value corresponding to untreated wild type cells (absolute

concentration of the relative unit value: 4.8610211 nmols per cell).

(TIF)

Figure S3 Expression of PHO89 is induced by selenite
under the control of Snf1. Northern blot expression analysis of

the indicated genes in wild type (W303-1A), Dsnf1 (Wsnf1), Dpho84

(MML1304) and Dsnf1Dpho84 (MML1401) cells in low or normal

phosphate cultures treated with 3 mM selenite. SNR19 was

employed as loading control.

(TIF)

Figure S4 Northern blot expression analysis of GSH1
and GLR1 in selenite-treated cells. Exponential cultures of

wild type (W303-1A) and Dsnf1 (Wsnf1) cells in YPD medium were

treated with 6 mM sodium selenite for the indicated times. SNR19

was employed as loading control.

(TIF)
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47. Lazard M, Ha-Duong NT, Mounié S, Perrin R, Plateau P, et al. (2011)

Selenodiglutathione uptake by the Saccharomyces cerevisiae vacuolar ATP-binding

cassette transporter Ycf1p. FEBS J 278: 4112–4121.

48. Fasolo J, Shoner A, Sun MGF, Yu H, Chen R, et al. (2012) Diverse protein

kinase interactions identified by protein microarrays reveal novel connections

between cellular processes. Genes Dev 25: 767–778.

49. Usaite R, Jewett MC, Oliveira AP, Yates III JR, Olsson L, et al. (2009)

Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a

global energy modulator. Mol Syst Biol 5: 319.

50. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, et al. (2010) ATM signals to

TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl

Acad Sci USA. 107: 4153–4158.

51. Hwang JT, Kim YM, Surh YJ, Baik HW, Lee SK, et al. (2006) Selenium

regulates cyclooxigenase-2 and extracellular signal-regulated kinase signaling

pathways by activating AMP-activated protein kinase in colon cancer cells.

Cancer Res 66: 10057–10063.

52. Zmijewski JW, Banerjee S, Bae H, Figgeri A, Lazarowski ER, et al. (2010)

Exposure to hydrogen peroxide induces oxidation and activation of AMP-

activated protein kinase. J Biol Chem 285: 33154–33164.

Snf1 Kinase and Glutathione Oxidation in Yeast

PLOS ONE | www.plosone.org 12 March 2013 | Volume 8 | Issue 3 | e58283


