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MARCKS is involved in methylmercury-induced decrease in cell viability and nitric 
oxide production in EA.hy926 cells
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AbSTRACT. Methylmercury (MeHg) is a persistent environmental contaminant that has been reported worldwide. MeHg exposure has been 
reported to lead to increased risk of cardiovascular diseases; however, the mechanisms underlying the toxic effects of MeHg on the cardio-
vascular system have not been well elucidated. We have previously reported that mice exposed to MeHg had increased blood pressure along 
with impaired endothelium-dependent vasodilation. In this study, we investigated the toxic effects of MeHg on a human endothelial cell 
line, EA.hy926. In addition, we have tried to elucidate the role of myristoylated alanine-rich C kinase substrate (MARCKS) in the MeHg 
toxicity mechanism in EA.hy926 cells. Cells exposed to MeHg (0.1–10 µM) for 24 hr showed decreased cell viability in a dose-dependent 
manner. Treatment with submaximal concentrations of MeHg decreased cell migration in the wound healing assay, tube formation on 
Matrigel and spontaneous nitric oxide (NO) production of EA.hy926 cells. MeHg exposure also elicited a decrease in MARCKS expression 
and an increase in MARCKS phosphorylation. MARCKS knockdown or MARCKS overexpression in EA.hy926 cells altered not only cell 
functions, such as migration, tube formation and NO production, but also MeHg-induced decrease in cell viability and NO production. 
These results suggest the broad role played by MARCKS in endothelial cell functions and the involvement of MARCKS in MeHg-induced 
toxicity.
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The myristoylated alanine-rich C kinase substrate 
(MARCKS) is a major protein kinase C substrate that is ex-
pressed in many tissues [1], including brain and endothelial 
cells [17, 24, 38]. Homozygous mutant mice with targeted 
deletion of the Marcks gene showed morphological abnor-
malities in the central nervous system and perinatal death 
[39], suggesting the essential role of MARCKS in brain de-
velopment. MARCKS plays roles in cellular functions, such 
as adhesion, migration, proliferation and fusion in multiple 
types of cells through its interaction with the membrane 
phospholipids and actin, which is regulated by phosphoryla-
tion at the central polybasic region of MARCKS called the 
effector domain [2, 3, 27, 48]. In vascular smooth muscle 
and endothelial cells, MARCKS has been shown to regulate 
proliferation [46], cell migration [17, 26, 47] and endothe-
lial cell permeability [16]. These studies have shown that 
MARCKS also plays an important role in the cardiovascular 
system.

Methylmercury (MeHg) is a ubiquitous and potent envi-
ronmental pollutant [8]. The central nervous system is the 

main target of MeHg toxicity [6, 7, 42]. The cardiovascular 
system has also been reported as a target of MeHg [4, 31]. In 
humans, MeHg exposure has been reported to cause cardio-
vascular dysfunctions, including myocardial infarction [30], 
heart rate variability, atherosclerosis, coronary heart disease 
and hypertension [35, 45]. In animal experimental models, 
in vivo treatment of MeHg has been reported to induce hy-
pertension [10, 43, 44]. However, the exact mechanism by 
which MeHg induces a toxic effect on the cardiovascular 
system is not yet fully understood.

We recently demonstrated that mice exposed to MeHg 
in vivo developed increased blood pressure and impaired 
endothelium-dependent vasodilation [15]. Although it has 
been reported that the alteration in MARCKS expression 
or phosphorylation affects MeHg-induced neurotoxicity in 
neuroblastoma cells [37], the relationship between MeHg 
toxicity and MARCKS has not yet been determined in vas-
cular endothelial cells. Therefore, in this study, we inves-
tigated the role of MARCKS in MeHg-induced toxicity in 
the EA.hy926 endothelial cell line. We observed that MeHg 
exposure induced decrease in cell viability, migration in 
wound healing assay, tube formation on Matrigel and nitric 
oxide (NO) production, and this was accompanied by an 
increase in MARCKS phosphorylation in EA.hy926 cells. 
Furthermore, the involvement of MARCKS in MeHg toxic-
ity was studied by using cells with MARCKS knockdown or 
MARCKS overexpression.
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MATERIALS AND METHODS

Cell viability assay: A human endothelial cell line, 
EA.hy926 cells (ATCC, Manassas, VA, U.S.A.), was grown 
in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich, St. 
Louis, MO, U.S.A.) containing 10% fetal bovine serum at 
37°C in a humidified atmosphere with 5% CO2. To evaluate 
MeHg cytotoxicity, cell viability was measured using the 
WST-8 assay Cell Counting Kit-8 (Dojindo, Kumamoto, 
Japan) in accordance with the manufacturer’s instructions. 
Two days before experiments, the cells were seeded at a 
density of 1 × 104 cells/cm2 in a 96-well plate. Cells were 
serum-starved for 4 hr before the addition of MeHg chloride 
(Kanto Chemical, Tokyo, Japan) dissolved in distilled water. 
The absorbance of formazan dye solution in the WST-8 as-
say was measured using an Infinite M200 FA plate reader 
(TECAN, Männedorf, Switzerland).

Cell cycle analysis by flow cytometry: One day before the 
experiments, cells were seeded on 35-mm dishes at a density 
of 2.5 × 104 cells/cm2. After 4 hr of serum starvation, the 
cells were treated with MeHg for 24 hr. Then, the cells were 
harvested by using Accumax (Innovative Cell Technologies, 
San Diego, CA, U.S.A.) and then fixed with 4% parafor-
maldehyde. The cell cycle was analyzed by flow cytometry 
(FACSCalibur, bD biosciences, San Jose, CA, U.S.A.) by 
using cells stained with propidium iodide.

Wound healing assay: Two days before the experiments, 
cells were seeded on 35-mm dishes at a density of 1.5 × 104 
cells/cm2. After 4 hr of serum starvation, confluent cells 
were scraped with sterile 200-µl pipette tips. These cells 
were treated with MeHg for 24 hr, after which the images 
of the wound areas were obtained by using an inverted mi-
croscope IX70 (Olympus, Tokyo, Japan). The percentage 
of area covered by the migrated cells was measured using 
ImageJ software (NIH, bethesda, MD, U.S.A.).

Tube formation assay: Tube formation assay was per-
formed as previously reported [20, 21], with slight modifica-
tions. In brief, the surface of 24-well plates was coated with 
100 µl of Corning Matrigel basement Membrane Matrix 
(bD biosciences), which was allowed to polymerize at 37°C 
for 30 min. EA.hy926 cells were seeded on to the Matrigel-
coated wells (3 × 104 cells/cm2) with or without MeHg. The 
images were taken at 12 hr after seeding. The length of the 
tube was measured by using ImageJ software (NIH).

Measurement of NO production: NO production was 
measured as previously described [13, 25]. Two days before 
the experiments, cells were seeded at a density of 8.8 × 104 
cells/cm2 in a 100-mm dish. After changing the medium to 
DMEM without phenol red, the medium was collected from 
the dish at 24 hr after addition of MeHg. Accumulated NO2 
in the medium was measured using the NO2/NO3 Assay Kit-
FX (Dojindo) in accordance with the manufacturer’s instruc-
tions. The fluorescence intensity of the sample was measured 
using an Infinite M200 FA plate reader (TECAN).

Transfection of siRNA and plasmid DNA: ScreenFectA 
(Wako, Osaka, Japan) was used for both siRNA and plasmid 
DNA transfections. MARCKS siRNA (HSS180966) and 
negative control siRNA were purchased from Invitrogen 

(Carlsbad, CA, U.S.A.). EA.hy926 cells were mixed with 
siRNA and then seeded on 35-mm dishes (1 × 104 cells/cm2) 
at 48 hr before the experiments, according to the manufactur-
er’s instructions. For plasmid DNA transfection, cells were 
seeded on 35-mm dishes at a density of 2.5 × 104 cells/cm2. 
After 24 hr incubation, GFP-fused wild-type MARCKS-
expression plasmids [36] or control pEGFP-N1 (Clontech, 
Palo Alto, CA, U.S.A.) was transfected to the cells for 24 hr.

Western blotting: Western blotting was performed as 
previously described [36, 37]. In brief, two days before the 
experiments, cells were seeded at a density of 1 × 104 cells/
cm2. Cells were treated with MeHg after 4 hr of starvation. 
The primary antibodies used were anti-MARCKS, anti-
NOS3 (Santa Cruz biotechnology, Santa Cruz, CA, U.S.A.), 
anti-pS159/163 MARCKS (Cell Signaling Technology, 
Danvers, MA, U.S.A.) and anti-β-actin antibody (Sigma-
Aldrich). Immunoreactive proteins were detected using 
Luminata Forte Western HRP substrate (Millipore, billerica, 
MA, U.S.A.) and quantified by densitometric analysis using 
Image J software (NIH). The MARCKS and eNOS expres-
sion or MARCKS phosphorylation was normalized to the 
amount of β-actin or pan-MARCKS, respectively.

Statistical analysis: All values are expressed as the means 
± SEM of the number of independent experiments. Statisti-
cal differences between two means were evaluated by the 
Student’s t-test. Multiple comparisons were performed using 
one-way analysis of variance followed by Dunnett’s test. 
Differences were considered significant at P<0.05.

RESULTS

Effect of MeHg on endothelial cell viability: To determine 
the effect of MeHg on cell viability, EA.hy926 cells were 
treated with 0.1–10 µM MeHg for 24 hr. MeHg elicited a 
decrease in cell viability in a dose-dependent manner (Fig. 
1A). At MeHg concentration higher than 1 µM, significant 
decrease in cell viability was observed. We assessed the 
involvement of MARCKS in MeHg-induced decrease in cell 
viability by using EA.hy926 cells with MARCKS knock-
down or MARCKS overexpression. Transfection of siRNA 
for MARCKS or MARCKS-expression plasmid caused 
decrease in MARCKS expression to 36.0 ± 8.4% (n=4) or 
increase in MARCKS expression to 148.0 ± 7.9% (n=4), 
respectively, in comparison with control mock-transfected 
cells. In cells with MARCKS knockdown, cell viability was 
decreased in comparison with control siRNA-transfected 
cells (Fig. 1b), suggesting the involvement of MARCKS in 
endothelial cell proliferation. In addition, decrease in cell 
viability induced by 3 µM MeHg for 24 hr was significantly 
augmented in cells with MARCKS knockdown (Fig. 1C). 
Although cells with MARCKS overexpression showed 
similar cell viability as control cells (GFP) (Fig. 1D), Me-
Hg-induced decrease in cell viability was significantly sup-
pressed in cells with MARCKS overexpression (Fig. 1E). 
Flow cytometric analysis of the cell cycle of the cells treated 
with MeHg (0.1–3 µM) showed that there was no alteration 
in the distribution of cells in the G1, S or G2/M phase (data 
not shown).
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Effect of MeHg on cell migration: To determine the effect 
of MeHg on cell functions, we first observed the effect of 
MeHg on cell migration by a wound healing assay. Incuba-
tion of cells with 0.1–3 µM MeHg for 24 hr showed dose-
dependent inhibition of cell migration of EA.hy926 cells 
(Fig. 2A). Significant inhibition by MeHg was observed at 
concentrations higher than 0.3 µM. In cells with MARCKS 
knockdown or overexpression, the cell migration was sig-
nificantly suppressed or augmented, respectively (Fig. 2B 
and 2D), suggesting the role of MARCKS in the migration 
of endothelial cells as reported previously [17, 46]. How-
ever, 0.3 µM MeHg-induced inhibition of cell migrations 
was not altered in both cells with MARCKS knockdown or 
overexpression (Fig. 2C and 2E).

Effect of MeHg on tube formation: EA.hy926 cells were 
seeded onto Matrigel-coated plates, and then, the tube forma-
tion of EA.hy926 cells was analyzed by measurement of the 
tube length. In the presence of 0.1–1 µM MeHg, tube length 
was significantly decreased in a dose-dependent manner 
(Fig. 3A). Although MARCKS knockdown or overexpres-
sion in EA.hy926 cells significantly decreased or increased 
the tube length on Matrigel (Fig. 3b and 3D), respectively, 
the modification of MARCKS expression did not alter the 
tube length in the presence of 1 µM MeHg (Fig. 3C and 3E).

Effect of MeHg on NO production: Next, we examined 
the effect of MeHg on NO production by EA.hy926 cells, 
because NO has been shown to play an important role in 

the regulation of vascular tones [23, 41]. In the presence of 
0.1–1 µM MeHg, spontaneous NO production by EA.hy926 
cells for 24 hr was significantly inhibited in a dose-dependent 
manner (Fig. 4A). MARCKS knockdown or overexpression 
did not change the spontaneous NO production of EA.hy926 
cells during the 24 hr observation (Fig. 4b and 4D). In con-
trast, in cells with MARCKS knockdown, 0.3 µM MeHg-
induced inhibition of spontaneous NO production was 
significantly augmented (Fig. 4C). Furthermore, MARCKS 
overexpression in EA.hy926 cells significantly suppressed 
the inhibition of NO production by MeHg (Fig. 4E).

Effect of MeHg on expression of MARCKS, eNOS and 
phosphorylation of MARCKS: Finally, we observed the ef-
fect of MeHg on MARCKS expression or phosphorylation, 
since alteration of MARCKS expression/phosphorylation 
has been reported in MeHg-treated neuroblastoma cells 
[37]. Western blotting using specific antibodies (Fig. 5A) 
showed a decrease in MARCKS expression (Fig. 5b) and 
biphasic increase in MARCKS phosphorylation by MeHg 
in a dose-dependent manner (Fig. 5C). At 24 hr after expo-
sure to MeHg, significant differences were observed in the 
MARCKS expression in cells exposed to 3 µM MeHg and in 
the MARCKS phosphorylation in cells exposed to concen-
trations higher than 0.3 µM MeHg. In contrast, there was no 
alteration in the expression of eNOS by treatment of MeHg 
(Fig. 5D and 5E).

Fig. 1. Effect of MeHg on cell viability and involvement of MARCKS. Effect of MeHg on cell viability (A, n=9), effect of MARCKS 
knockdown on cell viability (B, n=9) or MeHg-induced decrease in cell viability (C, n=9), and effect of MARCKS overexpression on cell 
viability (D, n=8) or MeHg-induced decrease in cell viability (E, n=8) were examined 24 hr after addition of MeHg by cell viability assay 
in EA.hy926 cells. Data are expressed as a percentage of vehicle-treated or mock-transfected cells (control). Results shown are the mean ± 
SEM. *P<0.05, as compared with vehicle-treated or mock-transfected cells. N.S.; not significant
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DISCUSSION

EA.hy926 cells exposed to MeHg for 24 hr showed a dose-
dependent decrease in cell viability. Significant decrease in 
cell viability was observed at concentrations higher than 
1 µM MeHg. The concentration of MeHg that caused sig-
nificant decrease in cell viability was in accordance with that 
reported previously in neuroblastoma SH-SY5Y cells and 
primary human endothelial cells, such as brain microvascular 
endothelial cells and umbilical vein endothelial cells [11, 21, 
37]. MeHg has been reported to elicit cell growth inhibition 
by interfering with the cell cycle process [19]. However, in 
this study, flow cytometric analysis of the cell cycle showed 
that there were no significant differences between control 
and MeHg-treated cells, suggesting that the decrease in the 
cell viability cannot be attributed to the toxic effect of MeHg 
on the cell cycle process. We have previously reported that 
MARCKS knockdown accelerates MeHg-induced decrease 
in cell viability in neuroblastoma SH-SY5Y cells [37]. 
Thus, in this study, we studied the effect of MeHg on cell 
viability by using MARCKS knockdown/overexpression 
experiments in EA.hy926 cells. Although MARCKS over-
expression did not alter the cell viability of EA.hy926 cells, 
MARCKS knockdown caused significant decrease in the cell 
viability in comparison with control siRNA-transfected cells. 
The observed decrease in the cell viability may be due to 
the suppression of cell proliferation, which is regulated by 

MARCKS [32, 33, 46]. MARCKS knockdown, as previous-
ly reported in neuroblastoma cells, significantly accelerated 
MeHg-induced decrease in cell viability in EA.hy926 cells. 
In addition, in cells with MARCKS overexpression, sup-
pression of the MeHg toxicity was observed. These results 
support the fact that MARCKS is involved in MeHg toxicity 
not only in neuronal cells but also in endothelial cells.

The migration of endothelial cells is one of the key pro-
cesses in angiogenesis, which is involved in a wide range of 
physiological and pathophysiological events, such as wound 
healing, cancer and cardiovascular diseases. Treatment of 
cells with MeHg significantly and dose-dependently inhib-
ited EA.hy926 cell migration in the wound healing assay 
and tube formation on the Matrigel. These observations are 
in agreement with a previous report using primary human 
endothelial cells [11, 12, 20, 21]. In the wound healing as-
say, we observed significant inhibition of migration at 0.3 
µM MeHg, which is a lower concentration than that which 
induced significant decrease in the cell viability assay, sug-
gesting that the inhibition of migration may be one of the 
principal toxic actions of MeHg on EA.hy926 cells. Since 
the involvement of MARCKS in cell migration has been 
reported in many types of cells, including endothelial cells 
[9, 17, 28, 47], we observed the effects of MARCKS knock-
down/overexpression on EA.hy926 cell migration and the 
effects of MeHg exposure on the cell migration. In cells with 
MARCKS knockdown by siRNA, cell migration was signifi-

Fig. 2. Effect of MeHg on cell migration and involvement of MARCKS. Effect of MeHg on cell migration (A, n=5), effect of MARCKS knock-
down on cell migration (B, n=10) or MeHg-induced decrease in cell migration (C, n=10), and effect of MARCKS overexpression on cell 
migration (D, n=8) or MeHg-induced decrease in cell migration (E, n=8) were examined 24 hr after addition of MeHg by wound healing assay in 
EA.hy926 cells. Results shown are the mean ± SEM. *P<0.05, as compared with vehicle-treated or mock-transfected cells. N.S.; not significant
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cantly suppressed in comparison with control cells, whereas 
overexpression of MARCKS accelerated cell migration in 
the wound healing assay. These results indicated the role of 
MARCKS in cell migration of EA.hy926 cells. However, the 
effects of MARCKS knockdown/overexpression on MeHg-
induced inhibition of migration were not observed. Further-
more, we observed similar results for the tube formation of 
EA.hy926 cells on Matrigel. Therefore, it seems likely that 
MARCKS is not involved in the MeHg toxic effect on cell 
migration and tube formation of EA.hy926 cells under our 
experimental conditions.

Next, we examined the effect of MeHg on spontaneous 
NO production by EA.hy926 cells, because NO has been 
shown to play an important role in the regulation of vascular 
tones [23, 41]. We have previously reported that vasodilation 
induced by acetylcholine, which is dependent on NO produc-
tion from endothelial cells, was decreased in a basilar artery 
isolated from MeHg-exposed mice [14, 15]. In this study, we 
showed that treatment of 0.3 µM MeHg significantly inhib-
ited NO production, but not expression of eNOS, in a dose-
dependent manner. Taken together, these results indicate that 
the inhibition of NO production in endothelial cells is one 
of the principal toxic actions of MeHg. Although MARCKS 
knockdown/overexpression did not change spontaneous NO 
production, MeHg-induced decrease in NO production in 
EA.hy926 cells was significantly accelerated or inhibited 

by MARCKS knockdown or overexpression, respectively, 
suggesting the involvement of MARCKS in MeHg-induced 
toxicity on NO production in EA.hy926 cells. Although the 
role of MARCKS in the transport of extracellular l-arginine, 
which is the immediate substrate for NO synthesis in bovine 
aortic endothelial cells, has been reported [40], further stud-
ies are needed to determine whether MARCKS directly func-
tions as a regulator of NO production in endothelial cells.

Finally, we examined the effects of MeHg on MARCKS 
expression and phosphorylation in EA.hy926 cells, since 
we reported that alteration in MARCKS expression or 
phosphorylation has consequences on the MeHg-induced 
neurotoxicity in neuroblastoma cells [37]. EA.hy926 cells 
exposed to MeHg showed a dose-dependent decrease in 
MARCKS expression, although a significant difference 
was only found at higher (3 µM) concentrations of MeHg. 
However, MeHg exposure elicited a biphasic increase in 
MARCKS phosphorylation, and significant differences were 
observed at concentrations higher than 0.3 µM at 24 hr after 
the treatment. Since the interactions between MARCKS and 
its target molecules, such as actin and phosphatidylinositol 
4,5-bisphosphate, are regulated by phosphorylation at the 
effector domain of MARCKS [3, 17], it is likely that the 
phosphorylation of MARCKS induced by MeHg is directly 
involved in the MeHg toxicity on EA.hy926 cells. MeHg is 
known to induce reactive oxygen species (ROS) production, 

Fig. 3. Effect of MeHg on tube formation and involvement of MARCKS. Effect of MeHg on tube formation (A, n=9), effect of MARCKS 
knockdown on tube formation (B, n=5) or MeHg-induced decrease in tube formation (C, n=5), and effect of MARCKS overexpression 
on tube formation (D, n=4) or MeHg-induced decrease in tube formation (E, n=4) were examined 12 hr after seeding of cells with or 
without MeHg by measurement of tube formation of EA.hy926 cells. Results shown are the mean ± SEM. *P<0.05, as compared with 
vehicle-treated or mock-transfected cells. N.S.; not significant.
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including hydrogen peroxide (H2O2). Since the distinct role 
of MARCKS accompanying its phosphorylation in H2O2-
mediated signaling pathway in bovine aortic endothelial cells 
has been reported [16, 18], MARCKS is possibly phosphor-
ylated through mechanisms associated with MeHg-induced 
H2O2 production in EA.hy926 cells. Although we previously 
reported that, in neuroblastoma cells, the MARCKS phos-
phorylation by MeHg exposure was mediated by protein 
kinase C activation and occurred in a Ca2+-dependent man-
ner, the phosphorylation mechanisms in EA.hy926 cells are 
still not clear and remain to be elucidated. MeHg has been 
reported to elicit calpain activation accompanying intracel-
lular Ca2+ elevation, and calpain inhibitor suppresses MeHg-
induced decrease in cell viability in neuroblastoma cells 
and rat cerebellar neurons [29, 34]. Since the regulation of 
MARCKS functions by calpain proteolytic cleavage has also 
been reported, it is possible that calpain activation induced 
by MeHg exposure causes alteration in the MARCKS func-
tions in a phosphorylation-independent manner [5, 22].

In summary, we showed that MeHg exposure induced a 
dose-dependent decrease in cell viability, migration, tube 
formation on Matrigel and NO production. MeHg exposure 
also elicited a decrease in MARCKS expression and an 
increase in MARCKS phosphorylation in EA.hy926 cells. 
Furthermore, alteration of MeHg-induced decrease in cell 
viability and NO production was observed in cells with 
MARCKS knockdown or overexpression. The findings of 
our study suggest the broad role of MARCKS in endothelial 
cell functions and show that MARCKS is involved in Me-

Hg-induced toxicity in endothelial cells. It has been reported 
that MARCKS plays roles in cell proliferation, migration 
and tube formation of endothelial cells through the regula-
tion of actin polymerization and sequestering phospholipid 
phosphatidylinositol 4,5-bisphosphate [17, 48]. Future stud-
ies are needed to determine the precise roles of MARCKS on 
the toxicity of MeHg on endothelial cells.
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