Contents lists available at ScienceDirect

Matrix Biology Plus

journal homepage: www.sciencedirect.com/journal/matrix-biology-plus

ColPTMScape: An open access knowledge base for tissue-specific collagen PTM maps

Ashutosh Joshi^{a,1}, Ayush Nigam^{a,1}, Lalit Narayan Mudgal^a, Bhaskar Mondal^{b,*}, Trayambak Basak^{a,*}

^a School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
^b School of Chemical Sciences, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India

ARTICLE INFO

Keywords: Extracellular matrix Collagen Collagen PTMs PTM identification PTM quantitation Knowledge base

ABSTRACT

Collagen is a key component of the extracellular matrix (ECM). In the remodeling of ECM, a remarkable variation in collagen post-translational modifications (PTMs) occurs. This makes collagen a potential target for understanding extracellular matrix remodeling during pathological conditions. Over the years, scientists have gathered a huge amount of data about collagen PTM during extracellular matrix remodeling. To make such information easily accessible in a consolidated space, we have developed ColPTMScape (https://colptmscape.iitmandi.ac.in /), a dedicated knowledge base for collagen PTMs. The identified site-specific PTMs, quantitated PTM sites, and PTM maps of collagen chains are deliverables to the scientific community, especially to matrix biologists. Through this knowledge base, users can easily gain information related to the difference in the collagen PTMs across different tissues in different organisms.

Introduction

The extracellular matrix (ECM) forms a meshwork composed of different macromolecules such as elastin, collagen, proteoglycans, and others to support the tissues as well as help in cell proliferation, differentiation, and apoptosis [1]. The ECM remodels according to the cell behavior, which is also observed in pathological conditions such as fibrosis [2]. In fibrosis, excessive collagen deposits in the ECM (a hallmark) [3]. Collagen is a fibrous structural protein, which is most abundant in the ECM [4]. Owing to the structural integrity of collagen, it provides mechanical strength to the tissues. Collagen has a right-handed triple helical structure, comprising three left-handed polyproline type II (PPII)-like polypeptide strands. A common repetitive tripeptide motif, Gly-Xaa-Yaa, is required for the formation of a collagen triple helix. Prevalently, proline and hydroxyproline occupy the Xaa and Yaa positions, respectively [5]. There are two broader families of collagen based on the organization, which are, fibrillar and non-fibrillar in nature. Collagen I and collagen IV are the abundant types in fibrillar and basement-membrane forming collagen families, respectively. The presence and variations of types of collagens are tissue-specific. Collagen has a plethora of post-translational modifications (PTMs) such as hydroxylation, glycosylation, phosphorylation etc. [6,7]. The levels of PTMs vary in types of collagen, for instance, collagen type IV has a higher number (10-15 residues per 1000 amino acids) of 3-hydroxyproline (3-Hyp), whereas only 1-2 residues in a collagen chain of collagen type I [8–11]. Two of the PTMs that are well-studied are hydroxylation of proline and lysine and glycosylation of hydroxylysine (Fig. 1). PTMs of collagen are critical for the maintenance of tissue homeostasis. Perturbed PTMs of collagen culminate in different disorders, such as 3-Hyp deficiency in collagen I and IV causes osteogenesis imperfecta [12,13], platelet aggregation [14], and poor eye tissue development [15], respectively. Similarly, the deficiency of 4-Hyp, a PTM that provides thermal stability to collagen, can cause the development of musculoskeletal diseases, myopia, etc. [16]. Lysine can be hydroxylated and further o-glycosylated to form hydroxylysine and galactosylhydroxylysine (Gal-Hyl) or glucosyl-galactosyl-hydroxylysine (GluGal-Hyl), respectively [17–19]. The lysine or hydroxylysine residues in the telopeptide region become allysine (Lys^{ald}) or hydroxyallysine (Hyl^{ald}), respectively, to go into a condensation reaction to form crosslinks between collagen molecules, which are essential to forming a collagen fibril [17,20,21]. These modifications stabilize the collagen fibril through the crosslink formation [17,21]. The alteration in the levels of

* Corresponding authors. *E-mail addresses:* bhaskarmondal@iitmandi.ac.in (B. Mondal), trayambak@iitmandi.ac.in (T. Basak).

¹ Equal contribution

https://doi.org/10.1016/j.mbplus.2024.100144

Received 7 December 2023; Received in revised form 26 February 2024; Accepted 26 February 2024 Available online 29 February 2024

2590-0285/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

hydroxylysine (Hyl) and o-glycosylations of Hyl is implicated in cerebral small vessel disease [22], musculoskeletal defects [23], connective tissue disorder [24], Bruck syndrome [25,26], fibrosis [27,28], connective tissue disorder [29–31], high myopia [15], Ehlers Danlos syndrome type VI A [32], cancer [33–35], etc. The levels of collagen as well as its PTMs alter during the ECM remodeling [6,36]. Therefore, the knowledge of the alteration in collagen and its PTMs is significant to understanding the undergoing changes in the diseased conditions. However, the characterization of collagen PTMs has remained a challenge for the scientific community.

After the discovery of collagen structure, gaining information about amino acid sequence of collagen has become of paramount importance. Initially, the amino acid analysis was performed by hydrolysing the collagen chains [37-39], which provided qualitative information. However, site-specific quantitation of PTMs remained elusive. With the development of high-resolution mass spectrometry (MS)-based proteomics it has become feasible now to identify and quantitate site-specific collagen PTMs [6,22,40–45]. Different research groups including our lab have been using MS-based proteomics approach to characterize the matrisome proteins and site-specific collagen PTMs [40,45-48]. The knowledge base for the matrix biology community has been created (MatrisomeDB and MatrixDB) [49-53]. However, the resolution of different types of hydroxylations and glycosylations on collagen at a sitespecific level were not properly addressed. Such information could be immensely useful for matrix biologists, clinicians, and basic scientists to understand the molecular changes in collagen during disease development. This has inspired us to develop a dedicated knowledge base solely for collagen PTMs, named ColPTMScape (https://colptmscape.iitmandi. ac.in/). ColPTMScape is uniquely different from the other large extracellular matrix-related databases. It is dedicated to only collagen PTMs and highlights the data in a map that is already available from different research studies. Hence, it is less complicated, loads faster, and is easy to use. ColPTMScape has incorporated the occupancy level of site-specific PTMs of collagen. Downloading the site-specific PTMs and copying the sequence of a collagen chain is available. However, it has some limitations. Currently, the database does not show sequence coverage, does not allow a user to download the highlighted PTM map of a collagen chain, and does not have data on abnormal or disease conditions. This paves the way for future incorporation of additional features.

With ColPTMScape, we will bring the site-specifically identified and quantified collagen (mainly I and IV) PTMs to one consolidated space. Characterization of specific hydroxylation and glycosylation was performed using the in-house developed in-silico approach. Data for 6 different organisms several published from studies [26,30,31,35,40,41,45-48,54-56] has been used to develop the first version of this knowledge base. We have highlighted the following PTMs based on the availability of data: hydroxyproline (Hyp), 3-Hyp, 4-hydroxyproline (4-Hyp), Lys^{ald}/Hyl^{ald}, Hyl, galactosyl-hydroxylysine (Gal-Hyl), and glucosylgalactosyl-hydroxylysine (GluGal-Hyl) in the knowledge base. With new discoveries in collagen PTM field, ColPTMScape will be updated on a regular basis. This knowledge base would lay the consolidated foundation on collagen PTMs in a tissue and speciesspecific manner and would contribute to the larger matrix biology community.

Results and discussion

ColPTMScape search request

ColPTMScape consists of a user-friendly interface to search for the collagen chains in the desired tissue of an organism. We provided the drop-down option to the user to select an organism as well as a tissue in that organism (Fig. 2A). Then, the user needs to select the "List Collagen Chains" button (Fig. 2B). The button directs the user to the page where collagen chains in the selected tissue of the organism are listed.

Listing collagen chains

After selecting the organism and the tissue, the user will see the page with all collagen chains that were analyzed for site-specific PTM

Fig. 1. Modifications on proline and lysine. A. Two types of prolyl hydroxylations, 4-hydroxyproline (4-Hyp) and 3-hydroxyproline (3-Hyp). B. Lysine can be hydroxylated to form hydroxylysine (Hyl) and o-glycosylated to form galactosyl-hydroxylysine (Gal-Hyl) and glucosylgalactosyl-hydroxylysine (GluGal-Hyl).

Fig. 2. Interaction with initial pages of the knowledge base. A. Drop-down options are highlighted with the red box. B. For getting collagen chains for a particular tissue, the list collagen chains button directs to the respective page. C. All the PTMs are highlighted with the red box. A user can view these PTMs on the PTM map using the view button. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

identification and quantitation. For each collagen chain, the user finds positions of Hyp, 3-Hyp, 4-Hyp, Hyl, Gal-Hyl, GluGal-Hyl, and Lys^{ald}/Hyl^{ald} mentioned on the page. Moreover, by selecting the "View" button, the user is directed to the page where the collagen map of a particular chain is available (Fig. 2C). The collagen PTM map contains information on the key PTMs. Furthermore, there is a "Download Information" button on the page where the list of all collagen chains and site-specific posttranslational modifications (PTMs) is present for any combination of organism and tissue in the form of an excel sheet. (Fig. 2C).

Collagen PTM map

As a result of searching through ColPTMScape, users find a sitespecific collagen PTM map. This page contains crucial information. On the top middle of the page (highlighted in the red box in Fig. 3A), the information bar provides initially the length of the sequence of the collagen chain. Post-selecting the modifications to be displayed on the map, the box on the top of the page shows the number of modified amino acid residues. Moreover, on the top-left corner of the page, the toggle buttons allow the user to select an option, for instance, the 3-Hyp modification. The 3-Hyp modified residues are highlighted (Fig. 3B). Similarly, the user can select other modifications.

One toggle button is provided for highlighting the signal peptide in a sequence of a particular collagen chain (Fig. 3A). ColPTMScape numbers amino acids in the sequence from the N-terminal of the signal peptides for any collagen chain. The amino acids in sequences are numbered in multiples of 10 as it allows a user to easily locate the modifications. Moreover, the N- and C-terminal propeptides are highlighted through solid black underline, whereas the N- and C-telopeptides through the solid red underline. To avoid overcrowding in a single page and for a better visualization, ColPTMScape does not highlight the helical domain. The domain that is not highlighted using a button or a type of underline is a helical domain in the map. On the top right side, there is a button named "Copy Sequence", which allows a user to copy the sequence without any spaces between amino acids. Also, there is an option to go to a Uniprot ID from where the sequence is used for generating the map.

On hovering over the highlighted modified amino acid residues, a small data box pops up. In the box, the position of the modified residue

and the occupancy levels of each modification are displayed (Fig. 3B). The information displayed in the box follows the same pattern for every toggle button except one that is the "Lys^{ald}/Hyl^{ald}" button. When a user clicks on this button, lysine in the telopeptides will get highlighted. On hovering over such lysine residues, the occupancy of it being lysine (Lys) or Hyl will be displayed. The information can be used to understand the variations in the position and occupancy level of PTMs in normal and diseased conditions.

Compare conserved sites

At the home page of the ColPTMScape, a user finds a section named "Compare Conserved Sites" at the top of the page (Fig. 4A). We have developed a comparison tool that compares collagen chains of different organisms. Currently, we have only listed the conserved 3-Hyp and crosslinking lysine sites, both the telopeptidyl and helical lysine or hydroxylysine sites, of collagen 1 α 1 and α 2 chains. After selecting the collagen chain and modification, a user needs to select one or more organisms according to the requirement and then click on "Get Results" (Fig. 4A). The conserved PTM sites will be presented in a table format (Fig. 4C), which can be downloaded in a csv file format. A hyphen (-) in comparison is used if there is no evidence of the conserved PTM site detected in an organism. Moreover, this comparison tool does not show any results for an organism for which there is no mass spectrometry (MS)-based experimental evidence available.

Conclusions

In summary, we have developed a dedicated knowledge base, ColPTMScape for collagen PTMs. It provides information on the sitespecific PTMs with the occupancy level of each modification. Along with the tabular information, the knowledge base can make a collagen PTM map, highlighting the selected PTMs as per the requirement. Moreover, information regarding the position of site-specific modification and occupancy level is available for users in a consolidated box. Also, the user can download the site-specific PTMs of collagen chains corresponding to a tissue of an organism. In the future, we would like to include data from different organisms and tissues. Moreover, we would also like to show the conservative nature of the site-specific PTMs, other

Proteomics Lab. IIT Mandi

This page contains a map of COL1A1 of Human Lung.												
3-Нур	4-Hyp	Hyl Gal-Hyl	GluGal-H	yl Lys ^{ald} /Hy	lald	Signal Peptide	Length of the	e sequence: 1464			Uniprot ID	Copy Sequence
MFSFVDL	10 RLL	LLLAATALLT	20 HQ	QEEGQVEG	30	QDEDIPPITC 40	VQNGLRYHDR 50	DVWKPEPCRI 60	CVCDNGKVLC 70	DDVICDETKN	CPGAEVPEGE 90	CCPVCPDGSE
SPTDQET	IN	EGPKGDTGPR	G	RGPAGPPG	30	RDGIPGQPGL	PGPPGPPGPP	GPPGLGGNFA	PQLSYGYDEK	STGGISVPGP	MGPSGPRGLP	GPPGAPGPQG
FQGPPGE	PGE	PGASGPMGPR	220 GF	PGPPGKNG	30	DDGEAGKPGR 240	PGERGPPGPQ	GARGLPGTAG	LPGMKGHRGF	SGLDGAKGDA	GPAGPKGEPG	SPGENGAPGQ 300
MGPRGLF	GER 310	GRPGAPGPAG	320 Af	GNDGATGA	30	AGPPGPTGPA 340	GPPGFPGAVG	AKGEAGPQGP	RGSEGPQGVR 370	GEPGPPGPAG	AAGPAGNPGA 390	DGQPGAKGAN
GAPGIAG	APG 410	FPGARGPSGP	420 Q	SPGGPPGPK	30	GNSGEPGAPG	SKGDTGAKGE	PGPVGVQGPP 460	GPAGEEGKRG	ARGEPGPTGL	PGPPGERGGP 490	GSRGFPGADG
VAGPKGP	AGE 510	RGSPGPAGPK	520 GS	PGEAGRPG	30	EAGLPGAKGL 540	TGSPGSPGPD	GKTGPPGPAG	QDGRPGPPGP	PGARGQAGVM	GFPGPKGAAG	EPGKAGERGV 600
PGPPGAV	GPA 610	GKDGEAGAQG	620 PF	GPAGPAGE	30	RGEQGPAGSP	GFQGLPGPAG	PPGEAGKPGE	QGVPGDLGAP	GPSGARGERG	FPGERGVQGP	PGPAGPRGAN
GAPGND	5AKG	DAGAPGAPGS	720 Q	5APGLQGMP	30	GERGAAGLPG	PKGDRGDAGP	KGADGSPGKD	GVRGLTGPIG	PPGPAGAPGD	KGESGPSGPA	GPTGARGAPG
DRGEPGP	PGP	AGFAGPPGAD	820 G(PGAKGEPG	30	DAGAKGDAGP	PGPAGPAGPP	GPIGNVGAPG	AKGARGSAGP	PGATGFPGAA	GRVGPPGPSG	NAGPPGPPGP
AGKEGGK	GPR 910	GETGPAGRPG	920 EV	GPPGPPGP	30	AGEKGSPGAD	GPAGAPGTPG	PQGIAGQRGV	VGLPGQRGER	GFPGLPGPSG	EPGKQGPSGA	SGERGPPGPM
GPPGLAG	PPG	ESGREGAPGA	1020 EC	SPGRDGSP	30	GAKGDRGETG	PAGPPGAPGA	PGAPGPVGPA	GKSGDRGETG	PAGPTGPVGP	VGARGPAGPQ	GPRGDKGETG
EQGDRGI	KGH	RGFSGLQGPP	1120 GI	PGSPGEQG	30	PSGASGPAGP	RGPPGSAGAP	GKDGLNGLPG	PIGPPGPRGR	TGDAGPVGPP	GPPGPPGPPG	
LPQPPQE	KAH 1210	DGGRYYRADD	1220 Al	IVVRDRDLE	30	VDTTLKSLSQ 1240	QIENIRSPEG	SRKNPARTCR	DLKMCHSDWK	SGEYWIDPNQ	GCNLDAIKVF	CNMETGETCV
YPTQPSV	1310 AQK	NWYISKNPKD	1320 KF	HVWFGESM 13	30	TDGFQFEYGG	QGSDPADVAI 1350	QLTFLRLMST 1360	EASQNITYHC 1370	KNSVAYMDQQ	TGNLKKALLL 1390	QGSNEIEIRA
EGNSRFT	1410 (SV	TVDGCTSHTG	1420 AV	VGKTVIEYK	30	1440 TTKTSRLPII	DVAPLDVGAP	DQEFGFDVGP	VCFL			

D.	PTA	Home	About	Team	Help	Compare Conserved Sites

Proteomics Lab, IIT Mandi

This page contains a map of COL1A1 of Human Lung.																				
3-H	yp 4-Hyp	н	yl Gal-Hyl	GluGal-Hy	Lys ^{ald} /Hyl	ald	Signal Peptid	e	Number	of 3-H	/p Modifications: 12						Uniprot ID		Copy Sequence	
MFS	FVDLRLL	10	LLLAATALLT	20 HGC	3 DEEGQVEG	, c	DEDIPPITC	40	VQNGLRYHDR	50	60 DVWKPEPCRI		VCDNGKVLC	70	DDVICDETKN	80	CPGAEVPEGE	90	100 CCPVCPDGSE	
SPT	DQETTGV	110	EGPKGDTGPR	120 GPR	GPAGPPG 13	R	RDGIPGQPGL	140	PGPPGPPGPP	150	GPPGLGGNFA	F	QLSYGYDEK	170	STGGISVPGP	180		190	GPPGAPGPQG	
FQG	PPGEPGE	210	PGASGPMGPR	220 GPP	GPPGKNG 23	C	DGEAGKPGR	240	PGERGPPGPQ	250	GARGLPGTAG	ι	.PGMKGHRGF	270	SGLDGAKGDA	280	GPAGPKGEPG	290	SPGENGAPGQ	
MG	PRGLPGER	10	GRPGAPGPAG	320 ARC	NDGATGA	A	GPPGPTGPA	340	GPPGFPGAVG	350	AKGEAGPQGP	F	RGSEGPQGVR	370	GEPGPPGPAG	380	AAGPAGNPGA	390	DGQPGAKGAN	
GAP	GIAGAPG	10	FPGARGPSGP	420 QGI	GGPPGPK	ģ	GNSGEPGAPG	440	SKGDTGAKGE	450	PGPVGVQGPP	C	SPAGEEGKRG	470	ARGEPGPTGL	480	PGPPGERGGP	490	GSRGFPGADG	
VAG	PKGPAGE	510	RGSPGPAGPK	GSP 620	GEAGRPG	E	AGLPGAKGL	640	TGSPGSPGPD	650	GKTGPGPAG	C	2DGRPG <mark>P</mark> PGP	670	PGARGQAGVM	680	GFPGPKGAAG	690	EPGKAGERGV	
PGP	PGAVGPA	10	GKDGEAGAQG	720 PPG	PAGPAGE 73	R	RGEQGPAGSP	740	GFQGLPGPAG	750	PPGEAGKPSE	0	QGVPGDLGAP	770	GPSGARGERG	700	FPGERGVQG	790	PGPAGPRGAN	
GAP	GNDGAKG	10	DAGAPGAPGS	QG/ 820	PGLQGMP 83	G	SERGAAGLPG	840	PKGDRGDAGP	850	KGADO Positi	ior	n- n, Oco	cup	ancy- a%	' 0	KGESGPSGPA	890	GPTGARGAPG	
DRO	EPGPPGP	910	AGFAGPPGAD	920	GAKGEPG 93	D	DAGAKGDAGP	940	PGPAGPAGPP	950	GPIGNVGAPG 960		AKGARGSAGP	970	PGATGFPGAA	980	GRVGPPGPSG	990	NAGPPGPPGP 1000	
AGK	EGGKGPR	010	GETGPAGRPG	1020 EVG	PPGPPGP		GEKGSPGAD	1040	GPAGAPGTPG	1050	PQGIAGQRGV		/GLPGQRGER	1070	GFPGLPGPSG	1080	EPGKQGPSGA	1090	SGERGPPGPM	
GPP		10	ESGREGAPGA	1120 CDr	PGRDGSP 113	, ,		1140	PAGPPGAPGA	1150	PGAPGPVGPA 1160	(1170		1180		190		
LBO		210		1220	123 123	, r		1240	OIENIPEREG	1250				1270	SCEVANIDENIO	1280	GCNIL DAIKUE	1290		
VPT		10	NWYISKNPKD	1320 KRH	133	, <u>т</u>	DGEOFEYGG	1340	OGSDPADVAL	1350		-		1370		1380		1390		
EGN	ISRFTYSV	10	TVDGCTSHTG	1420 AW	SKTVIEYK 143	, <u>-</u>	TKTSRLPII	1440	DVAPLDVGAP	1450	DQEFGFDVGP 1460	1	/CFL				TOTELUMELL		0001010101	

Fig. 3. COL1A1 PTM map of the human lung. A. The length of the collagen chain is highlighted in the red box. On the top-left side of the page, all modifications and signal peptides are given as toggle buttons. On the top right-side of the page, buttons connecting to Uniprot and to copy sequence are available. B. 3-Hyp is selected to be highlighted on the collagen PTM map. The number of 3-Hyp on the information bar are highlighted with the red box. 3-Hyp modifications are highlighted with blue color. The position and occupancy of a particular 3-Hyp can be seen by moving the cursor to the modification. Underline in black represents propeptides, and underline in red represents telopeptides. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

than 3-Hyp, across different organisms and the variations of occupancy levels of PTMs in different diseased conditions.

Methodology

The project aimed to develop a web-based PTM (Post-Translational Modification) site visualizer for the matrix-biology community. An inhouse in silico approach was developed to identify and quantify the site-specific collagen PTM using MS data [45]. Different datasets have been utilized as a source of MS data for different organisms. PXD011627 and PXD010092 for zebrafish myocardium ECM [57], PXD028908 for human's heart ECM [58], PXD002488 for mice's heart ECM [59], PXD005726 for pig's BES and DES-induced neointima ECM [60], PXD008802 for fibrillar collagen in mice's skin were utilized [61]. Using an in-house developed pipeline, our lab could identify and quantify collagen PTM sites more than previously known for these tissues. The information gathered through these studies was used as an input for knowledge base curation. We used collagen sequence, number of PTMs,

and sites of PTMs to develop this first version of the knowledge base. The primary objective was to create a knowledge base and web tool that would display PTM sites of proteins from various species. PTM data for various tissues and proteins were collected from available sources. The backend of the web application was developed using Python-Flask, a microweb framework, to handle data processing and communication with the knowledge base Flask-Python was chosen for the backend due to its flexibility and simplicity. It allowed for efficient data handling, routing, and API development. The front end was designed using Bootstrap 5.0, providing a responsive and user-friendly interface for data visualization. Bootstrap, a popular frontend framework, was employed for designing the web interface. Its responsive design ensured compatibility with various devices and screen sizes. A comprehensive knowledge base was designed to store PTM data, ensuring that it could accommodate a wide range of proteins, tissues, and PTM types. One of the key features of the tool is its scalability. It can efficiently handle a growing number of entries and PTMs as the knowledge base expands over time. The web tool's user interface was developed to provide a user-

Α.	PTM Home Al	pout Tear	n Hel	p Comp	are Cor	iserved	Sites
В.	Compare PTM Sites		Q	Co	mpare PT	M Sites	
	PTM Select Organisms to Compare: Human Okouse Zebrafish Pig Canine Bovine Get Results		3 Sek 9 0 0 0	-Hyp ect Organisms to Compai Human Mouse Zebrafish Pig Canine Bovine	re: Get Result	3	
C.	Comparison Result Conserved sites for COL1A1 in 3-Hyp:						
	Collagen Chain PTM Organism Length of Se COL1A1 3-Hyp Human 1464 COL1A1 3-Hyp Mouse 1453 Download CSV Image: Coll Coll Coll Coll Coll Coll Coll Col	quence P1 P2 P192 P375 P181 P364	P3 P4 P567 P885 F - P874 -	P5 P6 P7 P897 P927 P1119 P916 P1108	P8 P9 P1122 P1164 - P1153	P10 P11 P760 P805	P12 P13 P14

Fig. 4. A web page to compare conserved sites. A. Compare conserved sites link is present at the top of the home page. B. COL1A1 and 3-Hyp sites are selected for organisms Human and Mouse. C. 3-Hyp sites of COL1A1 chain that are conserved in organisms Human and Mouse are presented in a table. P1-P14 are abbreviations for position 1 to position 14.

friendly experience, allowing researchers to easily access and visualize PTM sites in proteins from different species. The knowledge base is optimized for the Google Chrome and Mozilla Firefox browser.

Author contributions

AJ and AN worked on development, design, manuscript draft preparation, and figure creation. LNM developed the initial framework of the browser. BM and TB conceptualized the overall structure of the study and finalized the manuscript.

CRediT authorship contribution statement

Ashutosh Joshi: Writing – original draft, Formal analysis, Data curation, Conceptualization. Ayush Nigam: Formal analysis, Data curation. Lalit Narayan Mudgal: Formal analysis, Data curation. Bhaskar Mondal: Writing – review & editing, Conceptualization. Trayambak Basak: Writing – review & editing, Writing – original draft, Supervision, Investigation, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The Science and Engineering Research Board (SERB) funded coreresearch grant "Decoding the dynamics of cardiac ECM Matrisome during post-MI (myocardial infarction) remodeling (CRG/2022/ 006204; IITM/SERB/TB/332)" to TB is acknowledged for this work. AJ also acknowledges the HTRA fellowship (MoE, Govt. of India) for the doctoral program.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mbplus.2024.100144.

References

- J.T. Oxford, J.C. Reeck, M.J. Hardy, Extracellular matrix in development and disease, Int. J. Mol. Sci. 20 (2019), https://doi.org/10.3390/ijms20010205.
- [2] T.A. Wynn, T.R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease, Nat. Med. 18 (2012) 1028–1040, https://doi.org/10.1038/ nm.2807.
- [3] R.T. Cowling, D. Kupsky, A.M. Kahn, L.B. Daniels, B.H. Greenberg, Mechanisms of cardiac collagen deposition in experimental models and human disease, Transl. Res. 209 (2019) 138–155, https://doi.org/10.1016/j.trsl.2019.03.004.
- [4] G.A. Di Lullo, S.M. Sweeney, J. Körkkö, L. Ala-Kokko, J.D. San Antonio, Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen, J. Biol. Chem. 277 (2002) 4223–4231, https://doi.org/10.1074/ibc.M110709200.
- M.D. Shoulders, R.T. Raines, Collagen structure and stability, Annu. Rev. Biochem. 78 (2009) 929–958, https://doi.org/10.1146/annurev. biochem.77.032207.120833.
- [6] C. Onursal, E. Dick, I. Angelidis, H.B. Schiller, C.A. Staab-Weijnitz, Collagen biosynthesis, processing, and maturation in lung ageing, Front. Med. 8 (2021) 593874, https://doi.org/10.3389/FMED.2021.593874/BIBTEX.
- [7] Y. Ishikawa, H.P. Bächinger, A molecular ensemble in the rER for procollagen maturation, Biochim. Biophys. Acta - Mol. Cell Res. 2013 (1833) 2479–2491, https://doi.org/10.1016/J.BBAMCR.2013.04.008.

- [8] N.A. Kefalides, Structure and biosynthesis of basement membranes, Int. Rev. Connect. Tissue Res. 6 (1973) 63–104, https://doi.org/10.1016/B978-0-12-363706-2.50008-8.
- [9] R.M. Gryder, M. Lamon, E. Adams, Sequence position of 3 hydroxyproline in basement membrane collagen. isolation of glycyl 3 hydroxyprolyl 4 hydroxyproline from swine kidney, J. Biol. Chem. 250 (1975) 2470–2474, https://doi.org/ 10.1016/s0021-9258(19)41624-4.
- [10] T.F. Kresina, E.J. Miller, Isolation and characterization of basement membrane collagen from human placental tissue. Evidence for the Presence of Two Genetically Distinct Collagen Chains, Biochemistry 18 (1979) 3089–3097, https:// doi.org/10.1021/bi00581a028.
- [11] M.A. Weis, D.M. Hudson, L. Kim, M. Scott, J.J. Wu, D.R. Eyre, Location of 3-hydroxyproline residues in collagen types I, II, III, and V/XI implies a role in fibril supramolecular assembly, J. Biol. Chem. 285 (2010) 2580–2590, https://doi.org/ 10.1074/jbc.M109.068726.
- [12] R. Morello, T.K. Bertin, Y. Chen, J. Hicks, L. Tonachini, M. Monticone, P. Castagnola, F. Rauch, F.H. Glorieux, J. Vranka, H.P. Bächinger, J.M. Pace, U. Schwarze, P.H. Byers, M.A. Weis, R.J. Fernandes, D.R. Eyre, Z. Yao, B.F. Boyce, B. Lee, CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta, Cell 127 (2006) 291–304, https://doi.org/10.1016/J. CELL.2006.08.039.
- [13] W.A. Cabral, W. Chang, A.M. Barnes, M. Weis, M.A. Scott, S. Leikin, E. Makareeva, N. V. Kuznetsova, K.N. Rosenbaum, C.J. Tifft, D.I. Bulas, C. Kozma, P.A. Smith, D. R. Eyre, J.C. Marini, Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta, Nat. Genet. 2007 393. 39 (2007) 359–365. https://doi.org/10.1038/ng1968.
- [14] E. Pokidysheva, S. Boudko, J. Vranka, K. Zientek, K. Maddox, M. Moser, R. Fässler, J. Ware, H.P. Bächinger, Biological role of prolyl 3-hydroxylation in type IV collagen, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 161–166, https://doi.org/ 10.1073/PNAS.1307597111/SUPPL_FILE/PNAS.201307597SI.PDF.
- [15] D.M. Hudson, K.S. Joeng, R. Werther, A. Rajagopal, M. Weis, B.H. Lee, D.R. Eyre, Post-translationally abnormal collagens of prolyl 3-hydroxylase-2 null mice offer a pathobiological mechanism for the high myopia linked to human LEPREL1 mutations, J. Biol. Chem. 290 (2015) 8613–8622, https://doi.org/10.1074/jbc. M114.634915.
- [16] A.M. Salo, J. Myllyharju, Prolyl and lysyl hydroxylases in collagen synthesis, Exp. Dermatol. 30 (2021) 38–49, https://doi.org/10.1111/exd.14197.
- [17] M. Yamauchi, M. Sricholpech, Lysine post-translational modifications of collagen, Essays Biochem. 52 (2012) 113–133, https://doi.org/10.1042/BSE0520113.
- [18] B. Schegg, A.J. Hülsmeier, C. Rutschmann, C. Maag, T. Hennet, Core glycosylation of collagen is initiated by two β(1-O)Galactosyltransferases, Mol. Cell. Biol. 29 (2009) 943–952, https://doi.org/10.1128/MCB.02085-07.
- [19] M. Sricholpech, I. Perdivara, H. Nagaoka, M. Yokoyama, K.B. Tomer, M. Yamauchi, Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture, J. Biol. Chem. 286 (2011) 8846–8856, https://doi. org/10.1074/JBC.M110.178509.
- [20] P.C. Trackman, Enzymatic and non-enzymatic functions of the lysyl oxidase family in bone, Matrix Biol. 52–54 (2016) 7–18, https://doi.org/10.1016/j. matbio.2016.01.001.
- [21] B. Piersma, R.A. Bank, Collagen cross-linking mediated by lysyl hydroxylase 2: an enzymatic battlefield to combat fibrosis, Essays Biochem. 63 (2019) 377–387, https://doi.org/10.1042/EBC20180051.
- [22] S. Miyatake, S. Schneeberger, N. Koyama, K. Yokochi, K. Ohmura, M. Shiina, H. Mori, E. Koshimizu, E. Imagawa, Y. Uchiyama, S. Mitsuhashi, M.C. Frith, A. Fujita, M. Satoh, M. Taguri, Y. Tomono, K. Takahashi, H. Doi, H. Takeuchi, M. Nakashima, T. Mizuguchi, A. Takata, N. Miyake, H. Saitsu, F. Tanaka, K. Ogata, T. Hennet, N. Matsumoto, Biallelic COLGALT1 variants are associated with cerebral small vessel disease, Ann. Neurol. 84 (2018) 843–853, https://doi.org/ 10.1002/ANA.25367.
- [23] K.A. Geister, A.J. Lopez-Jimenez, S. Houghtaling, T.H. Ho, R. Vanacore, D.R. Beier, Loss of function of Colgalt1 disrupts collagen post-translational modification and causes musculoskeletal defects, Dis. Model. Mech. 12 (2019), https://doi.org/ 10.1242/dmm.037176.
- [24] A.M. Salo, H. Cox, P. Farndon, C. Moss, H. Grindulis, M. Risteli, S.P. Robins, R. Myllylä, A connective tissue disorder caused by mutations of the lysyl hydroxylase 3 gene, Am. J. Hum. Genet. 83 (2008) 495–503, https://doi.org/ 10.1016/J.AJHG.2008.09.004.
- [25] C. Gistelinck, P.E. Witten, A. Huysseune, S. Symoens, F. Malfait, D. Larionova, P. Simoens, M. Dierick, L. Van Hoorebeke, A. De Paepe, R.Y. Kwon, M.A. Weis, D. R. Eyre, A. Willaert, P.J. Coucke, Loss of type I collagen telopeptide lysyl hydroxylation causes musculoskeletal abnormalities in a zebrafish model of Bruck syndrome, J. Bone Miner. Res. 31 (2016) 1930–1942, https://doi.org/10.1002/ jbmr.2977.
- [26] C. Gistelinck, M.A. Weis, J. Rai, U. Schwarze, D. Niyazov, K.M. Song, P.H. Byers, D. R. Eyre, Abnormal bone collagen cross-linking in osteogenesis Imperfecta/Bruck syndrome caused by compound heterozygous PLOD2 mutations, JBMR plus. 5 (2021) 1–15, https://doi.org/10.1002/jbm4.10454.
- [27] A.J. Van der Slot, A.M. Zuurmond, A.F.J. Bardoel, C. Wijmenga, H.E.H. Pruijs, D. O. Sillence, J. Brinckmann, D.J. Abraham, C.M. Black, N. Verzijl, J. DeGroot, R. Hanemaaijer, J.M. TeKoppele, T.W.J. Huizinga, R.A. Bank, Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis, J. Biol. Chem. 278 (2003) 40967–40972, https://doi.org/10.1074/jbc.M307380200.
- [28] A.J. Van Der Slot-Verhoeven, E.A. Van Dura, J. Attema, B. Blauw, J. DeGroot, T.W. J. Huizinga, A.M. Zuurmond, R.A. Bank, The type of collagen cross-link determines the reversibility of experimental skin fibrosis, Biochim. Biophys. Acta Mol. Basis Dis. 1740 (2005) 60–67, https://doi.org/10.1016/j.bbadis.2005.02.007.

- [29] W.A. Cabral, I. Perdivara, M.A. Weis, M. Terajima, A.R. Blissett, W. Chang, J. E. Perosky, E.N. Makareeva, E.L. Mertz, S. Leikin, K.B. Tomer, K.M. Kozloff, D. R. Eyre, M. Yamauchi, J.C. Marini, Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta, PLoS Genet. 10 (2014), https://doi.org/10.1371/journal. pgen.1004465.
- [30] M. Terajima, Y. Taga, Y. Chen, W.A. Cabral, G. Hou-Fu, S. Srisawasdi, M. Nagasawa, N. Sumida, S. Hattori, J.M. Kurie, J.C. Marini, M. Yamauchi, Cyclophilin-B modulates collagen cross-linking by differentially affecting lysine hydroxylation in the helical and telopeptidyl domains of tendon type I collagen, J. Biol. Chem. 291 (2016) 9501–9512, https://doi.org/10.1074/jbc.M15.699470.
- [31] T. Saito, M. Terajima, Y. Taga, F. Hayashi, S. Oshima, A. Kasamatsu, Y. Okubo, C. Ito, K. Toshimori, M. Sunohara, H. Tanzawa, K. Uzawa, M. Yamauchi, Decrease of lysyl hydroxylase 2 activity causes abnormal collagen molecular phenotypes, defective mineralization and compromised mechanical properties of bone, Bone 154 (2022), https://doi.org/10.1016/j.bone.2021.116242.
- [32] K. Takaluoma, M. Hyry, J. Lantto, R. Sormunen, R.A. Bank, K.I. Kivirikko, J. Myllyharju, R. Soininen, Tissue-specific changes in the hydroxylysine content and cross-links of collagens and alterations in fibril morphology in lysyl hydroxylase 1 knock-out mice, J. Biol. Chem. 282 (2007) 6588–6596, https://doi. org/10.1074/jbc.M608830200.
- [33] Y. Chen, M. Terajima, Y. Yang, L. Sun, Y.H. Ahn, D. Pankova, D.S. Puperi, T. Watanabe, M.P. Kim, S.H. Blackmon, J. Rodriguez, H. Liu, C. Behrens, I. I. Wistuba, R. Minelli, K.L. Scott, J. Sanchez-Adams, F. Guilak, D. Pati, N. Thilaganathan, A.R. Burns, C.J. Creighton, E.D. Martinez, T. Zal, K.J. Grande-Allen, M. Yamauchi, J.M. Kurie, Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma, J. Clin. Invest. 125 (2015) 1147–1162, https://doi.org/ 10.1172/JCI74725.
- [34] T. Saito, K. Uzawa, M. Terajima, M. Shiiba, A.L. Amelio, H. Tanzawa, M. Yamauchi, Aberrant collagen cross-linking in human Oral squamous cell carcinoma, J. Dent. Res. 98 (2019) 517–525, https://doi.org/10.1177/0022034519828710.
- [35] M. Terajima, Y. Taga, B.K. Brisson, A.C. Durham, K. Sato, K. Uzawa, T. Saito, S. Hattori, K.U. Sørenmo, M. Yamauchi, S.W. Volk, Collagen molecular phenotypic switch between non-neoplastic and neoplastic canine mammary tissues, Sci. Rep. 11 (2021) 1–15, https://doi.org/10.1038/s41598-021-87380-y.
- [36] Y. Zhou, J.C. Horowitz, A. Naba, N. Ambalavanan, K. Atabai, J. Balestrini, P. B. Bitterman, R.A. Corley, B. Sen Ding, A.J. Engler, K.C. Hansen, J.S. Hagood, F. Kheradmand, Q.S. Lin, E. Neptune, L. Niklason, L.A. Ortiz, W.C. Parks, D. J. Tschumperlin, E.S. White, H.A. Chapman, V.J. Thannickal, Extracellular matrix in lung development, homeostasis and disease, Matrix Biol. 73 (2018) 77–104, https://doi.org/10.1016/j.matbio.2018.03.005.
- [37] E.J. Miller, K.A. Piez, An accelerated single-column procedure for the automatic analysis of amino acids in collagen and elastin hydrolyzates, Anal. Biochem. 16 (1966) 320–326, https://doi.org/10.1016/0003-2697(66)90161-8.
- [38] D.J.S. Hulmes, A. Miller, D.A.D. Parry, K.A. Piez, J. Woodhead-Galloway, Analysis of the primary structure of collagen for the origins of molecular packing, J. Mol. Biol. 79 (1973) 137–148, https://doi.org/10.1016/0022-2836(73)90275-1.
- [39] E.J. Miller, A.J. Narkates, M.A. Niemann, Amino acid analysis of collagen hydrolysates by reverse-phase high-performance liquid chromatography of 9-fluorenylmethyl chloroformate derivatives, Anal. Biochem. 190 (1990) 92–97, https://doi.org/10.1016/0003-2697(90)90139-Z.
- [40] T. Basak, L. Vega-Montoto, L.J. Zimmerman, D.L. Tabb, B.G. Hudson, R. M. Vanacore, Comprehensive characterization of glycosylation and hydroxylation of basement membrane collagen IV by high-resolution mass spectrometry, J. Proteome Res. 15 (2016) 245–258, https://doi.org/10.1021/acs. jproteome.5B00767.
- [41] M. Terajima, Y. Taga, T. Nakamura, H.F. Guo, Y. Kayashima, N. Maeda-Smithies, K. Parag-Sharma, J.S. Kim, A.L. Amelio, K. Mizuno, J.M. Kurie, M. Yamauchi, Lysyl hydroxylase 2 mediated collagen post-translational modifications and functional outcomes, Sci. Rep. 12 (2022) 1–19, https://doi.org/10.1038/s41598-022-18165-0.
- [42] Y. Ishikawa, Y. Taga, K. Zientek, N. Mizuno, A.M. Salo, O. Semenova, S.F. Tufa, D. R. Keene, P. Holden, K. Mizuno, D.B. Gould, J. Myllyharju, H.P. Bächinger, Type I and type V procollagen triple helix uses different subsets of the molecular ensemble for lysine posttranslational modifications in the rER, J. Biol. Chem. 296 (2021) 100453, https://doi.org/10.1016/j.jbc.2021.100453.
- [43] M. Terajima, Y. Taga, M. Sricholpech, Y. Kayashima, N. Sumida, N. Maeda, S. Hattori, M. Yamauchi, Role of glycosyltransferase 25 domain 1 in type i collagen glycosylation and molecular phenotypes, Biochemistry 58 (2019) 5040–5051, https://doi.org/10.1021/acs.biochem.8b00984.
- [44] M. Sricholpech, I. Perdivara, M. Yokoyama, H. Nagaoka, M. Terajima, K.B. Tomer, M. Yamauchi, Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance, J. Biol. Chem. 287 (2012) 22998–23009, https://doi.org/10.1074/jbc.M112.343954.
- [45] V. Sarohi, S. Srivastava, T. Basak, Comprehensive mapping and dynamics of sitespecific prolyl-hydroxylation, lysyl-hydroxylation and lysyl O-glycosylation of collagens deposited in ECM during zebrafish heart regeneration, Front. Mol. Biosci. 9 (2022) 1–17, https://doi.org/10.3389/fmolb.2022.892763.
- [46] M. Terajima, I. Perdivara, M. Sricholpech, Y. Deguchi, N. Pleshko, K.B. Tomer, M. Yamauchi, Glycosylation and cross-linking in bone type I collagen, J. Biol. Chem. 289 (2014) 22636–22647, https://doi.org/10.1074/JBC.M113.528513.
- [47] V. Sarohi, T. Basak, Perturbed post-translational modification (PTM) network atlas of collagen I during stent-induced neointima formation, J. Proteomics. 276 (2023) 104842, https://doi.org/10.1016/j.jprot.2023.104842.

A. Joshi et al.

- [48] V. Sarohi, T. Basak, Decoding the comprehensive substrate-specificity and evidence of altered O-glycosylation in P4ha1 and P4ha2 deleted mutant mice, BioRxiv (2023).
- [49] E. Chautard, M. Fatoux-Ardore, L. Ballut, N. Thierry-Mieg, S. Ricard-Blum, MatrixDB, the extracellular matrix interaction database, Nucleic Acids Res. 39 (2011) D235, https://doi.org/10.1093/nar/gkq830.
- [50] A. Naba, K.R. Clauser, H. Ding, C.A. Whittaker, S.A. Carr, R.O. Hynes, The extracellular matrix: tools and insights for the "omics" era, Matrix Biol. 49 (2016) 10–24, https://doi.org/10.1016/J.MATBIO.2015.06.003.
- [51] X. Shao, I.N. Taha, K.R. Clauser, Y. (Tom) Gao, A. Naba, MatrisomeDB: The ECMprotein knowledge database, Nucleic Acids Res. 48 (2020) D1136–D1144, https:// doi.org/10.1093/nar/gkz849.
- [52] X. Shao, C.D. Gomez, N. Kapoor, J.M. Considine, C. Grams, Y. Gao, A. Naba, MatrisomeDB 2.0: updates to the ECM-protein knowledge database, Nucleic Acids Res. 51 (2023) (2023) D1519–D1530, https://doi.org/10.1093/NAR/GKAC1009.
- [53] R. Wilson, A.F. Diseberg, L. Gordon, S. Zivkovic, L. Tatarczuch, E.J. Mackie, J. J. Gorman, J.F. Bateman, Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics, Mol. Cell. Proteomics. 9 (2010) 1296–1313, https://doi.org/10.1074/mcp.M000014-MCP201.
- [54] M. Terajima, Y. Taga, W.A. Cabral, Y. Liu, M. Nagasawa, N. Sumida, Y. Kayashima, P. Chandrasekaran, L. Han, N. Maeda, I. Perdivara, S. Hattori, J.C. Marini, M. Yamauchi, Cyclophilin B control of lysine post-translational modifications of skin type I collagen, PLoS Genet. 15 (2019) 1–26, https://doi.org/10.1371/ journal.pgen.1008196.
- [55] E. Song, Y. Mechref, LC-MS/MS identification of the o-glycosylation and hydroxylation of amino acid residues of collagen α-1 (II) chain from bovine cartilage, J. Proteome Res. 12 (2013) 3599–3609, https://doi.org/10.1021/ PR400101T/SUPPL FILE/PR400101T SI 003.PDF.
- [56] J. Merl-Pham, T. Basak, L. Knüppel, D. Ramanujam, M. Athanason, J. Behr, S. Engelhardt, O. Eickelberg, S.M. Hauck, R. Vanacore, C.A. Staab-Weijnitz,

Quantitative proteomic profiling of extracellular matrix and site-specific collagen post-translational modifications in an in vitro model of lung fibrosis, Matrix Biol. plus. 1 (2019) 100005, https://doi.org/10.1016/J.MBPLUS.2019.04.002.

- [57] A. Garcia-Puig, J.L. Mosquera, S. Jiménez-Delgado, C. García-Pastor, I. Jorba, D. Navajas, F. Canals, A. Raya, Proteomics analysis of extracellular matrix remodeling during zebrafish heart regeneration, Mol. Cell. Proteomics. 18 (2019) 1745–1755, https://doi.org/10.1074/mcp.RA118.001193.
- [58] J. Barallobre-Barreiro, T. Radovits, M. Fava, U. Mayr, W.Y. Lin, E. Ermolaeva, D. Martínez-López, E.L. Lindberg, E. Duregotti, L. Daróczi, M. Hasman, L. E. Schmidt, B. Singh, R. Lu, F. Baig, A.M. Siedlar, F. Cuello, N. Catibog, K. Theofilatos, A.M. Shah, M.G. Crespo-Leiro, N. Doménech, N. Hübner, B. Merkely, M. Mayr, Extracellular matrix in heart failure: role of ADAMTS5 in proteoglycan remodeling, Circulation 144 (2021) 2021–2034, https://doi.org/ 10.1161/CIRCULATIONAHA.121.055732.
- [59] R. Padmanabhan Iyer, Y.A. Chiao, E.R. Flynn, K. Hakala, C.A. Cates, S. T. Weintraub, L.E. de Castro Brás, Matrix metalloproteinase-9-dependent mechanisms of reduced contractility and increased stiffness in the aging heart, Proteomics - Clin. Appl. 10 (2016) 92–107, https://doi.org/10.1002/ prca.201500038.
- [60] G. Suna, W. Wojakowski, M. Lynch, J. Barallobre-Barreiro, X. Yin, U. Mayr, F. Baig, R. Lu, M. Fava, R. Hayward, C. Molenaar, S.J. White, T. Roleder, K.P. Milewski, P. Gasior, P.P. Buszman, P. Buszman, M. Jahangiri, C.M. Shanahan, J. Hill, M. Mayr, Extracellular matrix proteomics reveals interplay of aggrecan and aggrecanases in vascular remodeling of stented coronary arteries, Circulation 137 (2018) 166–183, https://doi.org/10.1161/CIRCULATIONAHA.116.023381.
- [61] K.H. Sipila, K. Drushinin, P. Rappu, J. Jokinen, T.A. Salminen, A.M. Salo, J. Käpyla, J. Myllyharju, J. Heino, Proline hydroxylation in collagen supports integrin binding by two distinct mechanisms, J. Biol. Chem. 293 (2018) 7645–7658, https://doi.org/10.1074/jbc.RA118.002200.