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Objective: We aimed to use an individual metabolic connectome method, the Jensen-
Shannon Divergence Similarity Estimation (JSSE), to characterize the aberrant connectivity
patterns and topological alterations of the individual-level brain metabolic connectome and
predict the long-term surgical outcomes in temporal lobe epilepsy (TLE).

Methods: A total of 128 patients with TLE (63 females, 65 males; 25.07 ± 12.01 years)
who underwent Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG)
imaging were enrolled. Patients were classified either as experiencing seizure recurrence
(SZR) or seizure free (SZF) at least 1 year after surgery. Each individual’s metabolic brain
network was ascertained using the proposed JSSE method. We compared the similarity
and difference in the JSSE network and its topological measurements between the two
groups. The two groups were then classified by combining the information from
connection and topological metrics, which was conducted by the multiple kernel
support vector machine. The validation was performed using the nested leave-one-out
cross-validation strategy to confirm the performance of the methods.

Results: With a median follow-up of 33 months, 50% of patients achieved SZF. No
relevant differences in clinical features were found between the two groups except age at
onset. The proposed JSSE method showed marked degree reductions in IFGoperc.R,
ROL. R, IPL. R, and SMG. R; and betweenness reductions in ORBsup.R and IOG. R;
meanwhile, it found increases in the degree analysis of CAL. L and PCL. L, and in the
betweenness analysis of PreCG.R, IOG. R, PoCG.R, PCL. L and PCL.R. Exploring
consensus significant metabolic connections, we observed that the most involved
metabolic motor networks were the INS-TPOmid.L, MTG. R-SMG. R, and MTG.
R-IPL.R pathways between the two groups, and yielded another detailed individual
pathological connectivity in the PHG. R-CAU.L, PHG. R-HIP.L, TPOmid.L-LING.R,
TPOmid.L-DCG.R, MOG. R-MTG.R, MOG. R-ANG.R, and IPL. R-IFGoperc.L
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pathways. These aberrant functional network measures exhibited ideal classification
performance in predicting SZF individuals from SZR ones at a sensitivity of 75.00%, a
specificity of 92.79%, and an accuracy of 83.59%.

Conclusion: The JSSE method indicator can identify abnormal brain networks in
predicting an individual’s long-term surgical outcome of TLE, thus potentially
constituting a clinically applicable imaging biomarker. The results highlight the
biological meaning of the estimated individual brain metabolic connectome.

Keywords: PET, FDG-PET, metabolic connectome, temporal lobe epilepsy, predicts seizure outcomes

INTRODUCTION

In most patients with refractory temporal lobe epilepsy (TLE),
surgery has proven to be an effective treatment (Tellez-Zenteno
et al., 2005). The goal of epilepsy surgery is to render the patient
seizure free. However, not every patient with TLE can achieve this
outcome postoperatively, as shown by meta-analysis where the
median proportion of long-term seizure-free patients was around
60% (Engel et al., 2003a; Tellez-Zenteno et al., 2005). Patients
who continued to experience seizures after surgery were directly
associated with an even lower quality of life (Schmidt et al., 2004).
Given the state of existing research, it is difficult to find
practicable markers that can effectively predict surgical
outcomes. Therefore, determining the potential characteristics
of the different outcomes of TLE and identifying biological
indicators for prediction remain critical needs in the
management of each patient (Harroud et al., 2012; Jehi et al.,
2015b; Giulioni et al., 2016; West et al., 2019).

Research results from multiple fields (neurobiology,
neuroimaging, electrophysiology) have collectively shown that
epilepsy is a neural network disease, and its abnormal
performance extends greatly outside the original location of
the epileptogenic zone, which affects the prognosis of
treatment (Gleichgerrcht et al., 2015). Notably, several brain
network-based machine learning methods have been proposed
for epilepsy analysis or other neurological diseases. These have
achieved impressive results (Zhang et al., 2016; Li et al., 2019a; Li
et al., 2020b), and are routinely used to aid decision making in
epilepsy surgery and other specialties (Cahill et al., 2019; Wang
et al., 2019; Shim et al., 2020). A magnetic resonance imaging
(MRI) study which used deep learning applied to the whole-brain
connectome to determine seizure control after epilepsy surgery
attained a positive predictive value (PPV; seizure-freedom) of
88% (Gleichgerrcht et al., 2018). Taking advantage of newer in
vivo neuroimaging techniques capable of revealing whole-brain
metabolic abnormalities by means of positron emission
tomography (PET) with 18F-fluorodeoxyglucose (FDG), our
group demonstrated that extratemporal metabolic profiles
could explain seizure failure after surgery for TLE patients
(Tang et al., 2020). Some FDG-PET studies detected multi-
scale community structure with different normalization
techniques for exhibiting inter-subject FDG-PET brain
networks (Sperry et al., 2018). Other studies implemented
combined graph theory for measuring aberrant topological
patterns in mesial TLE (Wang et al., 2019). Although

successful in revealing network abnormalities in clinical
groups, these group-level metabolic network analyses sacrifice
critical individual-level information. In contrast to earlier work
on group-based metabolic patterns, brain network analysis based
on graph theory could offer an individualized assessment of
metabolic patterns predictive of clinical prognosis (Stam,
2014). The challenge is that aberrant connectivity is variable
across individuals, with different patients exhibiting different foci
of abnormalities in limbic and extralimbic networks
(Gleichgerrcht and Bonilha, 2017). Thus, mapping the brain
network in the context of epilepsy could be improved by
statistical approaches capable of isolating abnormal
individualized patterns in complex data sets.

Inspired by MR-based structural studies using the Kullback-
Leibler divergence similarity estimation (KLSE) and the Jensen-
Shannon divergence similarity estimation (JSSE) (Tijms et al.,
2012b; Kong et al., 2014; Wang et al., 2016b; Li et al., 2021), we
analyzed patients with unilateral TLE who had undergone
identical surgical resections, and long-term seizure outcomes
were analyzed. We opted to apply the JSSE to develop a new
analytic methodology for individual-level metabolic brain
network construction in FDG-PET imaging and to further
provide an ensemble method in predicting the seizure
outcomes of TLE patients.

MATERIALS AND METHODS

Participants
We retrospectively studied 128 consecutive patients with a
diagnosis of refractory unilateral TLE based on the
International League Against Epilepsy (ILAE) criteria (Berg
et al., 2010). Comprehensive clinical assessment was
performed, including neurological examination, prolonged
video electroencephalography (EEG) monitoring, and 3T MRI
to confirm either normal MRI or unilateral hippocampal atrophy
concordant with the side of seizure onset. Each patient was
surgically treated by identical anteromedial temporal resection
(AMTR) without extratemporal resections as described by
Spencer et al. (1984). All patients underwent FDG-PET brain
imaging before surgery. Pathology was assessed from
postoperative pathology reports. The determination of
postsurgical outcome was based on in-person interviews and
patient assessment during clinic follow-up. Patients without 1-
year follow-up were excluded from analysis.
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Outcome assessments were performed 3 and 12 months after
surgery and at yearly intervals thereafter. All patients were
interviewed in detail for seizure recurrence, if any, and date of
recurrence. Surgical outcomes were classified based on the Engel
surgical outcome scale as either seizure free (SZF; Engel class I) or
seizure recurrence (SZR; Engel class II through IV) (Engel et al.,
2003a; Engel et al., 2003b). Detailed clinical information of the
participants can be found in Table 1.

All participants provided written informed consent following
the Declaration of Helsinki. All aspects of the study were
approved by the Studies Institutional Review Board Xiangya
Hospital, Central South University.

FDG-PET Image Acquisition andProcessing
FDG-PETwas acquired using aDiscovery Elite PET/CT scanner (GE
Healthcare, Chicago, IL, United States) prior to surgical resection.
Images were acquired in 3 dimensions over a 60-min time period,
following the scanning protocol described by Tang et al. (2018).
Images were reconstructed with an ordered subset expectation
maximization algorithm with 6 iterations and 6 subset methods.
Individual FDG-PET image volumes were spatially normalized into
standard stereotactic Montreal Neurological Institute (MNI) space
with linear and nonlinear 3D transformations using statistical
parametric mapping software (SPM, Wellcome Department of
Cognitive Neurology, London, United Kingdom) on MATLAB
(MathWorks, Natick, MA, United States). To facilitate comparison
across all participants, the intensity of images was globally
normalized. After that, the automated anatomical labeling (AAL)
(Tzourio-Mazoyer et al., 2002) atlas was applied to segment the
cerebral cortex into 90 regions (45 for each hemisphere without the
cerebellum).

Individual JSSE Metabolic Network
Construction
The distribution-divergence–based method has been successfully
implemented for individual morphological brain network

construction (Tijms et al., 2012a; Kong et al., 2014; Wang et al.,
2016a). However, thus far, only a few studies have constructed
individual metabolic networks from FDG-PET imaging. We
assumed that the FDG-PET signal across brain regions indicates
metabolic connections subserving interregional information transfer
(Wang et al., 2020). A relatively high resting signal-to-noise FDG-
PET signal in a region of interest (ROI) reflects the relative glucose
metabolism rate. Thus, this putative relationship offers a plausible
approach to characterizing interneuronal information transfer. It is
worth noting that most of the existing works have constructed the
network using the Kullback-Leibler (KL) divergence (Van Erven and
Harremos, 2014):

DKL (P||Q) � ∫
X
(P(x)log P(x)

Q(x))dx
where P andQ represent the probability density functions (PDFs)
of voxel intensities in a pair of ROIs, and the KL divergence is
asymmetric. In contrast, we instead used the JSSE to capture the
statistical relationship of the similarity of cerebral glucose
metabolism in any two regions, which could then delineate
individual metabolic connections. JS divergence has been
successfully used in optimal transport (Lu et al., 2018) and
image reconstruction (Jin et al., 2017). The benefits of JSSE
are two sides compared to the KL-based methods. Firstly, the
range of JS divergence is (0,1), resulting in a more accurate
judgment of the similarity. Secondly, JS divergence is
symmetric, which makes it easier to portray connections
between ROIs. We represented the brain nodes as 90 ROIs
from the AAL atlas parcellation for depicting the individual
metabolic network. Globally normalized FDG uptake in each
ROI was used to generate a region × region correlation matrix (90
× 90) for each participant. The intensity of voxels in each ROI was
extracted and used to estimate the PDF of the corresponding ROI
with kernel density estimation (Duong, 2007). We then derived
the metabolic connections as the Jensen-Shannon (JS) divergence
according to the following mathematical equation:

TABLE 1 | Patient clinical characteristics and surgical outcomes.

Variable All n = 128 SZF n = 64 SZR n = 64 Stat p-value

Gender (male/female), n 65/63 31/33 34/30 χ2 � 28 0.60
Age, y 26.07 (12.05) 27.41 (11.68) 24.73 (12.35) t � 1.258 0.21
Age at surgery, y 26.23 (11.97) 27.73 (11.48) 24.75 (12.35) t � 1.40 0.16
Age at onset*, y 13.48 (10.61) 15.56 (11.95) 11.36 (8.64) t � 2.26 0.03*
Duration of epilepsy, y 12.68 (8.54) 11.84 (8.48) 13.52 (8.57) t � 1.11 0.27
Surgical side (L/R), n 73/55 36/28 37/27 χ2 � 0.03 0.86
Hippocampal sclerosis (HS/Non-HS), n 103/25 51/13 52/12 χ2 � 0.05 0.82
Handedness (L/R), n 2/126 2/62 0/64 χ2 � 2.03 0.15
Febrile seizures (with/without), n 18/110 10/54 8/56 χ2 � 0.26 0.61
Brain injury (with/without), n 8/120 2/62 6/58 χ2 � 2.13 0.14
Psychiatric complication (with/without), n 2/126 1/63 1/63 χ2 � 0.0001 0.99
Arua (with/without), n 57/71 29/35 28/36 χ2 � 0.03 0.86
Family history of epilepsy (with/without), n 3/125 1/63 2/62 χ2 � 0.34 0.56
Result of MRI (positive/negative), n 68/60 36/28 32/32 χ2 � 0.50 0.48

Values are shown as mean (SD, standard deviation) unless otherwise specified. *, p-value < 0.05.
HS, hippocampal sclerosis; L, left; R, right; MRI, magnetic resonance imaging; SZF, seizure-free (Engel class I); SZR, seizure recurrence (Engel class II, through IV).
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DJS (P||Q) � 1
2
[DKL(P||M) +DKL(Q||M)]

where M � 0.5 × (P +Q) and DKL(·|·) are the KL-divergence.
Here, we used the JS-divergence as a measure of metabolic
connectivity to construct the adjacency matrix. In this way,
the adjacency matrix describes pairwise metabolic connectivity,
where the metabolic connection strength between region i and j
can be represented by the corresponding element in this
adjacency matrix.

Computation of Graph Metrics
We aimed to investigate the altered reconfiguration pattern of the
individual brain metabolic connectome for TLE. Based on binary
undirected matrices, we systematically analyzed the functional
brain network’s global and local properties with the Graph
Theoretical Network Analysis Toolbox. Specifically, the global
metrics included clustering coefficient (Cp), characteristic path
length (Lp), normalized clustering coefficient (γ), normalized
characteristic path length (λ), small-world (σ), global
efficiency (Eglobal), and modularity score (Q) (Newman, 2004).
Also, the nodal properties included degree centrality, nodal
efficiency, betweenness centrality, shortest path length, and
nodal clustering coefficient. The definitions of these
measurements can be found in the work of Wang et al.
(2015). Both global and nodal graph metrics were applied to
characterize the different patterns of connections in the brain
network. Notably, we compared the network size at the different
sparsity thresholds (of 0.02–0.5, with steps of 0.01), and a sum of
49 values of the corresponding node attributes under the sparsity
threshold was obtained. We then took the sum of 49 values for
each node [area under the curve (AUC)] as input for the
attributes to train the classifier, so there was only one value
corresponding to one graph metric.

Feature Combination and Predicting TLE
Outcomes
To accurately differentiate SZF individuals from SZR ones and to
develop predictions, we combined information from the
connection weights, nodal graph metrics, and global graph
metrics. More specifically, we attempted to adopt the kernel
combination trick for information combination and used the
multi-kernel support vector machine (MK-SVM) for predicting
TLE surgical outcomes. The MK-SVM method in this study was
conducted as follows. Suppose that there are n training samples
with connection values and graph metrics; let x1

i , x
2
i , and x3

i
represent the connection weight, the graph metrics, and nodal
graph metrics of the i-th sample, respectively. With yi ∈ {1,−1}
being the corresponding label, the MK-SVM solves the following
primal problem:

min
W

1
2
∑3
m�1

βm ‖ wm‖2 + C∑n
i�1
ξi

s.t. yi
⎛⎝∑3

m�1
βm(wm)Tϕm(xm

i ) + b⎞⎠()≥ 1 − ξi

ξi ≥ 0, i � 1, 2, ..., n

where ϕm represents the transformation from the original space
in m-th data to the Represent Hilbert Kernel Space (RHKS), wm

represents the hyperplane in RHKS, and βm denotes the
corresponding combining weight on the m-th attribute. Next,
the dual form of MK-SVM can be represented as follows:

max
α

∑n
i�1
αi − 1

2
∑
i,j

αiαjyiyj∑3
m�1

βmk
m(xm

i , x
m
j )

s.t.∑n
i�1
αiyi � 0

0≤ αi ≤C, i � 1, 2, . . . n

where km(xm
i , x

m
j ) � ϕm(xm

i )Tϕm(xm
j ) is the kernel matrix on the

m-th data. After we trained the model, we tested the new samples
x � {x1, x2,/, xM}. The kernel between the new test sample and
the i-th training sample on the m-th modality is defined as
km(xm

i , x
m) � ϕm(xmi )Tϕm(xm). Finally, the predictive level

based on MK-SVM can be formulated as follows:

f(x1, x2, . . . , xM) � sign⎛⎝∑n
i�1
yiαi∑M

m�1
βmk

m(xm
i , x

m) + b⎞⎠
To illustrate the performance gain of the information

combination from different perspectives, such as connection
and metrics, we employed the most commonly used and
simplest linear kernel, as km(xm

i , x
m
j ), which is given as follows:

km(xm
i , x

m
j ) � xmT

i xm
j

Feature Selection and Validation
To confirm the effectiveness of predicting an individual’s long-term
surgical outcomes of TLE, we conducted the nested leave-one-out
cross-validation (LOOCV) strategy to verify the performance of the
methods due to the small sample size (Li et al., 2020a). in which
LOOCV is almost the most strict validation protocol in the machine
learning field (Arlot and Celisse, 2010). Specifically, in LOOCV, only
one participant was left out for testing while the others were used to
train themodels and obtain the optimal parameters. For the choice of
optimal parameters, an inner LOOCVwas conducted on the training
data using a grid-search strategy. The range of the hyperparameterC
was 2−5 to 25. Meanwhile, to alleviate the interference from the
feature selection procedure, we selected the simplest feature selection
method (t test with p < 0.05) to select the nodal graph metric and the
connection weight in our experiment (Li et al., 2019b). All data-
processing and classification procedures used in our study are shown
in (Figure 1).

Statistical Analysis
All data were analyzed using SPSS software version 18.0 (IBM
Corporation, Armonk, NY, United States). Numerical data are
presented as mean with SD. Student’s t test and Pearson’s χ2 test
were used for between-group comparisons of continuous variables, as
appropriate. To evaluate the classification performance of the
information combination methods and the proposed JSSE, we
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conducted several quantitative measurements, including those
determining the accuracy, sensitivity, and specificity. The receiver
operating characteristic (ROC) curve and AUC of these methods
were also provided. Differences between various AUCs were
compared by using a Delong test (Delong et al., 1988). Statistical
significance was defined as a p value <0.05.

RESULTS

Clinical Data
A total of 128 refractory TLE patients (63 females, 65 males;
25.07 ± 12.01 years old; 73 left-TLE, 55 right-TLE) met the
inclusion criteria of isolated AMTR with one or more years of
follow-up. The median follow-up time was 33 months with a
maximum follow-up time of 7 years. The clinical characteristics
of the patients are shown in (Table 1). Briefly, 64 of the 128
patients (50%) obtained an Engel class I outcome. There was no
significant difference between right TLE (49%) and left TLE
(51%) (p > 0.05). Regardless of whether there was
hippocampal sclerosis (HS) in the postoperative histopathology
or MRI, there was no difference in the surgical outcomes (both p
values > 0.05). According to our statistical estimates, patients with
an early age of onset were found to be more likely to relapse
(p � 0.03).

Global and Local Graph Metrics of the
Metabolic Brain Connectome
The global graph metrics of patients are shown in (Table 2). Ar,
Q, Eglobal, Elocal, Cp, γ, λ, σ, and Sr increased, whereasHr and Lp

decreased in the SZF group. Statistical analyses revealed that the
Ar of the SZF group was significantly higher than that of the
SZR group.

Degree Analysis of the Metabolic Brain
Connectome
To investigate the degree distribution of the estimated metabolic
brain connectome, we analyzed each node’s mean degree in the
SZF and SZR groups. The degree in the IFGoperc.R, ROL. R, IPL.
R, and SMG. R tended to be decreased in the SZR group, while the
degree in the CAL. L and PCL. L tended to be increased. The 6

FIGURE 1 | Data-processing and classification procedures employed in our study. Network Estimation: Positron emission tomography (PET) with
18F-fluorodeoxyglucose (FDG) imaging of patients were enrolled. Individual FDG-PET image volumes were spatially normalized into standard stereotactic Montreal
Neurological Institute (MNI) space with linear and nonlinear 3D transformations using statistical parametric mapping software on MATLAB. Individual’s metabolic brain
network was ascertained using the proposed Jensen-Shannon divergence similarity estimation (JSSE) method. Feature Detection: Based on binary undirected
matrices, we systematically analyzed the functional brain network’s global and local properties with the Graph Theoretical Network Analysis Toolbox. Also, the nodal
properties included degree centrality, nodal efficiency, betweenness centrality, shortest path length, and nodal clustering coefficient. We then took the sum of 49 values
for each node as input for the attributes to train the classifier, so there was only one value corresponding to one graph metric. Feature Combination and Identification: We
compared the similarity and difference in the JSSE network and its topological measurements between the seizure recurrence and seizure free groups. The two groups
were then classified by combining the information from connection and topological metrics, which was conducted by the multiple kernel support vector machine. The
validation was performed using the nested leave-one-out cross-validation strategy to confirm the performance of the methods.

TABLE 2 | Global and local graph metrics of the metabolic brain connectome.

Global graph metrics SZF SZR

Arp 0.1467 ± 0.02 0.1396 ± 0.02
Q 10.4590 ± 1.03 10.3029 ± 1.37
Hr 0.0076 ± 0.01 0.0079 ± 0.02
Eglobal 0.2232 ± 0.01 0.2228 ± 0.01
Elocal 0.3322 ± 0.01 0.3306 ± 0.01
Cp 0.2845 ± 0.01 0.2833 ± 0.01
γ 0.6320 ± 0.05 0.6260 ± 0.05
λ 0.5210 ± 0.01 0.5167 ± 0.01
σ 0.5421 ± 0.05 0.5391 ± 0.05
Lp 1.0451 ± 0.05 1.0453 ± 0.06
Sr −0.1499 ± 0.21 −0.2201 ± 0.40

Ar , assortativity; Cp, clustering coefficient; Eglobal , global efficiency; Elocal , local efficiency;
Hr , hierarchy; Lp, characteristic path length; Q, modularity score; Sr , synchronization;
SZF, seizure-free; SZR, seizure-recurrence; γ, normalized clustering coefficient; λ,
normalized characteristic path length; σ, small-world. * p-value < 0.05.
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significant nodes with the average degree in the SZR and SZF
groups are listed in (Table 3).

The nodes with a degree of SD higher than the mean of the
degree of all nodes were identified as degree hub nodes
(Rubinov and Sporns, 2010). Here, according to the
definition of “hubs,” we identified hub nodes in the SZF
and SZR groups separately (Table 4). Comparison of the
hub nodes between the two groups in the same modal
network clearly revealed that most of them overlapped.
Also, it is worth noting that several specific hub nodes
corresponded to different groups.

Betweenness Analysis of the Metabolic
Brain Connectome
We also investigated the betweenness distribution of the
estimated metabolic brain connectome of the SZR and SZF
groups. The results showed that betweenness in ORBsup.R
and IOG. R tended to be decreased in the SZR group, while
betweenness in PreCG.R, IOG. R, PoCG.R, PCL. L, and PCL. R
tended to be increased. The 6 significant nodes with the average
betweenness in the SZR and SZF groups are listed in (Table 5).
We also identified betweenness hub nodes of SZR patients and
SZF patients (Table 6). Comparison of the betweenness hub
nodes between the SZR group and SZF group in the same modal

network revealed that several specific hub nodes corresponded to
different groups.

Classification Results
To evaluate the classification performance of the information
combination methods and the proposed JSSE, we also reported
the single kernel SVM classification result based on the
connection weights (C), global metrics (G), and nodal metrics
(N). The results are shown in (Table 7). The ROC curve result is
shown in (Figure 2), indicating that the performances of
information combination results are superior to those of single
kernel methods, thus supporting the rationality of the proposed
method. Additionally, the C + G + N method achieved the
outperforming of results in all four measurements,
demonstrating its effectiveness. Furthermore, according to
DeLong’s nonparametric statistical significance test (Zhang
et al., 2016), the proposed C + G + N methods were found to
be significantly superior to Connection, Global, and Nodal under
95% confidence intervals with p values equal to 2 ×10−5, 6 ×10−8,
and 0.045, respectively. The superior performance illustrated that
the information combination scheme could effectively improve
the classification performance. These aberrant functional
network measures exhibited ideal classification performance in
predicting SZF individuals from SZR ones at a sensitivity of
75.00%, a specificity of 92.79%, and an accuracy of 83.59%.

Consensus of Significant Metabolic
Connections
As mentioned above, we selected the consensus connections with
a p value <0.05 in each loop. A total of 45 consensus connections
are shown in (Figure 3). In exploring the consensus significant
metabolic connections, we observed that the most involved
metabolic motor networks were the INS-TPOmid.L, MTG.
R-SMG. R, and MTG. R-IPL.R pathways between the two
groups, which was consistent with the results of the typical
group-level method, and yielded further detailed individual
pathological connectivity in the PHG. R-CAU.L, PHG.
R-HIP.L, TPOmid.L-LING.R, TPOmid.L-DCG.R, MOG.
R-MTG.R, MOG. R-ANG.R, and IPL. R-IFGoperc.L pathways.

DISCUSSION

TLE is the most common drug-resistant epilepsy in adults and is
traditionally associated with HS, a lesion affecting the

TABLE 3 | The 6 significant nodes with the average degree in the SZR and SZF groups.

SZF SZR p-value

IFGoperc.R 17.1175000000000 16.1758208955224 0.0309032527143210
ROL.R 11.0982352941176 9.63402985074627 0.00981312750122977
CAL.L 14.5272058823529 15.4510447761194 0.0398351532853636
IPL.R 14.8452941176471 13.4628358208955 0.0231221430595312
SMG.R 17.2137254901961 15.9493283582090 0.0298336296866740
PCL.L 16.5926470588235 18.0343283582090 0.00882273015415935

SZF, seizure-free; SZR, seizure-recurrence.

TABLE 4 | Degree hubs in the SZR and SZF groups.

SZF SZR

SFGmed.R 19.2392156862745 SFGmed.L 19.3671641791045
SFGmed.L 18.8848529411765 SFGdor.R 19.1105223880597
SFGdor.R 18.7669607843137 SFGmed.R 19.0319402985075
ORBmid.L 18.0572549019608 PCL.L 18.0343283582090
PCUN.L 17.6072058823530 SOG.L 17.9308955223881
ORBinf.L 17.5039705882353 ORBmid.L 17.9005970149254
MOG.R 17.4164705882353 ORBinf.L 17.8291044776119
SOG.L 17.3668627450981 PreCG.R 17.8264925373134
SMG.R 17.2137254901961 PCUN.L 17.3124626865672
IFGoperc.R 17.1175000000000 SOG.R 17.0566417910448
ITG.R 17.0490686274510 PoCG.L 16.8581343283582
PreCG.R 17.0400000000000 — —

IOG.R 16.9177450980392 — —

MTG.L 16.8850980392157 — —

SOG.R 16.8262745098039 — —

PoCG.L 16.7069607843137 — —

ZF, seizure-free; SZR, seizure-recurrence.
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hippocampus and adjacent mesial structures (Blumcke et al.,
2013). Evidence from neuroimaging and
neuroelectrophysiology has consistently demonstrated that
epilepsy is a disease of abnormal networks, with changes
occurring well beyond the focus of ictogenesis. These findings
have been corroborated by mounting neuroimaging evidence
suggesting the presence of diffuse grey and white matter
abnormalities beyond the mesial temporal lobe that affect a
distributed network of cortical and subcortical structures as
well as their connections (Nikolin et al., 1984; Biller et al.,
1986; Lin et al., 2007). Thus, the architecture of a patient’s
brain network may have the answer to a critical question in
the field of epilepsy: Why do some TLE patients, despite being
deemed optimal surgical candidates, fail to achieve seizure
control after epilepsy surgery? To address this issue, we
investigated a larger group of patients with a homogeneous
clinicopathological syndrome undergoing standard AMTR for
TLE at a single center with a long postoperative follow-up.

We developed an individual-level metabolic network
construction approach for presurgical FDG-PET imaging and
applied it to the task of predicting individual seizure outcomes
after epilepsy surgery. The classification accuracy of MK-SVM via
combining the information from connection and topological
metrics showed a sensitivity of 75.00%, a specificity of 92.79%,
and an accuracy of 83.59%. Our approach may further the
mechanistic understanding of seizure recurrence by identifying
abnormal graph metrics of the metabolic brain connectome. If we
can identify the specific degree and betweenness analysis of
individual metabolic brain connectome abnormalities

TABLE 5 | The 6 significant nodes with the average betweenness in the SZR and SZF groups.

SZF SZR p-value

PreCG.R 15.3758228782319 18.3473121940106 0.0361029392125115
ORBsup.R 34.6001343347223 25.4420785472724 0.0352784404129758
IOG.R 21.3237440032479 16.3262297494005 0.0140831513048402
PoCG.R 9.34738257361109 11.8143499562684 0.0319301784701826
PCL.L 21.4726364317984 28.4648712016924 0.00712058470205053
PCL.R 16.9695647930214 23.4512654507503 0.0121138051983782

SZF, seizure-free; SZR, seizure-recurrence.

TABLE 6 | Betweenness hubs in the SZR and SZF groups.

SZF SZR

PUT.L 69.3871776909212 PUT.L 70.4504461037482
PUT.R 48.9657146312205 PUT.R 54.3317298368621
ITG.R 45.3484691576060 ORBinf.L 45.2615602093781
DCG.L 45.0242583545777 ITG.R 41.1503972000794
ORBinf.L 42.5620251509945 DCG.L 40.1726525213182
ITG.L 41.1909171341282 ORBmid.R 38.5886577741851
ORBmid.R 38.0795677180871 ITG.L 32.9533102874909
ORBsup.R 34.6001343347223 INS.L 31.4995732390936
DCG.R 32.3583202714907 DCG.R 30.6233992842629
INS.R 32.1463842421356 SFGdor.R 30.2490589173754
SFGmed.R 31.9942448706237 — —

THA.R 31.7894415757695 — —

ORBsup.L 31.2743927209494 — —

SZF, seizure-free; SZR, seizure-recurrence.

TABLE 7 | Classification performance corresponding to different methods.

Method Accuracy Sensitivity Specificity AUC

Connection (C) 73.44 64.06 82.81 0.9058
Global (G) 56.25 57.81 54.69 0.7242
Nodal (N) 78.91 75.00 82.81 0.8354
C + G + N 83.59 75.00 92.19 0.9571

C + G + N methods are significantly superior to Connection, Global, and Nodal under
95% confidence interval with p-value equals to 2 ×10−5, 6 ×10−8 and 0.045 respectively.

FIGURE 2 | The receiver operating characteristic (ROC) curve results of
different methods. The ROC curve result indicate that the performances of
information combination results are superior to those of single kernel
methods. Additionally, the connection weights (C) + global metrics (G) +
nodal metrics (N) method achieved the outperforming of results in all four
measurements, demonstrating its effectiveness. Furthermore, according to
DeLong’s nonparametric statistical significance test, the proposed C + G + N
method (purple line) was found to be significantly superior to C, G, and N
under 95% confidence intervals with p values equal to 2 × 10−5, 6 × 10−8, and
0.045, respectively. These aberrant functional network measures exhibited
ideal classification performance in predicting seizure free individuals from
seizure recurrence ones at a sensitivity of 75.00%, a specificity of 92.79%, and
an accuracy of 83.59%.
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associated with seizure outcomes, we can potentially promote
earlier referral to epilepsy surgery in patients deemed to be
favorable candidates. This, in turn, would likely lead to a
reduced psychosocial burden and improved quality of life.

Some studies have investigated surgical outcomes by
considering the brain as a network of connected regions.
Network measures that have been found to be altered in TLE
include the clustering coefficient of a region, which captures
the connectedness of neighbors of a region (Bernhardt et al.,
2011). Furthermore, regression analysis and machine
learning approaches have also been applied to brain
networks of TLE to relate them to surgical outcomes
(Bonilha et al., 2013; Bonilha et al., 2015; Ji et al., 2015;
Munsell et al., 2015). Until now, most FDG-PET imaging
studies of metabolic networks have used group-level analyses,
which potentially sacrifice or obscure salient individual
differences within a group; in contrast, our novel JSSE
approach offers individual risk estimation. The JSSE or
KLSE approach can perhaps be successfully applied in

individual structural MR-based analyses (Tijms et al.,
2012b; Kong et al., 2014; Wang et al., 2016b; Li et al.,
2021), but have not yet been applied in metabolic maps in
epilepsy. Based on the JSSE calculation of relative entropy, it
can quantify the interregional metabolic interactions for the
construction of an individual’s metabolic brain network. The
putative association of FDG metabolism with afferent
synaptic activity suggests that the various elements of the
connectome are metabolically coupled (Raichle and Mintun,
2006). In the current state of FDG-PET, the intraregional
similarity calculated according to the JSSE is a surrogate
measure of the metabolic connectivity between brain regions.

Recapitulating previous studies on seizure outcome
prediction after TLE epilepsy surgery, these works indeed
have successfully differentiated seizure freedom vs.
recurrence (Tellez-Zenteno et al., 2005; Bernhardt et al.,
2011; Bonilha et al., 2013; Jehi et al., 2015b; Bonilha et al.,
2015; Gleichgerrcht et al., 2015; Gleichgerrcht et al., 2018;
Cahill et al., 2019; Wang et al., 2019; Shim et al., 2020).
Nevertheless, such approaches may not depict individual
pathophysiological details or downstream clinical
therapeutic strategies, whereas our novel JSSE approach
can provide individual risk estimation. The symptoms of
many neurological and psychiatric diseases are mappable
to specific functional networks of interconnected brain
regions. Based on a novel in vivo approach that combined
FDG-PET metabolic connectivity and physical distance
between cortical areas, we were able to parameterize the
balance between short- and long-range functional
connections. Comparing SZR to SZF, we observed marked
degree reductions in IFGoperc.R, ROL. R, IPL. R, and SMG.
R; and betweenness reductions in ORBsup.R and IOG. R;
meanwhile, CAL. L and PCL. L tended to be increased from
degree analysis; and PreCG.R, IOG. R, PoCG.R, PCL. L, and
PCL. R tended to be increased from betweenness analysis.
Exploring consensus significant metabolic connections, we
observed that the most involved metabolic motor networks
were the INS-TPOmid.L, MTG. R-SMG. R, and MTG.
R-IPL.R pathways between the two groups, which was
similar to findings of the typical group-level method, and
yielded further detailed individual pathological connectivity
in the PHG. R-CAU.L, PHG. R-HIP.L, TPOmid.L-LING.R,
TPOmid.L-DCG.R, MOG. R-MTG.R, MOG. R-ANG.R, and
IPL. R-IFGoperc.L pathways. Collectively, our findings
provide a new individualized metabolic JSSE network
analysis capable of revealing subtle deviations in metabolic
connectivity as a potential disease mechanism of TLE and
which supports the promising clinical benefits of combining
connectomic data with physically grounded information.

Most studies have focused on the identification of isolated
outcome predictors, and a few studies have associated various
combinations of outcome predictors with postoperative seizure
control (Lee et al., 2005; Kumar et al., 2013). However, it is
difficult to objectively combine a patient’s complex clinical
characteristics and frequent multiple contradictory outcome
predictors into a single comprehensive validated risk
assessment measure (Jehi et al., 2015a; Jehi et al., 2015b;

FIGURE 3 | The most consensus connections. The most consensus
connections mapped on the International Consortium for Brain Mapping
(ICBM) 152 template using the BrainNet Viewer software package http://nitrc.
org/projects/bnv/and circularGraph, shared by Paul Kassebaumb
http://www.mathworks.com/matlabcentral/fileexchange/48576-
circulargraph). The red box represents the temporal lobe containment area
(HIP, hippocampus; ITG, inferior temporal gyrus; MTG,middle temporal gyrus;
PHG, parahippocampal gyrus; TPOmid, middle temporal gyrus). We selected
the consensus connections with a p value <0.05 in each loop. A total of 45
consensus connections are shown. In exploring the consensus significant
metabolic connections, we observed that the most involved metabolic motor
networks were the INS-TPOmid.L, MTG. R-SMG. R, and MTG. R-IPL.R
pathways between the seizure recurrence and seizure free groups, and
yielded further detailed individual pathological connectivity in the PHG.
R-CAU.L, PHG. R-HIP.L, TPOmid.L-LING.R, TPOmid.L-DCG.R, MOG.
R-MTG.R, MOG. R-ANG.R, and IPL. R-IFGoperc.L pathways.
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Keezer et al., 2015). This absence leads to uncertainty during
presurgical counseling because most candidates for surgery do
not fall into clear categories with all negative or all positive
outcome predictors (Jehi et al., 2015b). Related studies have
shown that some predictors work only for specific patient
groups (Kumar et al., 2013). To compare the accuracy
provided by our classification approach vs. clinical variables,
we performed a discriminant function analysis that included
14 clinical variables (featured in Table 1). We also further
explored the surgical outcomes in TLE with specific
combinations of clinical characteristics. Only age at onset was
found to correlate with surgical results, but the prognostic value
of this indicator has been shown to be limited (Lee et al., 2005).

The decision to undergo surgery for epilepsy is complex
and variable, and depends on multiple factors, including the
patient’s baseline disease burden and overall clinical picture,
not solely on the chance that seizures can be alleviated. Our
approach was not meant to replace clinical judgment, but
rather to enrich it by providing an objective and quantifiable
estimate for a single key decision-driving factor
(postoperative seizure outcome). In our previous study, in
addition to discovering the number of metabolic
abnormalities in the extratemporal area associated with
surgical failure, we also described special patterns
associated with the failure of TLE surgery (Tang et al.,
2020), which spanned from the frontal and parietal regions
to the occipital and contralateral regions, and some of which
are consistent with electroclinical patterns corresponding to
anterior and posterior spread (Chassoux et al., 2016). Our
present brain connectome approach can measure local
network properties and the entire network, and combined
with MK-SVM, can provide powerful identification of the
salient properties predictive of the surgical outcomes in SZF
and SZR patients (accuracy of 83.59%). In metabolic brain
connectome regard, our main finding was that SZR entails
low of assortativity of the global and local graph metrics and a
loss of connectivity between these modules. With the
progression of TLE, these affected brain regions fail to
metabolically compensate in TLE patients who inevitably
undergo further disturbances. This latter result is
consistent with previous studies showing the failure of
network components early in the epilepsy process that lead
to temporal lobe surgery failures (Ji et al., 2015; Giulioni et al.,
2016; van den Heuvel and Sporns, 2019). Furthermore, we
tested for a consensus of significant metabolic connections
between SZR and SZF TLE patients, as summarized in
Figure 3. The results accord with group-level studies
showing analogous network changes in surgical failure
(Barba et al., 2016; Bernhardt et al., 2016; Chassoux et al.,
2017; Gleichgerrcht et al., 2018; Tang et al., 2020).

There are several limitations in this study. First, we did not
include other important outcomes of interest after epilepsy
surgery, such as quality of life, mood, and psychosocial
functioning. Furthermore, this was a retrospective analysis
and all patients underwent FDG-PET scanning, leading to a
low proportion of class I Engel outcomes (50%) (Engel et al.,
2003a; Tellez-Zenteno et al., 2005). Patients who had not

undergone FDG-PET imaging were excluded, which might
have led to some selection and ascertainment biases. Finally,
preoperative video EEG data, structural MRI neuroimaging,
and the results of more sophisticated diagnostic tests, such as
single photon–emission computed tomography and invasive
EEG were not analyzed in study patients who failed TLE
surgery.

CONCLUSION

This study presents an advanced connectome analysis of FDG-
PET images based on a novel application of JSSE entropy
measures, which had not been previously applied to the task of
metabolic connectome analysis. Our findings shed new light
on the network abnormality underlying TLE and, importantly,
provide novel understandings and additional evidence in
furthering the mechanism research in TLE. Furthermore,
our results demonstrate that information combinations
from different views can achieve ideal performance in
predicting an individual TLE patient’s long-term surgical
outcome.
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