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Simultaneous hyperthermia-
chemotherapy with controlled 
drug delivery using single-drug 
nanoparticles
Itaru Sato1,2, Masanari Umemura1, Kenji Mitsudo2, Hidenobu Fukumura3, Jeong-Hwan Kim1, 
Yujiro Hoshino4, Hideyuki Nakashima2, Mitomu Kioi2, Rina Nakakaji1,2, Motohiko Sato5, 
Takayuki Fujita1, Utako Yokoyama1, Satoshi Okumura6, Hisashi Oshiro7, Haruki Eguchi8, 
Iwai Tohnai2 & Yoshihiro Ishikawa1

We previously investigated the utility of μ-oxo N,N′- bis(salicylidene)ethylenediamine iron (Fe(Salen)) 
nanoparticles as a new anti-cancer agent for magnet-guided delivery with anti-cancer activity. Fe(Salen) 
nanoparticles should rapidly heat up in an alternating magnetic field (AMF), and we hypothesized 
that these single-drug nanoparticles would be effective for combined hyperthermia-chemotherapy. 
Conventional hyperthermic particles are usually made of iron oxide, and thus cannot exhibit anti-
cancer activity in the absence of an AMF. We found that Fe(Salen) nanoparticles induced apoptosis in 
cultured cancer cells, and that AMF exposure enhanced the apoptotic effect. Therefore, we evaluated 
the combined three-fold strategy, i.e., chemotherapy with Fe(Salen) nanoparticles, magnetically 
guided delivery of the nanoparticles to the tumor, and AMF-induced heating of the nanoparticles to 
induce local hyperthermia, in a rabbit model of tongue cancer. Intravenous administration of Fe(Salen) 
nanoparticles per se inhibited tumor growth before the other two modalities were applied. This 
inhibition was enhanced when a magnet was used to accumulate Fe(Salen) nanoparticles at the tongue. 
When an AMF was further applied (magnet-guided chemotherapy plus hyperthermia), the tumor 
masses were dramatically reduced. These results indicate that our strategy of combined hyperthermia-
chemotherapy using Fe(Salen) nanoparticles specifically delivered with magnetic guidance represents a 
powerful new approach for cancer treatment.

Head and neck cancer is the sixth most common cancer, accounting for 3% of all cancers worldwide. The inci-
dence of new patients is increasing, particularly in developing countries1,2. Tumors are located in the oral cavity 
in 48% of cases, and 90% of these are oral squamous cell carcinoma. Oral malignancy, including tongue cancer, 
is associated with severe morbidity and has a long-term survival of less than 50%, in spite of advances in the 
treatment of oral cancer by surgery, chemotherapy, and radiation. The survival ratio of patients remains very low, 
mainly due to lymph node metastasis2. Surgical removal of the cancer tissues is the gold standard, but involves 
various complications, such as dysphagia or dysarthria. Therefore, more effective treatment for oral cancer, with 
fewer complications, needs to be developed.
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Hyperthermia is a promising cancer therapy, in which cancer tissues are exposed to a slightly raised temper-
ature3,4, thereby increasing their susceptibility to radio- or chemo-therapy. The most commonly used heating 
method in clinical practice is capacitive heating with a radiofrequency electric field5. However, a major technical 
problem with this method is difficulty in heating the target tumor to the desired temperature without damaging 
the surrounding normal tissues. This is because the electromagnetic energy must be directed from an external 
source, and thus must penetrate through normal tissues, causing an unavoidable temperature gradient. Although 
other hyperthermia modalities, including radiofrequency ablation and ultrasound hyperthermia, have been 
widely developed6–8, the efficacy of these modalities is limited to the size and depth of tumors, and major disad-
vantages include the inability to precisely target a specific tumor site by directing heat exposure specifically to the 
tumor.

In order to overcome these challenges, magnetic nanoparticles have been developed9–11. Magnetic nanopar-
ticles generate heat when exposed to an alternating magnetic field (AMF) as a result of hysteresis and relaxation 
losses, resulting in heat production10,12–14. Magnetic particles may be directly injected at the site of a tumor, or 
delivered to the site by a magnet, followed by AMF exposure to produce heat within the tumor, enabling spe-
cific thermal ablation in the target area. The particles are usually made of iron oxide (IO)15, and do not have 
anti-cancer activity per se in the absence of an AMF. Micelles containing IO particles and anti-cancer drugs have 
been investigated16, but drugs may be rendered therapeutically ineffective by heat-induced degradation.

The key objective of drug delivery is to increase the concentration of a therapeutic agent in the tumor, because 
this not only enhances the anti-cancer effect, but also reduces toxic side effects. In 1913, Paul Ehrlich proposed 
the classic concept of drug delivery by a carrier that would transport therapeutic drugs specifically to the target 
organ17. Since then, numerous drug delivery technologies have been developed to accomplish this objective, 
including micelles, liposomes, antibody drugs, affinity targeting, and macromolecular drug carriers. However, 
these technologies face difficulties due to the inherent instability of the carriers and limited delivery efficacy.

In order to overcome these problems, we have focused on novel magnetic nanoparticles consisting of μ-oxo 
N,N′ -bis(salicylidene)ethylenediamine iron (Fe(Salen)). As we previously reported18, Fe(Salen) nanoparticles 
act as a novel nano-magnetic agent with direct anti-cancer activity. The magnetic property of Fe(Salen) enables 
simple drug delivery using a readily available permanent magnet. The anti-cancer activity is similar to that of 
cisplatin, and this agent exhibits potent cytotoxicity, presumably via production of reactive oxygen species (ROS) 
that cause DNA damage. Importantly, the anti-cancer property of Fe(Salen) nanoparticles is stable at temper-
atures up to around 100 °C. Their magnetic character is also stable during repeated heat exposures, suggesting 
that Fe(Salen) nanoparticles might be available for simultaneous chemotherapy and hyperthermic therapy. Such 
combination therapy is potentially very effective, since, for example, hyperthermia has been shown to enhance 
cellular uptake of anti-cancer drugs19.

In this study, we examined the feasibility and effectiveness of combined hyperthermia-chemotherapy with 
magnetically guided Fe(Salen) nanoparticles to treat tongue cancer in a rabbit model, because the tongue is read-
ily accessible within the oral cavity, and thus it is easy to apply a magnet and an AMF. Our results indicate that this 
strategy is indeed highly effective.

Results
Fe(Salen) nanoparticles showed stable magnetic and anti-cancer properties when exposed to 
an AMF. Fe(Salen) is an iron-salen derivative that possesses both anti-cancer and intrinsic magnetic proper-
ties18. Previous measurements with a superconducting quantum interference device (SQUID) (Quantum Design 
MPMS7 system)18 suggested that Fe(Salen) nanoparticles could generate thermal energy due to hysteresis losses 
when exposed to an AMF. In the present study, we generated an AMF with a vertical coil, driven by a transistor 
inverter. In the dry powder state, the temperature of an AMF-exposed Fe(Salen) nanoparticle sample rose to 
above 80 °C within a few minutes (Fig. 1a,b). In contrast, no heat production occurred when cisplatin was used 
(Fig. 1a). When heat production was examined using an Fe(Salen) nanoparticle suspension in culture medium, 
the temperature increased to a lesser degree because of heat loss through the medium, but the temperature 
increase was both electric current (EC)-dependent (Fig. 1c) and concentration-dependent (Fig. 1d). For further 
experiments, we adopted AMF parameters that afforded a local temperature of 42 °C (frequency of 308 kHz and 
EC of 250 A) (Fig. 1c).

Fe(Salen) nanoparticles exhibited anti-cancer effect on tongue cancer cells. Because tongue can-
cer cells are squamous in nature, we used various squamous cancer cell lines in culture, including VX2 (rabbit), 
HSC-3 (human), and OSC-19 (human). Fe(Salen) nanoparticles exhibited potent, dose-dependent anti-cancer 
effects on these cell types. The IC50 values were similar among these cell types (approximately 7 μM) (Fig. 2a). 
Next, we investigated the mechanism of cell death and the cellular uptake of Fe(Salen) nanoparticles. As we had 
previously demonstrated18, Fe(Salen) nanoparticles increased generation of reactive oxygen species (ROS) in a 
dose-dependent manner (Fig. 2b). We also examined the cellular uptake of Fe(Salen) nanoparticles using calcein 
(CA). CA is a fluorescent probe for cellular iron, which reflects the content of iron within mammalian cells18. 
When CA is bound to iron, the intensity of the fluorescence decreases within cells. When VX2 cells were incu-
bated in the presence of Fe(Salen) nanoparticles, cellular fluorescence was decreased in a Fe(Salen) nanoparticle 
concentration-dependent manner (Fig. 2c), suggesting that Fe(Salen) nanoparticles were taken up, at least to 
some extent, by these cells.

Cytotoxic and magnetic properties of Fe(Salen) nanoparticle were stable after heat expo-
sure. We also examined the heat stability of Fe(Salen) per se, because many anti-cancer or micellar drugs are 
sensitive to high temperature and readily degraded. Fe(Salen) nanoparticles were heated to above 80 °C by AMF 
exposure for one hour. After the nanoparticles had cooled, they were added to cultured cancer cells. Fe(Salen) 
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nanoparticles exhibited an identical cytotoxic effect after three cycles of heating-cooling to that of the unheated 
nanoparticles (Fig. 3a). This is most likely because the anti-cancer property is an intrinsic feature of the structur-
ally stable Fe-Salen complex. In contrast, the cytotoxicity of Cetuximab (Erbitax®), which is an antibody drug 
targeting epidermal growth factor receptor (EGFR), decayed after 30 minutes at 50 °C in OSC-19 cells (Fig. 3b).

The magnetic properties also remained unchanged after exposure to heat. Even after AMF exposure for one 
hour twice, Fe(Salen) nanoparticles were similarly attracted by a magnet. We also confirmed the stability of the 
magnetism of Fe(Salen) nanoparticles by electron spin resonance (ESR) study (Fig. 3c).

Thus, the cytotoxic and magnetic properties of Fe(Salen) nanoparticle were both heat-stable, in contrast to the 
characteristics of conventional micellar drugs and anti-cancer drugs.

Fe(Salen) nanoparticles were accumulated by a permanent magnet in cultured cells and 
mice. We then examined the magnetic attraction of Fe(Salen) in cultured cells. Substantial accumulation of 
Fe(Salen) nanoparticles by a magnet was followed by enhanced local cytotoxicity. The cytotoxicity was strongest 
at the center of the culture dish, where the strength of the magnetic field was greatest (Fig. 4a).

Next, we examined magnetic attraction in a mouse model grafted with VX2 cells onto the legs. We built a 
custom jacket with a button-type permanent magnet (630 mT), which allowed the mouse to move freely (Fig. 4b). 
Fe(Salen) nanoparticles were injected via the tail vein, and the jacket was placed so that the button magnet was 
located on top of the leg tumor. After three days, we observed blue staining due to Fe(Salen) nanoparticles at the 
site below the magnet, confirming successful accumulation of Fe(Salen) nanoparticles by the permanent magnet 
in vivo. Such accumulation did not occur in the absence of the magnet (Fig. 4c).

AMF exposure enhanced apoptosis induced by Fe(Salen) nanoparticles. We then examined the 
AMF-induced hyperthermic effect of Fe(Salen). An AMF enhanced the cytotoxic effect of Fe(Salen) nanoparticles 
on VX2 cells (Fig. 3d). Similar results were obtained when cellular apoptosis was examined by flow cytometry 
(Fig. 3e). We confirmed that an AMF per se had no effect in the absence of Fe(Salen). However, in the presence 
of Fe(Salen) nanoparticles, an AMF increased the number of apoptotic cells (Fig. 3e). In contrast, when cisplatin 
was used in place of Fe(Salen), an AMF had no effect on the rate of apoptosis or cell survival (data not shown), and 
there was no rise in temperature (Fig. 1a).

Fe(Salen) nanoparticles generated heat, causing enhanced cytotoxicity in mice. We then exam-
ined whether a tumor can be heated by an AMF after local injection of Fe(Salen) nanoparticles in mice. We 
implanted OSC-19 cells, human tongue cancer cells, on the back of mice to create an ectopic and heterologous 
human tongue cancer model. We used OSC-19 cells transfected with a luciferase-encoding vector for determina-
tion of the tumor size. Fe(Salen) nanoparticles (50 mM, one-third of the tumor volume per mouse) were locally 

Figure 1. Heat is generated by Fe(Salen) nanoparticles upon exposure to an AMF. (a) Heat generation by 
cisplatin or Fe(Salen) upon AMF exposure. The AMF was applied at a frequency of 308 kHz and EC 250 A.  
(b) Representative thermography of Fe(Salen) nanoparticle dry powder in a tube before (Pre) and 5 min after 
AMF exposure (5 min). (c) Effect of an AMF (200, 250 and 300 A) on the temperature of Fe(Salen) nanoparticles 
in culture medium. (d) Effect of Fe(Salen) concentration (15 or 30 μM) and electrical current (200, 250 or 
300 A) on the temperature in the culture medium.
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injected at the tumor site, and the tumor was exposed to an AMF for 30 min twice a week. We found that the local 
temperature in the tumor was rapidly increased by the AMF, while that of saline increased only slowly (Fig. 5a). 
The tumor volume ratio was calculated every day. Tumors grew largest in the absence of Fe(Salen) nanoparticles 
(control; 382 ±  31.9% of the basal volume). Local injection of Fe(Salen) nanoparticles significantly reduced the 
tumor volume (223 ±  80.6%). When an AMF was applied, the tumor volume was further decreased at the same 
dose of Fe(Salen) (119 ±  21.9%). AMF exposure in the absence of the nanoparticles had no effect on the tumor 
volume (Fig. 5b,c).

Pathological examination by hematoxylin and eosin (HE) and by chemical iron staining revealed that 
Fe(Salen) nanoparticles remained at the site of local injection of Fe(Salen) after 8 days (Fig. 5e,f). Thus, AMF 
exposure after local injection of Fe(Salen) generated heat and effectively reduced the tumor volume in mice.

Fe(Salen) nanoparticles were accumulated by a magnet, and produced heat upon exposure 
to an AMF in a rabbit oral cancer model. We next examined the combination of controlled drug deliv-
ery by a magnet and AMF-induced heat production in a rabbit model. We injected Fe(Salen) nanoparticles 
intravenously, not locally, into a rabbit tongue cancer model. For magnetic guidance, we used an electromag-
net (EM) (EM-30200 V, Echo Electric Co. Yamanashi, Japan), which can generate 2 T magnetic field intensity 
(Supplementary Fig. 1a); this is sufficient to achieve a high level of controlled drug delivery within a short time. 
The magnetic field intensity was greatest at the center of the magnet, and elsewhere, the intensity was inversely 
proportional to the distance from the center (Supplementary Fig. 1b).

Fe(Salen) nanoparticles were intravenously injected, and the electromagnet was applied to the rabbit 
tongue tissue, followed by exposure to an AMF. Histological study showed that Fe(Salen) nanoparticles were 
accumulated by the electromagnet (Supplementary Fig. 1c). Measurement of the tongue temperature with a 

Figure 2. Fe(Salen) nanoparticles inhibit cell proliferation, promote ROS generation, and are taken up 
by cells. (a) Effect of Fe(Salen) on proliferation of various cancer cells. XTT cell proliferation assays were 
performed with human and rabbit tongue cancer cells: VX2 rabbit squamous cell carcinoma, HSC-3 human 
squamous cell carcinoma, and OSC-19 human squamous cell carcinoma (n =  4). The IC50 values were similar 
among cell types and were approximately 7.5 μM. (b) Effect of Fe(Salen) on ROS production in various cells. 
Fe(Salen) nanoparticles generated ROS in a concentration-dependent manner (n =  4, **p <  0.01, ***p <  0.001). 
(c) Representative fluorescence pictures of calcein using a fluorescence microscope and optical microscope. 
Ratios of calcein fluorescence are shown below (n =  4, **p <  0.01, ***p <  0.001 vs. control). Note that cellular 
fluorescence was decreased in the presence of Fe(Salen) nanoparticles.
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Figure 3. Fe(Salen) nanoparticle-induced apoptosis is increased by AMF exposure. (a) Effect of an 
AMF on Fe(Salen) nanoparticles. Fe(Salen) nanoparticles were heated to 80 °C by exposure to an AMF 
for 60 minutes once, twice, or three times. Changes in cytotoxic potency were examined in the presence 
of various concentrations of Fe(Salen) nanoparticles in VX2 cells. Note that there were no changes in 
cytotoxicity (n =  4, N.S., not significant). (b) Effect of high temperature (50 °C) on cytotoxic potency 
of Cetuximab (Erbitax®). Centuximab, a drug targeting epidermal growth factor receptor (EGFR), was 
heated to 50 °C for 30 or 60 minutes, followed by cytotoxicity assay in OSC-19 cells. Note that AMF 
exposure did not change the cytotoxicity of Fe(Salen) nanoparticles, but did change that of Cetuximab 
(Erbitax®) (n =  4, *p <  0.05). (c) ESR analysis of magnetism after exposure to an AMF. No AMF; Fe(Salen) 
without AMF exposure, AMF 1 time; Fe(Salen) with AMF exposure for an hour once, AMF 2 times; 
Fe(Salen) with AMF exposure for one hour twice. (d) Increased anti-cancer effect of Fe(Salen) with AMF 
exposure. An AMF promoted cellular death of VX2 cells in the presence of Fe(Salen) nanoparticles, as 
determined by trypan blue staining (n =  4, **p <  0.01, ***p <  0.001 vs. control). (e) Effect of Fe(Salen) 
with AMF exposure on various cancer cells. Apoptotic cell ratio is shown after incubation in the presence 
of various concentrations (0, 7.5, 15, 30 μM) of Fe(Salen) nanoparticles for 12 hours (white bars) or for 
11 hours followed by 1 hour AMF exposure (black bars). Apoptosis was determined by Annexin-V/PI 
staining with FACS scan dot plot analysis at 12 hours after treatment with Fe(Salen) nanoparticles. Note 
that AMF exposure increased the cytotoxicity in the presence of Fe(Salen) nanoparticles (n =  4, *p <  0.05).
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Figure 4. Fe(Salen) nanoparticles are attracted by a permanent magnet in vitro and in the mouse model 
in vivo. (a) Distribution of Fe(Salen) and cellular death in the presence of a magnet. Distributions of Fe(Salen) 
and cytotoxic effect were compared between the center (center), where the magnet was positioned, and the 
edge (edge) of each culture dish. Upper photo: distribution of various concentrations of Fe(Salen) in a dish with 
a magnet. Middle photo: Cell viability in the presence of a magnet. Cell viability was determined in terms of 
luciferase activity by intensity measurement with an IVIS imaging system. Lower photo: Cell viability in the 
absence of a magnet. Bar graphs show the determination of cell viability with IVIS (center and edge). (n =  4, 
***p <  0.001) Note that the cytotoxicity of Fe(Salen) nanoparticles was enhanced in the center. In contrast, the 
cell viability at the edge of culture dishes is maintained in the presence of a magnet compared to that of in the 
absence of a magnet. (b) A Jacket used for drug delivery in mice. Circle shows the site where the permanent 
magnet is installed. (c) Representative photo of skin tissues at the site beneath the magnet in mice which 
had been injected with Fe(Salen) via the tail vein. Fe(Salen) was accumulated beneath the magnet at the 
tumor location. Mice were intravenously injected with Fe(Salen) (5 mg/kg) and wore a jacket for three days. 
Accumulation of Fe(Salen) nanoparticles was examined by Berlin blue staining. Cont; control, iv; Fe(Salen) 
was injected, Magnet; jacket was worn, iv Magnet; Fe(Salen) was injected and the jacket was worn. High (left, 
calibration bar 50 μm) and low magnification (right, 200 μm) images are shown.
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Figure 5. Local injection of Fe(Salen) nanoparticles generates heat upon exposure to an AMF; induced anti-
cancer effect in a mouse tongue cancer model. (a) Changes in temperature with AMF exposure. Either Fe(Salen) 
nanoparticles or saline were injected into the tumor in mice, followed by exposure to an AMF. Note that the local 
temperature was increased to a greater degree with Fe(Salen) in a time-dependent manner. (b) Effect of Fe(Salen) 
nanoparticle injection and AMF exposure on tumor size. The graph showed the time course of tumor volume 
changes. Fe(Salen) inhibited tumor growth, and AMF exposure of Fe(Salen)-injected animals further inhibited the 
tumor growth. Mean tumor volume (mm3) of each group is also shown. Control (cont), intratumoral injection of 
Fe(Salen) nanoparticles (injection), AMF exposure alone (AMF), and intratumor injection of Fe(Salen) nanoparticles 
and AMF exposure (injection and AMF). (n =  6, *p <  0.05, **p <  0.01, ***p <  0.001). (c) Representative photo of 
tumors in each group. (d) Effect of Fe(Salen) nanoparticle injection and AMP exposure on tumor size, determined 
from IVIS images. Representative IVIS images of mouse tumors (left) and luminescence intensity in each group 
(right) are shown. (e) Representative photos of tumor tissues from each group. HE staining (upper) and Fe staining 
(lower) are shown. Calibration bar: 2 mm. (f) Expression of Ki67-positive cells (left) and HSP70-positive cells (right).
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thermometer under anesthesia, showed that 10 minutes exposure to an AMF increased the temperature to 42 °C 
(Supplementary Fig. 1d).

Tumors grew largest in the absence of Fe(Salen) nanoparticles (control: 311.3 ±  53.2% of the basal volume). 
Intravenous injection (i.v.) of Fe(Salen) nanoparticles (5 mg/kg) every day for 7 days significantly reduced the 
tumor size (144.3 ±  51.3%: i.v. group). When the electromagnet was applied to the tumor site immediately 
after the intravenous injection, the same dose of Fe(Salen) further decreased the tumor volume (93.8 ±  27.9%; 
i.v. +  EM group). When an AMF was applied after the electromagnet, the tongue tumor almost completely dis-
appeared after 1 week (25.7 ±  8.4%: i.v. +  EM +  AMF group) (Fig. 6a–c). There was no increase in kidney or liver 
enzymes in any of the groups at this dose level (Supplementary Fig. 4).

The VX2 carcinoma is a rapidly growing tumor, which has an ischemic center that subsequently undergoes 
necrosis, but has a well vascularized periphery20. Pathological examination by HE (Fig. 6d) and Ki67 staining 
(Fig. 6e) revealed that Fe(Salen) nanoparticles augmented tumor tissue death. In the control group, the area of 
necrosis was the smallest (15.0 ±  5.8%); it was increased in the i.v. group (28.8 ±  8.5%), further increased in the 
i.v. +  EM group (50.0 ±  8.2%), and was greatest in the i.v. +  EM +  AMF group (63.8 ±  4.8%). Concentrations of 
Ki67-positive cells were also changed accordingly (control, 45.8 ±  2.7%; i.v., 25.4 ±  11.8%; i.v. +  EM, 18.8 ±  2.2%; 
i.v. +  EM +  AMF, 4.5 ±  1.7%). IVIS imaging confirmed that EGFP signal was the lowest in i.v. +  EM +  AMF 
group (Supplementary Fig. 3). These results indicate that both application of the electromagnet and exposure to 
an AMF greatly enhance the anti-cancer effect of Fe(Salen) nanoparticles.

Discussion
In the current study, we demonstrated that the three-fold strategy of chemotherapy with Fe(Salen) nanoparticles, 
magnetically guided delivery of the nanoparticles to the tumor, and AMF-induced heating of the nanoparticles 
to induce local hyperthermia exhibited a potent anti-cancer effect in a rabbit model of tongue cancer in vivo. It is 
noteworthy that a high drug dose was not necessary for successful results in either application of the electromag-
net or AMF exposure. We used an electromagnet instead of a permanent magnet to induce hyperthermia in this 
model, because a permanent magnet was difficult to apply onto the tongue surface for a long time. Nevertheless, 
it is noteworthy that a simple permanent magnet was effective in the leg tumor model. Thus, in future trial with 
tumors of the extremities or the trunk, it should be possible to accumulate Fe(Salen) nanoparticles sufficiently by 
using a simple jacket equipped with a small permanent magnet.

The anti-cancer and magnetic properties of Fe(Salen) nanoparticle were unaffected by AMF exposure, in 
marked contrast to conventional micelle-based drugs containing magnetic particles and anticancer drugs or anti-
body drugs, which are readily degraded and lose their potency upon exposure to heat. In particular, conventional 
inorganic particles lack intrinsic anti-cancer effects, and so additional procedures to transport/conjugate drug 
compounds are required16. Notably, the use of Fe(Salen) nanoparticles enables anticancer and hyperthermic ther-
apies to be performed simultaneously, and specifically at the cancer site; this is a major advantage compared to 
conventional hyperthermal approaches.

Some issues remain before clinical application will be possible. Firstly, Fe(Salen) nanoparticles as a drug 
compound are still at non-GMP (Good Manufacturing Practice) status at this time. Thus, we should establish a 
protocol for synthesis of Fe(Salen) nanoparticles with appropriate magnetic properties, particle size, and purity 
to meet GMP standards for human use. Our elemental analysis and Fourier-transform infrared spectroscopy 
(FT-IR) analysis of Fe(Salen) samples18 indicated that they are highly pure (>95%) and do not contain metals 
other than iron that may potentially exhibit magnetism or cytotoxicity. Secondly, the origin of the magnetic 
properties needs further investigation. Although Fe(Salen) possess a crystal structure that accords with the clas-
sical Goodenough-Kanamori-Anderson rule21 regarding magnetic interactions18, we do not know whether this is 
necessary and sufficient. Further collaborative investigation with physicists may be necessary in order to develop 
future drug compounds for magnetically guided delivery. Thirdly, therapeutic protocols for hyperthermia need 
to be optimized to for human patients. The current protocol applies hyperthermic therapy between bouts of min-
imally invasive chemotherapy. It may be desirable to develop a more effective AMF generator or coil to optimize 
the efficacy of drug delivery and hyperthermia.

In the current study, we have established that Fe(Salen) nanoparticles are highly effective for treatment of 
tongue cancer in a rabbit model. Fe(Salen) may also be suitable for magnetization of existing anti-cancer drugs, as 
we have recently demonstrated by synthesizing a magnetized derivative of paclitaxel (Umemura et al. unpublished 
observations). It should be possible to extend this approach to other widely used anti-cancer drugs to enable mag-
netically controlled delivery and/or hyperthermic therapy, and such an approach is expected to offer increased 
therapeutic efficacy with reduced side effects, in principle. Such agents would be promising tools for “on-demand” 
cancer therapy22, using unique metal ligand complex-based anti-cancer drugs with intrinsic magnetic properties 
to target specific cancers in a highly controllable manner.

Methods
Reagent and cell culture. Fe(Salen) nanoparticle reagent was purchased from Tokyo Chemical Industry 
Co. Ltd. Fe(Salen) was sonicated for 30 min and used in normal saline suspension as previously described18. The 
average size of nanoparticles was about 200 nm. Cetuximab (Erbitax®) was purchased from Merck Serono (Tokyo, 
Japan). Rabbit squamous cell carcinoma (VX2) cells were purchased from American Type Culture Collection 
(ATCC) (Virginia, U.S.A.). VX2 cells were transfected with an EGFP-encoding vector as previously described23. 
Human oral squamous cell carcinoma cell lines, OSC-19 and HSC-3, were purchased from the Health Science 
Research Resources Bank (Japan Health Sciences Foundation, Tokyo, Japan). In all cases, early passage cultures 
were stored and used for experiments. These cell lines were cultured in RPMI-1640 with L-glutamine and phenol 
red medium containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin.
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Electromagnet device. We used an electromagnet (EM-30200 V) of 20 mm in diameter (Echo Electric Co., 
Yamanashi, Japan), capable of generating a 2 T field (Supplementary Fig. 1a,b).

Figure 6. Anti-cancer effect of Fe(Salen) nanoparticles with magnet application and AMF exposure in 
rabbits. (a) Representative photos of rabbit tongue tumors in each group before (upper) and after (lower) 
treatment. Mean tumor volume value (mm3) of each group is also shown. Control (cont), intravenous injection 
of Fe(Salen) nanoparticles (i.v.), Fe(Salen) nanoparticle injection and electromagnet application (i.v. +  DDS), 
and Fe(Salen) nanoparticle injection, electromagnet application, and AMF exposure (i.v. +  DDS +  AMF).  
(b) Changes in tumor volume ratio for 7 days. (n =  6, *p <  0.05, **p <  0.01, ***p <  0.001). (c) Comparison of 
tumor volume ratios at day 7 (n =  6, *p <  0.05, **p <  0.01,***p <  0.001). (d) Representative histological photo 
by HE staining at day 7 (upper). Broken lines indicate tumor areas. Calibration bar: 2 mm. Quantification of 
necrotic area by HE staining (lower) (n =  4, ***p <  0.001). (e) Representative pictures of tongue tumors after 
Ki67 staining (upper). Calibration bar: 20 μm. Quantification of necrosis by Ki67 staining in rabbit tongue 
tumors (lower) (n =  4, **p <  0.01, ***p <  0.001).
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Alternating magnetic field (AMF) generator. An AMF was generated by a vertical coil with an inner 
diameter of 4 cm, driven by a transistor inverter (Hot Shot, Ameritherm Inc., New York, U.S.A.). Experiments 
were performed at a frequency of 308 kHz and EC 250 A unless otherwise specified19,24.

Thermometer and thermography. A thermometer (hand-held thermometer HA-200, Anritsu Meter Co., 
Tokyo Japan) or a thermograph (InfraRed camera, Nippon Avionics Co., Ltd., Tokyo, Japan) was used to deter-
mine temperature in vivo and in vitro19.

Sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2 H- 
tetrazolium inner salt (XTT) assay. Cell proliferation assay was performed using a commercially available 
kit, XTT Cell Proliferation Assay Kit (ATCC, Virginia, U.S.A), according to the manufacturer’s protocols19. VX2, 
HSC-3 and OSC-19 cells were seeded into each well of 96-well plates. The inoculated plates were incubated at 
37 °C for 3 hours in an atmosphere of 5% CO2 in humidified air. Blank control wells contained medium without 
Fe(Salen) nanoparticles. Cells were then incubated with 5% CO2 at 37 °C in the presence of FeS for 24 hours. 
After incubation, Activated-XTT Solution was added to each well, and the plates were returned the incubator for 
3 hours. The wells containing the cells and blank controls were measured with a microplate reader.

Measurement of reactive oxygen species (ROS). Measurement of ROS was performed as we previ-
ously reported25. VX2 cells were plated in 96-well culture plates overnight. Cells were then treated with 0, 3.6, 7.5, 
15, and 30 μM Fe(Salen) nanoparticle at 37 °C for 24 hours. Intracellular ROS level was then measured using a flu-
orescent dye, 2′ ,7′ -dichlorofluorescein diacetate (DCFH-DA; Sigma, Japan)26. In the presence of oxidant, DCFH 
is converted into highly fluorescent 2′ ,7′ -dichlorofluorescein. Cells were first washed with PBS, and serum-free 
Minimum Essential Medium (MEM) containing DCFH-DA was added to each well. Cells were then incubated at 
37 °C for 40 min. ROS production was measured using a microplate reader equipped with a spectrofluorometer 
(ARVO-Mx, PerkinElmer, Massachusetts, U.S.A.) at an emission wavelength of 538 nm and extinction wave-
length of 485 nm.

Calcein assay. Calcein-AM was purchased from Sigma27. VX2 cells in medium were seeded on each well of 
two 24-well plates. Cells were incubated for 24 hours. RPMI-1640 medium was changed to serum-free medium, 
followed by addition of 1 μM calcein and incubation at 37 °C for 1 hour. The medium was changed to RPMI-1640 
containing L-glutamine, phenol red, 10% FBS, and 1% penicillin-streptomycin, and then Fe(Salen) nanoparticles 
(0, 7.5 and 30 μM) were added at room temperature in darkness. The cells were further incubated at room temper-
ature for 3 hours. RFU was measured using a microplate reader equipped with a spectrofluorometer (ARVO-Mx) 
at an emission wavelength of 535 nm and extinction wavelength of 485 nm. Pictures were then taken with a fluo-
rescence microscope.

Magnet-guided delivery of Fe(Salen) nanoparticles in vitro. VX2 cells (6 ×  104 cells) were seeded in 
RPMI-1640 with L-glutamine and phenol red medium. Cells were incubated for 24 hours. Fe(Salen) nanoparticle 
suspension was added to the samples and adjusted to the concentration of 0, 3.7, 7.5, or 15 μM. VX2 cells were 
incubated with/without a permanent magnet at the center of each dish at 37 °C in 5% CO2 for 24 hours. The cells 
were fixed with formalin for 30 min at room temperature, and washed twice with PBS. Samples were evaluated by 
staining with hematoxylin and eosin (HE). Staining at the center and side of the samples was compared.

Apoptosis assays. Apoptosis assays were performed as previously described19. VX2 cells were seeded on 
6 cm dishes, and incubated for 24 hours. Fe(Salen) nanoparticles was then added to give 7.5, 15 or 30 μM, and 
incubation was continued for 12 hours. Cells were washed twice with cold PBS, and transferred into culture 
tubes. APC Annexin V and 7-AAD (BD Biosciences, California, U.S.A.) were then added to the tubes. Cells were 
incubated for 15 min at RT (25 °C) in darkness, followed by measurement with a FACS Canto™  II (Japan Becton, 
Dickinson and Company, Tokyo, Japan) within 1 hour.

Intratumoral injection of Fe(Salen) nanoparticles in a mouse model implanted with human oral 
cancer and exposure to AMF. OSC-19 cells that had been transfected with luciferase-encoding vector were 
implanted into the back of mice to create a human oral cancer model. The tumors were allowed to grow to a size 
of 7–10 mm, and then Fe(Salen) nanoparticles (50 mM, one-third of the tumor volume per mouse) were locally 
injected into the tumor and the human tongue tissue was exposed to AMF at a frequency of 308 kHz and EC 
300 A for 30 min twice a week. The tumor volume ratio was calculated by dividing the volume of each tumor by 
the baseline volume every day. After 8 days, tumors were harvested, and pathological examination was performed 
by HE and chemical iron staining. Immuno-histochemical examinations were also performed by staining with 
Ki67 and HSP70 antibodies. Evaluations were performed by two pathologists in a double-blind fashion.

Magnetically controlled delivery of Fe(Salen) nanoparticles and hyperthermic therapy in 
tumor-bearing rabbits. Rabbits bearing tongue tumors were generated as previously described28,29. Male 
Japanese white rabbits weighing 2.0–2.5 kg were purchased from Nihon SLC (Shizuoka, Japan). Under general 
anesthesia, we implanted VX2 cells transfected with an Enhanced Green Fluorescent Protein (EGFP)-encoding 
vector in the right edge of the tongue to create a rabbit tongue cancer model23,28,29, in which to examine the effect 
of Fe(Salen), the electromagnet, and AMF. The tumors were allowed to grow to a size of 7–10 mm in length (usu-
ally for 7 days) prior to treatment. The rabbits (n =  24) were then separated into 4 groups: control (control group), 
intravenous Fe(Salen) injection (5 mg/kg) (i.v. group), intravenous Fe(Salen) nanoparticle injection (5 mg/kg)  
with electromagnet application (i.v. +  EM group), and intravenous Fe(Salen) nanoparticle injection (5 mg/kg) with 
both electromagnet application and AMF exposure (i.v. +  EM +  AMF group). Fe(Salen) nanoparticles (5 mg/kg)  
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were injected slowly via an ear vein once a day. For the electromagnet application, an EM-30200 V electromagnet 
(2 T), was positioned at the tongue tumor for 1 hour immediately after Fe(Salen) nanoparticle injection. These 
processes were repeated for 7 days. For AMF exposure, the rabbit tongue was inserted into a vertical coil and 
exposed to an AMF (308 kHz and EC 250 A) for 1 hour after the electromagnet application, twice a week. After 7 
days, the tumors were harvested and evaluated by pathological examination, HE and Ki67 staining. Evaluations 
were performed by two pathologists, in a double-blind manner.

Animal experiments were performed according to the Yokohama City University guidelines for experimental 
animals. The Animal Care and Use Committee at Yokohama City University, School of Medicine, approved all 
animal studies.

Evaluation of anti-cancer effects. The size of the tumors was measured daily under general anesthesia for 
7 days. Tumor volume was determined using the following formula:

= . × ×Tumorvolume 0 5 (length width )2

After the completion of the experiment, rabbits were sacrificed, and the tongues were harvested for histologi-
cal evaluation by HE, Ki67 and Berlin blue staining (for Fe(Salen)).

Data analysis and statistics. Statistical comparisons among groups were performed using Students’ t-test 
or one-factor analysis of variance (ANOVA) with the Bonferroni post hoc test. Statistical significance was set at 
the 0.05 level. Histological comparison was performed using the Kruskal-Wallis test (Fig. 5f, 6d and e).
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