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ABSTRACT Wearable sensing has become a vital approach to cardiac health monitoring, and seismocar-
diography (SCG) is emerging as a promising technology in this field. However, the applicability of SCG
is hindered by motion artifacts, including those encountered in practice of which the strongest source is
walking. This holds back the translation of SCG to clinical settings. We therefore investigated techniques
to enhance the quality of SCG signals in the presence of motion artifacts. To simulate ambulant record-
ings, we corrupted a clean SCG dataset with real-walking-vibrational noise. We decomposed the signal
using several empirical-mode-decomposition methods and the maximum overlap discrete wavelet trans-
form (MODWT). By combining MODWT, time-frequency masking, and nonnegative matrix factorization,
we developed a novel algorithm which leveraged the vertical axis accelerometer to reduce walking vibrations
in dorsoventral SCG. The accuracy and applicability of our method was verified using heart rate estimation.
We used an interactive selection approach to improve estimation accuracy. The best decompositionmethod for
reduction of motion artifact noise was theMODWT. Our algorithm improved heart rate estimation from 0.1 to
0.8 r-squared at −15 dB signal-to-noise ratio (SNR). Our method reduces motion artifacts in SCG signals
up to a SNR of −19 dB without requiring any external assistance from electrocardiography (ECG). Such a
standalone solution is directly applicable to the usage of SCG in daily life, as a content-rich replacement for
other wearables in clinical settings, and other continuous monitoring scenarios. In applications with higher
noise levels, ECG may be incorporated to further enhance SCG and extend its usable range. This work
addresses the challenges posed by motion artifacts, enabling SCG to offer reliable cardiovascular insights
in more difficult scenarios, and thereby facilitating wearable monitoring in daily life and the clinic.

INDEX TERMS Heart rate monitoring, motion artifact reduction, seismocardiography, wavelets, wearable
monitoring.

I. INTRODUCTION

CARDIOVASCULAR disease (CVD) is a major global
health burden, contributing to significant morbidity and

mortality rates worldwide [1]. The continuous monitoring
of cardiovascular health has emerged as a vital approach in
addressing these challenges. Continuous monitoring allows
for the detection of subtle changes and abnormalities that
might go unnoticed during an intermittent medical evalua-
tion [2]. This approach enables early detection of CVDs,
allowing for timely interventions and personalized treatment
plans [3]. By leveraging continuous monitoring technologies,

healthcare professionals can enhance the prevention, diagno-
sis, and management of CVD, ultimately improving patient
outcomes and quality of life [4]. However, traditional meth-
ods often require complex equipment which limits mobility
and are unsuitable for monitoring outside of the clinic [5].
In recent years, wearablemonitoring devices have emerged as
a promising solution that enables the non-invasivemonitoring
of various physiological parameters in real-time.

Wearable monitoring devices have revolutionized health-
care by providing continuous and personalized monitoring
systems [6]. These devices have gained significant popularity
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due to their convenience, mobility, and real-time data collec-
tion capabilities. Wearable devices come in various forms,
such as smartwatches, fitness trackers, and patch-like sensors,
which can be worn comfortably for extended periods. These
devices can provide a comprehensive picture of cardiovas-
cular health by continuously tracking variety of biometric
parameters [7].

Seismocardiography (SCG) is an innovativewearable tech-
nique that has gained significant attention in the field of
cardiovascular monitoring [8]. SCG captures the vibrations
produced by the mechanical activity of the heart. These vibra-
tions enable a real-time, central, and non-invasive assessment
of cardiac performance [9] enabling valuable insights into
cardiac function. Bymeasuring the vibrations associated with
each heartbeat, SCG can monitor heart rate [10], [11], detect
abnormalities [12], classify atrial fibrillation [13], and pre-
dict heart failure [14]. Furthermore, key fiducial points in
the SCG waveform have been associated with valve move-
ments [15], [16], enabling the measurement of cardiac time
intervals such as left-ventricular ejection time [17], [18], and
pre-ejection period [19], [20]. SCG has also been used to
derive information on stroke volume [21], and respiratory
information [22]. Since the SCG sensor requires only a single
point of contact, it eliminates the need for multiple electrodes
or sensors attached to different parts of the body, thereby
simplifying the monitoring process and enhancing user com-
fort. These human-focused design features enable SCG to
surpass the low acceptance rate of other wearables [23],
which is a consistent barrier in patient monitoring [24].
By providing comprehensive cardiac insights and integrat-
ing various physiological measurements, SCG improves the
convenience, accuracy, and accessibility of cardiovascular
monitoring. These capabilities have direct clinical appli-
cations in the diagnosis, management, and prevention of
cardiovascular diseases, enabling personalized interventions,
and remote patient monitoring for enhanced cardiovascular
care.

The decades of use of electrocardiography (ECG) based
Holter monitors underscore the importance of long-term,
wearable monitoring of physiological parameters during
daily life. SCG, by design, is targeted for wearable mon-
itoring applications and can offer a distinct perspective of
cardiac mechanics that extends beyond what ECG alone can
capture. However, the dynamic nature of daily life introduces
a myriad of environmental and physiological factors that
can complicate the accurate and meaningful interpretation
of wearable SCG data. Unfortunately, a significant portion
of SCG research has been conducted in controlled labora-
tory settings where artifacts are minimized. As a result, the
accuracy of SCG cannot yet compete with Holter monitors in
clinical settings. In this context, design of a system that can
withstand dynamic environments is crucial towards the clin-
ical translation of SCG. This would enable the content-rich
analysis of cardio-mechanical activity to the extent that cur-
rent alternatives cannot provide. Recording SCG in daily
life poses challenges due to the presence of motion artifacts.

Activities like walking, running, and even normal body
motions introduce noise and artifacts into the SCG signal,
obstructing the accurate capture and analysis of cardiac data.
These artifacts not only compromise the quality of the SCG
signal but also impede the extraction of valuable information
regarding cardiac function due to the strength of the vibra-
tions. Thankfully, with appropriate processing techniques,
it should become possible to recover the original cardiac
signal provided there is no clipping from the accelerometer.
However, due to the stochastic nature of motion artifacts
and the variability of SCG, the task is more complex than
it may initially seem and necessitates advanced processing
techniques.

There have been several attempts to reduce the effect of
motion artifact on SCG signals. They generally incorpo-
rate either adaptive filtering [25], signal decomposition [26],
or blind source separation [27]. The state-of-the-art algo-
rithms can be grouped into two categories: ECG-assisted
algorithms and ECG-less algorithms. Algorithms that are
assisted with ECG are the most powerful in reducing motion
artifacts. This is because ECG is more motion resistant than
SCG [28]. They are useful to extract precise waveforms
or timing of fiducial points. Unfortunately, they usually
require some form of ensemble averaging, which negates
any beat-to-beat analysis and heart rate (HR) monitoring.
Di Rienzo et al. [29] proposed a method for wearable SCG
that used ensemble averaging to extract cardiac time inter-
vals such as pre-ejection period (PEP) and left-ventricular
ejection time from the SCG waveform. Javiad et al. [30]
used an empirical mode decomposition (EMD) on ensemble
averaged beats for PEP detection. Lin et al. [31] used ensem-
bled EMD (EEMD), paired with a sliding autocorrelation
and compares it with ECG-derived HR and a quality fac-
tor, to limit artifactual beats. The EEMD is computationally
expensive, plus artifactual periods are discarded and could
result in a loss of data. Additionally, the method was only
evaluated on vibrations from a moving subway car. Yang and
Tavassolian [27] used constrained independent component
analysis on several SCG sensors using the R-peak timing
as a reference source waveform. This approach increases
hardware complexity by requiring at least three electrodes
when compared to the single sensor SCG technique.

For standalone SCG applications, ECG-less algorithms are
preferred tominimize hardware complexity andmaximize the
autonomy of SCG. These algorithms are less functional, and
generally give less detailed results towards specific cardiac
timings. Pandia et al. [32] used a Savitsky-Golay filter to
subtract motion artifact from SCG.Yang and Tavassolian [25]
used a nonlinear least-means-squared filter where a delayed
input of the SCG signal was used as the target reference.
Yu and Liu [33] used a recursive-least-squares filter where
a bandpass filtered SCG signal was used as the desired refer-
ence. The difficulty with adaptive filtering is that the methods
hinge on producing a reliable estimate of the desired signal.
Choudhary et al. [34] used wavelet decomposition with kur-
tosis and dominant frequency criteria used to select sub-bands
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for aortic opening detection. While the original paper did
not specifically propose the algorithm for motion artifacts,
it was analyzed with respect to motion [31] however kurtosis
could be a poor option in this application as vibrations from
footsteps also exhibit high kurtosis [35].

SCG is a promising solution for cardiac monitoring thanks
to its simplicity, compact form factor, and ability to pro-
vide a wealth of information. However, it is still limited
in real-world applications where noise artifacts are present,
which inhibits its clinical use. Ambulatory recordings remain
a particular concern due to strong footstep related vibrations.
To address this issue, this paper introduces a novel framework
aimed at mitigating the effects of motion artifacts in SCG
recordings. The proposed framework analyzes wave decom-
position methods to effectively isolate the cardiac signal.
Additionally, we demonstrate a noise suppression technique
to further filter out residual unwanted noise. Finally, the
effectiveness of the framework is assessed for HRmonitoring
during artificially corruptedwalking data using a state-of-the-
art HR algorithm. Through these analyses and evaluations,
this study aims to advance the understanding and develop-
ment of motion artifact reduction techniques in SCG-based
remote cardiac monitoring.

II. METHODS
A. DATA ACQUISITION
Data collection took place at McGill University and was
approved by the McGill Research Ethics Board (file
number: 6-0619), approved August 12th, 2019. Prior writ-
ten consent was obtained from all participants before their
involvement in the study. The analysis involved two datasets.
The first dataset consisted of five subjects who performed
various walking and motion artifact inducing activities.
A subset of this data was presented in [36] where HR esti-
mation was performed on several different orientations while
at rest. To capture cardiac vibrations and motion artifacts,
two inertial measurement units (Invensense, MPU9250) were
utilized. The first sensor was affixed to the xiphoid process
of the sternum with a single piece of double-sided tape,
as shown by the green box in Fig. 1. The X, Y, and Z axes
were oriented in longitudinal, horizontal, and dorsoventral
axes of the body. The second sensor was placed along the
spine on the back of the body, in line with the main sen-
sor on the front. Both inertial measurement units (IMU)
were polled by a single Raspberry Pi Zero W using I2C
protocol at approximately 270 Hz. Reference ECG signals
were concurrently recorded using the BIOPAC system, and
synchronization between ECG and IMU data was achieved
using an externally hardwired clock from the BIOPAC to the
Raspberry Pi.

Two one-minute recordings were obtained to introduce
walking noise. During walking, subjects were instructed to
walk in circles with a diameter of approximately 5 meters,
at a comfortable speed of their choice. In one recording,
the subjects walked clockwise and in the other they walked
counterclockwise.

FIGURE 1. Position on the body for the IMU (green) and ECG (red)
sensors with corresponding axes directions showing a front view (left)
and side view (right).

The second dataset comprised sixty-two subjects with a
single sternal IMU sensor. Subjects were recorded at rest in a
supine position with no observed motion artifacts using the
same sensor configuration as the first dataset. A subset of
this data was discussed in [22]. Ten subjects were selected
for analysis in this work based on the strongest cardiac
amplitudes to confirm that any estimation inaccuracies were
caused due to motion artifact noise, and not due to poor
signal quality. Previous studies have demonstrated that the
cardiac signal is primarily found in the acceleration-Z (AZ)
and gyration-x (GX) axes [11]. Cardiac amplitudes were
determined by calculating the root-mean-squared (RMS)
amplitude of the ensemble average for the AZ and GX axis.
The RMS values were sorted to rank the strongest AZ andGX
signals, and the average of the two ranks was used to identify
the ten subjects with the highest cardiac amplitudes.

Evaluating the performance of the algorithm can be chal-
lenging without a clear reference source. To establish an
evaluation testbed, an artificially corrupted dataset was cre-
ated. This was generated by adding the back sensor from
the walking recordings to the clean data from the supine
subjects. This approach relies on the assumption that the
torso is rigid, resulting in similar external vibrations when
recorded on the front or back of the torso. Additionally, it was
assumed that the back location lacks sufficient cardiac signal
for detection by the IMU, as demonstrated in [37]. Both
claims were confirmed in our own datasets. Consequently,
the back sensor served as a reliable estimate of the motion
artifact noise source. Each of the ten resting recordings was
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then corrupted by the ten walking datasets, resulting in a total
of 100 unique permutations corresponding to 6000 seconds
for analysis. This enabled a broad dataset of varying SCG
profiles, signal strength, noise levels, and overlap across each
permutation.

B. ALGORITHM OVERVIEW
The algorithm consisted of three main blocks. First, a decom-
position block was used to isolate relevant cardiac-related
elements. Then a time-frequency (TF) analysis was used
to suppress remaining unwanted features by masking and
nonnegative matrix factorization. Finally, our previously pub-
lished autocorrelated differential algorithm (ADA) [10] for
was used to evaluate the performance of the motion artifact
reduction by heart rate estimation. The algorithm and analysis
were developed in MATLAB 2022b using the signal process-
ing, wavelet, and statistics toolboxes.

C. SIGNAL DECOMPOSITION
The first stage of the algorithm is to perform signal decom-
position on the acceleration data. Signal decomposition is a
process that involves breaking down a complex signal into
its constituent components or building blocks. The goal of
signal decomposition is to extract the underlying information
contained within the signal and separate it for further anal-
ysis or processing. In an ideal setting, it would separate the
cardiac-related information from the motion artifact related
information. However due to the similarity of the vibrations
from both sources – occurring with overlap in frequency
and time characteristics, it is not trivial to isolate each one
in this scenario. Therefore, we analyzed two decomposition
methods from current state of the art and two new methods to
determine which can best reconstruct the cardiac signal from
the corrupted data.

The first method analyzed was empirical mode decom-
position (EMD). EMD is a data-driven signal processing
technique that enables adaptive decomposition of a complex
signal into its intrinsic modes functions (IMF) by identifying
local oscillatory components [38], and has previously been
used for SCG [30]. These IMFs are obtained through a sifting
process that extracts oscillatory behaviors from the original
signal. Effectively, the EMD decomposes the acceleration
signal into a set of IMFs that collectively represent the
entire signal while individually representing different compo-
nents relating to either cardiac or motion information. EMD
extracts the IMFs from high to low frequency. We observed
that the cardiac related content was primarily found in the first
two IMFs, corresponding to the two highest frequency IMFs.
The SCG waveform was reconstructed by summing these
two IMFs.

The second decomposition method analyzed was the
ensemble empirical mode decomposition (EEMD), which
extends the capabilities of the EMD. EEMD addresses some
limitations of EMD, such as mode mixing and sensitivity to
noise [39], and has also been used previously for SCG [31].
EEMD involves generatingmultiple realizations, or ensemble

members, of the input signal by adding white noise to the
original data. Each ensemble member is then decomposed
using EMD independently. After decomposing each ensem-
ble member, the IMFs across all realizations are averaged to
obtain the final set of IMFs. The advantage of EEMD lies
in its ability to mitigate the impact of noise and enhance
the separation of intrinsic modes, which can be particularly
beneficial when dealing with non-stationary and noisy accel-
eration signals [39]. We analyzed EEMD in the same context
as EMD, with the first two IMFs used for reconstructing the
SCG signal.

The third evaluated method was the complete ensem-
ble empirical mode decomposition with adaptive noise
(CEEMDAN) algorithm. CEEMDAN is another EMD varia-
tion that extends the capabilities of EEMD by incorporating
adaptive noise at each stage [40]. In EEMD, noise is added
to the original data and then is fully decomposed, whereas in
CEEMDAN, noise is added in each stage of the decomposi-
tion and a single residual is produced by averaging the IMF
before proceeding to the next IMF. This results in a theoret-
ically lower computational cost and a lower reconstruction
error [40] – two important qualities when considering the
proposed portability of SCG. As the same with the other
two EMD-based methods, we used the two highest frequency
IMFs to reconstruct the signal.

The final method analyzed in this work was a wavelet-
based method. The discrete wavelet transform (DWT)
decomposes a signal into different frequency components
by applying a series of high-pass and low-pass wavelet
filters [41]. The DWT operates in a multi-resolution frame-
work, where the signal is successively down sampled and
filtered at each level, resulting in a decomposition into mul-
tiple levels or scales. This hierarchical representation allows
for a comprehensive analysis of the signal’s frequency con-
tent across different resolutions.

In this work, we specifically examined the maximum
overlap discrete wavelet transform (MODWT), a technique
that extends the capabilities of the DWT. Unlike the DWT,
MODWT does not down sample the signal at each scale. This
causes the transform to be more redundant, less sensitive to
the starting point, and applicable to any sample size at the cost
of higher computational complexity [41]. The MODWT uses
zero phase filters, which better preserve feature localization –
critical for extracting cardiac timing indicators from the SCG
waveform. Additionally, the transform is less sensitive to
the selection of the wavelet filter [41]. The MODWT finds
applications in various fields and is particularly useful for
SCG analysis where a detailed and localized analysis of the
signal’s frequency content is required. In comparison to the
EMD-based methods, MODWTwas observed to better local-
ize higher frequency bands, and therefore we observed the
cardiac signal primarily in the first three sub-bands and these
sub-bands were selected to reconstruct the cardiac signal.
The sub-band selection was constant and were determined
visually then confirmed numerically as the optimal number of
sub-bands for signal reconstruction. This can be seen in Fig. 2
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FIGURE 2. MODWT decomposition showing (a) input signal, (b) first
sub-band, (c) second sub-band, (d) third sub-band, (e) fourth sub-band,
and (f) reconstructed signal from first three sub-bands. ECG R-Peaks
shown in red dashed lines.

where a five second period of the corrupted data is decom-
posed into several sub-bands via MODWT. For simplicity,
only the first four out of fourteen sub-bands were shown,
as they contained the most relevant information. The raw
signal in Fig. 2 a) was decomposed, with the cardiac elements
visible in plots Fig. 2 b) to Fig. 2 d) used to reconstruct the
signal in Fig. 2 f). While this method separates out most of
the cardiac and motion artifact, some remains, as evident by
the erroneous vibrational pulse visible around at two seconds,
which is unrelated to the heartbeat however is contained in
the same frequency sub-band and therefore was not separated
from the wavelet decomposition. This example highlights the
need for further processing to suppress remaining additional
vibrations that would be disruptive to sensitive processing
algorithms.

D. ARTIFACT REMOVAL
1) TIME-FREQUENCY MASKING
Signal decomposition can separate signals well when there
is a significant separation between the frequency bands and
as a result, the out-of-band noise was removed from the
signal. However there remains some in-band noise because
of the overlap in the frequency distributions of the cardiac
and motion related signals. Therefore, we implemented two
methods to suppress the remaining in-band vibrations. For the
first stage, we leveraged a technique commonly used in audio
and speech processing known as time-frequency masking.

Time-frequency masking involves selectively attenuat-
ing or enhancing specific components of a signal in the

FIGURE 3. Demonstration of time-frequency masking showing (a) time
domain of AZ axis, (b) time domain of AX axis, (c) CWT magnitude of AZ
axis, (d) CWT magnitude of AX axis, (e) generated binary mask from the
AZ and AX spectrums where a one is represented in white, and (f) AZ axis
spectrum magnitude after the mask was applied.

TF domain [42], where the goal is to separate different
sources in a mixture. TF masking utilizes the information
in the TF representation of the signal, such as the con-
tinuous wavelet transform (CWT), or short-time Fourier
transform (STFT), to identify and manipulate specific fre-
quency components at different time intervals.

A binary mask can be created by comparing two TF repre-
sentations. TF elements of the desired signal with an energy
above that of the other source are assigned a 1 whereas those
with a lower energy are assigned a zero. The binary mask can
then be multiplied element-by-element to the target mixed
signal to effectively suppress the regions corresponding to
the unwanted source. In the context of ambulant SCG, the
two sources can be represented as the cardiac signal, and
the motion artifact. For a real-world application, we do not
know the TF representations of either source so we must
make an approximation. To approximate the noise, we used
the accelerometer x-axis data as a noise estimate. Since the
observed cardiac signal was much lower in the AX than the
AZ axis, and the observed motion artifact was much higher in
the AX than the AZ axis, the AX axis provided a fairly pure
estimate of the motion artifact. First, the TF spectrums were
generated for both the AX and AZ axes. A five-second-long
example of each spectrum can be seen in Fig. 3 c) and d)
for the AZ and AX, respectively. The two spectrums were
compared to generate the binary TF mask shown in Fig. 3 e),
with a 1 assigned when the energies of the AZ elements were
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greater and a zero when the energies of the AX elements were
greater. The two-dimensional mask was then applied to the
AZ spectrum via element-by-element multiplication.

2) NONNEGATIVE MATRIX FACTORIZATION
The second technique to reduce unwanted vibrations was
the Nonnegative Matrix Factorization (NMF). NMF is a
commonly used and effective technique for breaking down
complex matrixes into their essential components. Its unique
prowess comes from the nonnegativity constraint, which
makes it an optimal choice for applications such as separating
sources in mixed audio signals [43]. The premise of NMF
as an unsupervised learning technique is to decompose a
nonnegative matrix into two lower-rank nonnegative matri-
ces [44]. The product of these two lower-rankmatrices should
approximate the original matrix as seen in Equation 1 where
C is the initial matrix, and W and H are the two factors.

C ≈ W × H (1)

If C is a matrix with n-by-m dimensions, then the factorW
will be of size n-by-k, and the factor H will be of size k-by-m
with k representing the desired rank. TheNMF technique iter-
atively updates the two matrices to minimize the difference
between the original matrix and the approximation [45], [46].
By employing this powerful methodology for SCG, we can
isolate motion artifacts from the invaluable cardiac data,
resulting in clearer, more reliable signals. We implemented
NMF to separate the TF spectrummagnitude into two sources
as its spectrum satisfied the non-negativity criteria of NMF.

Unlike the TF masking technique, NMF is unsupervised
and therefore does not require a noise estimate to function.
However, due to the similarity of the two sources, if applied
directly it would fail to recognize a distinction between them
and would provide little improvement for either source. Our
solution was to use the AX axis as an initial seed for the
algorithm to assist the convergence towards something of
a similar distribution. NMF was performed by the nnmf
function in MATLABwhich used an alternating least squares
algorithm [46]. First, NMF was performed on the AX CWT
spectrum, CAX , to factorize the graph to two one-dimensional
factors representing the time axis, Hx , and frequency axis,
Wx , of the spectrum.
Next, NMFwas performed on theAZCWT spectrum,CAZ ,

after the TF mask had been applied. Hx was used as an initial
seed for the time-domain factor, H0, of the NMF of CAZ . The
other initial factors were randomly initialized. The NMF on
CAZ factorized the signal into two factors, WZ and Hz, each
with a rank of 2. We can assume that each the two vectors
in each factor represent a cardiac component and a noise
component because the noise component was seededwithHx .

Finally, a TF representation of the SCG-related signal,
ĈSCG, was generated by multiplying the first component
from each factor. The inverse CWT was applied by using
the magnitude defined by ĈSCG with the phase from the
initial spectrum, CAZ to reconstruct a time domain SCG-like
representation, with suppressed motion artifacts.

FIGURE 4. Flowchart of the developed NMF-based artifact reduction
method. NMF of the AZ CWT spectrum, CAZ , was initialized using a NMF
decomposition of the AX CWT spectrum, CAX . A SCG-like waveform, ÂZ ,
was reconstructed using the first component from each factor, and the
original phase information.

3) PROPOSED ALGORITHM
Using the described techniques, we developed an optimized
algorithm to reduce the motion artifacts corresponding to
footsteps. An overview of the algorithm can be seen in Fig. 5.
First, the acceleration data was resampled to 200 Hz and
was bandpass filtered by a 3rd order Butterworth filter with
3dB cutoffs of 3 Hz and 50 Hz, which was sufficient in
capturing the frequency range of SCG in line with previous
studies [47]. Next, MODWT was used to decompose the
signal, of which the three highest frequency sub-bands were
selected to reconstruct the signal. The same decomposition
was applied to both the AZ and AX axes.

FIGURE 5. Flowchart of the developed algorithm. The same processing is
done on both the AZ and AX axes, then the AX is used to improve the AZ
by time-frequency masking and AX used as an initialization for the
AZ NMF. ADA is computed at different stages of the algorithm then all
estimates are concatenated, and a single heart rate estimation is
produced.

Next, the time-frequency analysis was performed on the
reconstructed signal.While the STFT, CWT, andwavelet syn-
chrosqueezed transform (WSST) were evaluated, the CWT
was implemented because it provided a better resolution of
cardiac beats than the STFT and a much faster processing
time than the WSST. The CWT was implemented on the AZ
and AX axes to create a TF representation of the waveform
for each axis. The binary TF masking was then performed
on the AZ spectrum. Finally, the NMF stage was performed
on the AZ spectrum, as initialized by the AX axis described
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in section II-E, resulting in a waveform that has had motion
artifact related vibrations significantly suppressed.

Each of these methods can fail at different timesteps of the
signal, either in scenarios where the motion artifact was not
adequately suppressed, or where the cardiac signal was sup-
pressed too heavily. Therefore, HR estimation was performed
on the signals probed at different stages in the reduction
process – specifically after MODWT, TF masking, and NMF.
HR was calculated using the ADA [10], which uses a win-
dowing and autocorrelation based approach to estimate HR.
ADA was performed on each signal independently. An itera-
tive approach was then used to select the best heartrate of the
three estimates. The technique is based on that of [11] where
the HR estimate with the smallest difference from the HR
estimate at the previous measurement instance was selected
as the preferred output. This was enabled by the relative
quasiperiodic nature of the heart such that the timing of each
heartbeat is generally similar to that of the last, plus some
small variability. The iteration was initialized for each file
by using the average heart rate across all estimations for that
file. This process enabled the algorithm to be less sensitive to
outliers in each individual method.

E. EVALUATION
The performance of each algorithm depended on the severity
of the motion artifacts. Therefore, to provide a robust view
of the performance and its limitations, the algorithms were
evaluated on a range of varying difficulties by adjusting the
strength of the noise. This process was uniquely enabled
by our artificially corrupted dataset as the noise could be
manipulated with a strength coefficient when mixed with
the clean data. Using this platform, the algorithm was then
evaluated in three stages.

First, we evaluated how well the signal is reconstructed
after decomposition. Since the decomposition stage can
be the most computationally expensive and consequently
the most significant step, it was important to evaluate the
structural similarity. For this approach, we compared the
reconstructed signal to the clean SCG waveform. Pearson’s
squared correlation coefficient (r2) was used as a valida-
tion metric to measure the structural similarity across each
test file.

Next, the decomposition methods were evaluated when
assisted with ECG. Algorithms assisted by concurrent ECG
can improve the noise tolerance by exploiting the more
motion-tolerant electrical connections to produce cleanwave-
forms. Most current motion artifact methods pair SCG with
ECG to improve performance [27], [30], [31]. They com-
monly utilize ensemble averaging to mitigate the stochastic
nature of motion artifacts. When paired with a decomposition
technique, they can produce highly effective results. In this
work, we compared each decomposition method when used
in an ensemble average to evaluate to using the same struc-
tural similarity metrics. Cardiac heartbeats were segmented
based on ECG-R peak, then collected into an ensemble and
an average heartbeat was produced. A varying number of

heartbeats in ECG-derived ensemble averages evaluated the
impact of ensemble averaging as larger ensemble sizes should
minimize non-periodic components. These ensembles were
compared with the same ensemble average of the raw clean
waveform.

The latter stages can be more destructive to the over-
all structure of the signal; however, they are used with
the assumption that they suppress the motion artifact more
than destroying the SCG. Therefore, at this stage, compar-
ing structural similarity was not a valid approach as the
structure would be significantly changed. Instead, we used
HR estimation as both a verification tool, and a practical
application. HR was estimated using the ADA algorithm
and compared to the reference ECG-derived HR using Pear-
son’s squared correlation coefficient. HR estimations were
evaluated after each individual stage of the algorithm and
were executed across a varying range of motion artifact
strength.

III. RESULTS
A. DECOMPOSITION
The decompositionmethods were evaluated on the artificially
corrupted dataset for their ability to reconstruct the SCG
waveform. Fig. 6 shows the average r2 for each method
across a varying signal to noise ratio (SNR) by manipulating
the motion artifact strength. The full-strength SNR observed
was −27 dB. SNR was calculated using the reference SCG
and the mixed corrupted data for each permutation. All meth-
ods were negatively impacted by increasing noise amplitude.
The correlation coefficient from the signal after just the band
pass filter is shown as a reference. Understandably, as the
simplest approach, this had the lowest performing reconstruc-
tion with the lowest r2 except in the case of very low motion
artifact noise. This is a consequence of features of the cardiac
waveform being lost in the lower frequency bands during
decomposition. This loss could potentially be mitigated by
adaptively including more modes in the reconstruction to
increase the reliability at lower noise levels. For consistency,
all the signals were reconstructed using a constant number of
modes, as described in Section II-C. However, for lower noise
levels, established SCG processing techniques are typically
sufficient, and thus they are not the primary emphasis of
this work.

The best performing methods were CEEMDAN and
MODWT as they had the highest r2 for signal reconstruction.
MODWT performed slightly better than CEEMDAN, partic-
ularly as it had a higher correlation at stronger noise levels.
In this range, we can see that MODWT and CEEMDAN
outperformed EMD and EEMD, which have been previously
used for motion artifact removal in SCG [30], [31].

In addition to outperforming the EMD-based meth-
ods on an accuracy level, MODWT was much faster
than the ensemble-based approaches, with a computation
time approximately 128 times faster than CEEMDAN and
463 times faster than EEMD. The computation times for
processing one minute of data and their corresponding
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FIGURE 6. Quality of reconstruction showing the average correlation
coefficient (r2) for baseline filtering (blue), EMD (red), EEMD (yellow),
CEEMDAN (purple), and MODWT (green).

correlations are shown in Table 1 at a SNR of –20.9 dB.
The choice of this SNR ensured an adequate level of noise
for evaluation under challenging circumstances, while still
allowing each method to yield discernible results. The com-
putation times of the ensemble-based methods could be
improved by using fewer realizations; however, this would
likely cause a reduction in the accuracy of the methods.

TABLE 1. Computational timing.

B. ECG-ASSISTED RECONSTRUCTION
ECG, as a more motion-tolerant signal, was used to assist the
decomposition methods in reconstruction of the SCG signal.
The reconstruction was calculated at a SNR of –20.9 dB.
Fig. 7 shows the results for each of the decomposition and
baseline filtering approaches, when compared to the same
ensemble.

The results show that regardless of the method used, the
reconstruction correlation increased when the number heart-
beats in the ensemble increased. This can be attributed to
the motion artifacts being non-periodic with respect to the
quasi-periodicity of the cardiac signal. This showed that
ensemble averaging can be used as a tool to minimize motion
artifacts, even without decomposition.

Additionally, it showed that when the ensemble size was
large, most of the decomposition methods did not offer any
improvement than bandpass filtering. The results were simi-

FIGURE 7. Average correlation coefficient for each ensemble average
over an increasing number of heartbeats used in each ensemble. Shown
for the reconstruction methods using filtering (blue), EMD (red), EEMD
(yellow), CEEMDAN (purple), and MODWT (green).

lar to the scenario in Fig. 6 when there was very low motion
artifact noise, and the decomposition stage also provided
no benefit over filtering. This is a consequence of cardiac
features being lost in the lower bands of the decomposition.
These features are preserved in the bandpass filtering and the
ensemble approach reduced the motion artifacts.

C. HEART RATE ESTIMATION
A common application for SCG is HR monitoring, with a
major advantage being its use in wearable scenarios. There-
fore, HR estimation was used as both a verification tool,
and a demonstration of practical utility. Fig. 8 shows the
HR estimation performance from each stage of the pro-
posed motion artifact reduction algorithm, on increasing
noise levels. Unlike Fig. 6, this figure does not compare the
methods in isolation, but shows how their use in each stage
of the algorithm results in enhanced HR detection. Although
any decomposition method could be used in the algorithm,
MODWT was chosen as the desired technique due to the
high reconstruction accuracy and low computational timing
as demonstrated in section III-A. As seen when compared
to the bandpass filtering reference, all stages significantly
improved the HR detection accuracy. At low noise levels, all
stages had a similar performance, whereas at higher noise
levels, calculation after the TF masking stage improved the
results from the previousMODWT stage. Interestingly, incor-
porating the NMF stage did not show significant overall
improvement from the TF masking stage. This was likely a
result of themethod solving somemotion artifact issues while
creating new ones where it over attenuated the cardiac signal.
However, what it did provide was an HR estimation where the
failure points were often at different times from the MODWT
or TFmasking stage failure points. This allowed the selection
algorithm to adaptively decide which of the three HR results
it should output as a result. The selection stage resulted in
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FIGURE 8. Heart rate estimation results showing the correlation
coefficient (r2) when compared against concurrent ECG-derived heart rate
after baseline filtering (blue), and after each stage of the algorithm: after
the MODWT stage (red), MODWT then CWT masking (yellow), MODWT
then CWT masking then NMF (purple), and the iterative selection
stage (green).

the highest r2 across all SNR levels. However, at very high
noise levels, even the selection algorithm did not improve the
results enough for HR estimation as artifacts dominated the
signal at all points and caused consistent large failures in all
phases of the algorithm.

IV. DISCUSSION
The results of the study indicate that all the chosen decom-
position methods improved the signal quality. Notably, the
MODWT emerged as the most effective technique among
the employed methods. While the combination of masking
and NMF only minorly enhanced signal quality on their own
when compared to MODWT, their joint utilization resulted
in improved HR detection accuracy. For example, if we set a
mean-absolute-error (MAE) tolerance of 5 bpm, the tolerance
of the algorithm increases from −6.5 dB SNR from baseline
filtering to −19 dB SNR after the algorithm.
When examining the performance at−15 dB, we observed

a noteworthy improvement in HR r2, elevating it from less
than 0.1 to above 0.8. However, when evaluated at the orig-
inal, full-strength of the back sensor at −27 dB, the method
only marginally increased the r2 from 0 to about 0.1. This
highlights the success of the algorithm at lower noise levels,
while showing challenges persist in some real-world scenar-
ios. An innovative approach was adopted by leveraging an
artificially corrupted dataset that represented real signals as
it was generated using two real sources. This dataset offered
a more manageable platform for analysis when compared
to full-strength recordings, and enabled significant progress
in a domain that was previously perceived as unattainable.
It is crucial to note that, in the experiment, we intentionally
subjected subjects to continuous walking, which represents
a high-motion artifact scenario. In real-world applications,
the average individual is fairly sedentary [48], engaging in a

variety of lighter activities, such as sleeping, sitting, or light
movements, and this sedentary behavior is even higher in
hospitalized patients [49]. Therefore, this work enables SCG
monitoring throughout most of the day for clinical and daily
life applications.

A similar study measured a SNR of around −5 dB to
−15 dB from subway vibrations [31]. Another study demon-
strated an algorithm with a tolerance of 40 mill-g standard
deviation of motion artifacts [25]. In our study, we observed
an equivalent standard deviation value at −21 dB SNR.
A third study reported mean squared energy of 0.02, 0.009,
and 0.016 while walking on a treadmill at 1.3 m/s, a user-set
pace, and a brisk pace, respectively [30]. Our study observed
an equivalent energy at −23 dB, −20 dB, and −22 dB.
Therefore, the full-strength of our recordings were consis-
tently much stronger than other works. In the −15 dB to
−20 dB range observed in these other studies, our algorithm
is particularly well-suited for addressing motion artifacts in
real-world scenarios, thereby reinforcing its practical appli-
cability in everyday monitoring situations, and enabling its
clinical use. Additionally, all three studies utilized ECG to
reduce motion artifact, whereas our study is a standalone
SCG-only approach. The nature of the walking surface and
the impact exerted during locomotion can be identified as
potential factors affecting signal quality. This study was con-
ducted with subjects walking barefoot on a firm flooring,
whereas factors such as shoes [50] or utilization of tread-
mills [51] can provide some shock-absorbing properties that
dampen vibrations and could explain why this study had
worse SNR than comparable studies.

We observed in Fig. 6 that simple filtering had the high-
est r2 for very low motion artifact noise. Counterintuitively,
it had a worse performance for HR than MODWT as seen
in Fig. 8. As outlined in Section III-A, the diminished recon-
struction performance in cases of low motion artifact noise
can be attributed to the loss of features from the SCG wave-
form in the lower-frequency bands during decomposition.
However, while this process removes some of the SCG signal,
it also effectively eliminates more of the disruptive motion
artifacts within this frequency range. We can conclude that
1) the lower frequency information may not be of crucial
importance for HR estimation, and 2) the loss of this infor-
mation is counterbalanced by the enhanced suppression of
motion artifacts, ultimately resulting in a more dependable
HR estimation.

Another important observation was that when the HR
algorithm failed, it would deviate significantly from the
actual HR. Incorporating outlier methods could potentially
improve these results, however this was deemed outside the
scope of this work as it would not create a fair comparison
between the previously published HR algorithm. Addition-
ally, the HR selection should be further verified in cases of
arrhythmiaswhere this approach could smooth variability and
mask such pathologies.

Similarly, as the HR estimates were often either rea-
sonably close or significantly off, it could be feasible to
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intermittently monitor HR instead of continuous monitoring.
In this approach, motion artifacts could be detected, and
a signal quality index could selectively record HR during
periods of high confidence where motion artifacts are more
easily reduced.

Another method to improve noise tolerance would be to
record ECG concurrently. ECG was shown to improve the
reconstruction quality by incorporating ensemble averaging.
The increase in r2 directly correlated with the number of
heartbeats used. However, using a larger number of heartbeats
limits the beat-to-beat monitoring, while potentially smooths
features which could be of importance to specific applica-
tions [30]. Additionally, HR monitoring is not possible with
this technique but if ECG is being used, it could provide
the HR information instead of SCG. The downside of this
approach is the increased hardware complexity and more
points of contact on the body. ECG-assisted SCG algorithms
provide useful applications towards cardiac time interval
detection such as the pre-ejection period or left-ventricular
ejection time [29], [30], [31] where the number of heartbeats
can be finetuned to the specific needs of the application.
In such contexts, the concurrent use of SCG and ECG remains
a valuable approach for a more comprehensive assessment of
cardiac performance.

V. CONCLUSION
This study investigated EMD, EEMD, CEEMDAN and
MODWT to mitigate motion artifacts in SCG signals.
Of these, MODWT yielded the highest quality signals and
faster decomposition. Additionally, a combined approach
involving MODWT, TF masking, and NMF showed signifi-
cant enhancements for HR estimation. Although the approach
outperforms current state of the art, at high noise levels, this
combined approach was still insufficient for implementation
in a practical device. Therefore, to enable SCG recordings at
higher noise levels, the adoption of an intermittent monitor-
ing scheme, or motion-tolerant ECG should be incorporated.
By addressing the challenges posed by motion artifacts,
we effectively increase the versatility of SCG monitoring.
Our results allow SCG measurements to be more accurate
under motion artifacts, which therefore improve the reliabil-
ity of insights into cardiovascular dynamics. This promotes
the applicability of SCG to ambulatory scenarios, including
clinical settings both in the hospital, and remote monitor-
ing, thereby facilitating improved diagnosis of conditions
like arrhythmias, ischemia, and heart failure. Moreover, this
advancement enables the development of robust wearable
devices that can be seamlessly integrated into daily life,
allowing continuous monitoring and timely detection of car-
diac abnormalities.
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