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complex with ferredoxin
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Abstract 

Backgroud:  Ferredoxin NADP(H) oxidoreductases (EC 1.18.1.2) (FNR) are flavoenzymes present in photosynthetic 
organisms; they are relevant for the production of reduced donors to redox reactions, i.e. in photosynthesis, the 
reduction of NADP+ to NADPH using the electrons provided by Ferredoxin (Fd), a small FeS  soluble protein acceptor 
of electrons from PSI in chloroplasts. In rhodophyta no information about this system has been reported, this work is 
a contribution to the molecular and functional characterization of FNR from Gracilaria chilensis, also providing a struc‑
tural analysis of the complex FNR/Fd.

Methods:  The biochemical and kinetic characterization of FNR was performed from the enzyme purified from phy‑
cobilisomes enriched fractions. The sequence of the gene that codifies for the enzyme, was obtained using primers 
designed by comparison with sequences of Synechocystis and EST from Gracilaria. 5′RACE was used to confirm the 
absence of a CpcD domain in FNRPBS of Gracilaria chilensis. A three dimensional model for FNR and Fd, was built by 
comparative modeling and a model for the complex FNR: Fd by docking.

Results:  The kinetic analysis shows KM
NADPH of 12.5 M and a kcat of 86 s−1, data consistent with the parameters deter‑

mined for the enzyme purified from a soluble extract. The sequence for FNR was obtained and translated to a protein 
of 33646 Da. A FAD and a NADP+ binding domain were clearly identified by sequence analysis as well as a chloroplast 
signal sequence. Phycobilisome binding domain, present in some cyanobacteria was absent.  Transcriptome analysis 
of Gch revealed the presence of two Fd; FdL and FdS , sharing the motif CX5CX2CX29X. The analysis indicated that the 
most probable partner for FNR is FdS.

Conclusion:  The interaction model produced, was consistent with functional properties reported for FNR in plants 
leaves, and opens the possibilities for research in other rhodophyta of commercial interest.
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Background
Ferredoxin NADP (H) oxidoreductases (EC 1.18.1.2) 
(FNR) are enzymes of 34–45  kDa, involved in crucial 

steps of photosynthesis in plants, algae and cyanobac-
teria. Their main function is to provide reduced donors 
to redox reactions involved in processes such as the fixa-
tion of CO2 and N2, isoprenoids biosynthesis or oxida-
tive stress [1], besides its function in the regulation of the 
cyclic electron transport in plants [2]. FNR is present in 
photosynthetic organisms as tissue specific isoforms [3], 
they co-purify with membrane complexes such as b6f [4], 
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NADPH dehydrogenase [5], Tic62 [6, 7] and Fd in the 
stroma of chloroplasts [8]. In spinach, FNR is a mono-
meric enzyme, while in Anabaena, the crystal structure 
of the complex with Fd shows 2FNR associated to one 
Fd [9]. In order to perform its function, FNR needs to 
accommodate the co-factor FAD [10] and its substrates 
NADP+ and ferredoxin. A general characteristic of FNR 
enzymes, is an optimum pH of 7.0 for the reduction of 
cytochrome c dependent of ferredoxin at 40–55  °C; 
under these conditions, for NADPH, Km is in the μM 
order with a turnover number or kcat of 80–100 s−1 [11].

Two domains have been described as a signature of 
FNRs: a FAD binding domain that includes the N-termi-
nal domain, and a NADP+ binding domain that involves 
the C-terminal domain [12, 13]. In cyanobacteria FNR 
has been found associated to phycobilisomes (PBS) [14], 
which is an accessory light harvesting protein complex 
present in thylakoid membranes. Two isoforms have 
been described for Synechocystis sp.: a small isoform of 
33,000 Da, similar to plants stromal FNR, and a large iso-
form of 45,000  Da, which contains an extra domain at 
the N-terminal region. The sequence of the extra domain 
closely resembles a 10  kDa linker protein associated to 
allophycocyanin in the core of PBS. It has been reported 
that PBS-associated FNR from Synechococcus presents 
the extra domain [15–18]. Our group has been studying 
the structure and function of phycobilisomes from G. Ch, 
a red algae that has been commercially cultivated in Chile 
for agar production. Purified phycobilisomes presented 
FNR activity. No molecular and functional information 
is available for FNR from this specie, nor if the protein 
presents the previously described extra domain. Consid-
ering the importance of FNR for mass production of this 
commercially important algae for polysaccharides and 
pigments production, this research was focused on the 
characterization of the enzyme.

Fd and NADP+ are the substrates of FNR. Fd is a 
11 kDa protein that contains a [2S–2Fe] redox center; in 
chloroplasts it receives one electron from PSI and trans-
fers it to different enzymes, among them FNR. Consid-
ering the sequences, and the type of redox center, low 
potential (−  420  mV) Fd is present in plants (2Fe–2S) 
as 90–130 residue proteins, and in bacteria, (4Fe–4S) as 
55–100 residue proteins [19]. The electron transfer from 
Fd to NADP+ requires a ternary complex among oxidized 
FNR, NADP+ and reduced Fd, stabilized by hydrophobic 
interactions and hydrogen bonds, in which the [Fe–S] 
center of Fd interacts with basic residues in FNR. In Ana-
baena, Fd interacts with FNR through L76, L78, and V136 
at the interface generated by the NADP+ binding site and 
the FAD binding domain [20, 21].

Little information is available regarding the com-
plex FNR/Fd of red algae and especially regarding the 

eukaryote red algae G. ch [22]. Previous results indi-
cated that FNR from G. ch is detected in soluble extracts 
(FNRSOL), as well as in purified PBS (FNRPBS) [10, 23]. 
This information leads us to investigate if this FNR 
could also have the extra domain that enables the bind-
ing to PBS, as it is in Synechococcus. We report here the 
sequence of one gene found in the genome of G. ch, the 
sequence analysis of the translated amino acid sequence 
and the molecular and kinetic characterization of the 
enzyme. In order to complete the molecular characteri-
zation of ferredoxin NADP+ reductase from G. ch, we 
also report the sequence of the ferredoxins found in the 
transcriptome of G. ch and molecular models for FNR, its 
Fd partner and the corresponding FNR/Fd complex.

Methods
Purification of phycobilisomes and detection of FNR
Phycobilisomes were purified from 250  g of fresh G. ch 
(Rhodophyta, Gigartinalis)[22] collected in Colcura, 
Chile (37°6′39″S, 73°8′52″W) according to literature [24, 
25] and Additional file 1. The PBS highly enriched frac-
tion was analyzed by non-denaturant 10% polyacrylamide 
gel electrophoresis [26]. A zymogram was performed 
to detect FNR diaphorase activity [27]. The procedure 
involves the incubation of the gel in 50  mM Tris·HCl 
pH 8, 1 mM EDTA, 0.5 mg mL−1 nitro-blue tetrazolium 
(NBT) as an electron acceptor and 0.5  mM NADPH as 
substrate donor. The active bands were identified by a 
blue color appearance after 30  min incubation at 37  °C 
in the dark. Blue bands were separated and incubated in 
a denaturant solution and their molecular weights were 
determined by SDS-PAGE. To detect FNR, Western blots 
were performed, using anti FNR specific antibodies (Rab-
bit polyclonal antibodies anti FNR from of Artrosphira 
maxima, 1:1000), generously provided by Dr. Carlos 
Gómez Lojero, (CINVSTAT, Mexico); a donkey anti rab-
bit IgG coupled to horseradish peroxidase was used as 
a second antibody (1:5000) (Jackson ImmunoResearch 
Laboratories). The peroxidase activity was determined 
by bioluminescence using PIERCE ECL Western blotting 
substrate kit. The purification of FNR from the soluble 
extract (FNRSOL) was performed as reported previously 
[10, 28].

Determination of kinetic constants
A modified protocol for detecting FNR activity was 
used [28]. The assay follows the decay of the absorb-
ance at 340  nm due to the oxidation of NADPH in 
presence of 2, 6-dichlorophenol-indophenol (DCPIP) 
(Merck). The reaction mixture contained 50  mM 
Tris·HCl pH 8, 0.15  mM DCPIP, and 1  mM Na2EDTA. 
Variable NADPH concentrations were added to begin 
the reaction. All the measurements were performed 
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in a Jasco V-650 Spectrophotometer. The activity 
expressed in μmol min−1, was calculated using NADPH 
ε  =  6.220  M−1cm−1. Initial velocity determinations 
were performed in triplicate. Kinetic parameters were 
obtained by fitting the experimental data to the appro-
priate Michaelis–Menten equation by using nonlinear 
regression with Graph Pad Prism version 5.0 for Win-
dows (Graph Pad Software Inc., San Diego). kcat was 
determined using the protein concentration of FNR in 
the enriched fraction calculated by densitometric analy-
sis of the SDS-PAGE stained with colloidal Coomassie 
blue [29].

Determination of the sequence and cloning of FNR 
from Gracilaria chilensis
Total RNA was obtained using the RNeasy Plant Mini kit 
(Qiagen, Catalog number 74903). DNAc was obtained 
by reverse transcription with the M-MLB RT kit (PRO-
MEGA). The amplification of the coding sequence of 
FNR was performed by Touchdown PCR [30]; specific 
information is available in Additional file  3. To increase 
the amount of product, Booster PCR was used [31] 
and the PCR product of 950  bp was purified using the 
Zymoclean Gel DNA Recovery Kit (Zymo Research) 
and cloned into pCR-BluntII TOPO vector (Invitrogen, 
Life Technologies) by electroporation. Positive clones 
were selected by kanamycin resistance and cloning was 
confirmed by enzymatic digestion and sequencing. The 
5′UTR sequence was amplified by 5′-RACE using the 
SMARTer RACE cDNA kit (Clontech), according to 
the manufacturer. The PCR products were purified and 
clones were verified as previously described.

Confirmation of the FNR sequence and search for the 
sequence of ferredoxin using the transcriptome of G. ch
To confirm the sequence of FNR and to obtain the 
sequence of its partner Fd, we used local Blast against 
the results of the assembly provided by Trinity [32], for 
the transcriptome of G. ch (AN: SRX1507975) [33]. Two 
sequences identified as Fd were obtained and used for 
sequence analysis and structural modeling of the com-
plex. The purified protein was analyzed by MALDI-TOF 
at the University of Edinburgh and the molecular masses 
for the tryptic peptides were compared with the trans-
lated sequence.

Sequence analysis and construction of a structural model 
for FNR
The sequence of FNR was translated in silico to the 
amino acid sequence using Translate (https://web.expasy.
org/translate) and it was analyzed using Blastp, tBlastn 
(https://blast.ncbi.nlm.nih.gov) [34], Pfam (http://pfam.
sanger.ac.uk) and ClustalW (http://www.clustal.org) 

against databases. Subcellular localization and the pres-
ence of a chloroplast transit peptide were predicted with 
ChloroP [35]. A Bayesian phylogenetic reconstruction 
was performed with MrBayes v3.2.2 and FNR protein 
sequences from cyanobacteria, plants (both root and leaf 
isoforms) and red algae, including G. ch. Two simultane-
ous independent runs were conducted using the Jones 
substitution model, with six parallel chains (one ‘cold’ 
and five ‘heated’) for 500,000 generations. After a 25% 
burn-in step, a 50% majority rule consensus tree was cal-
culated with the remaining trees.

The structural model of FNR was obtained with Mod-
eller v9.13 [36] using FNR from Anabaena. (PDB code: 
1GJR) [37], Zea mays (PDB code: 3VO2) [38], Spinacea 
oleracea (PDB code: 1FNB) [39] and Pisum sativum (PDB 
code: 1QFY) [40] as templates. The final step included an 
energy minimization to eliminate side chain steric clashes 
by changing the energetically incorrect conformation of 
several amino acids and improving the hydrogen bond 
network. The model was evaluated with PROSA [41] 
and PROCHECK [42] for energetic and stereochemis-
try assessment, respectively. The model included FAD 
as a co-factor and NADPH as a ligand and two cycles of 
Molecular Dynamics. Molecular models for Fd were also 
produced using the methodology described above for 
FNR using 2Fe2S Fd from Mastigocladus laminosus (PDB 
code: 1RFK [43] as template, because its sequence iden-
tity (64%) and its resolution (1.25  Å). Docking models 
of Fd with FNR were built with CLUSPRO [44] without 
restrictions and their interaction surfaces were analyzed 
with PISA [45].

Results
Purified PBSs were characterized spectroscopically 
(Additional file  2). The presence of FNR associated to 
PBSs is shown by its activity in native gels (Fig. 1a) and 
the Western blot (Fig.  1c). The SDS-PAGE of the PBSs 
fraction is shown on Fig. 1b.

Kinetic characterization
Km

NADPH and kcat were determined for FNRPBS using 
NADPH as donor substrate and DCPIP as acceptor [46]. 
The kinetic constants for FNR are shown on Table 1. (Addi-
tional file 4) The table also shows the data determined for 
FNR purified from soluble extract (FNRSOL) [10].

The sequence
The sequencing experiments, including the elongation of 
the 5′ coding region by 5′RACE, provided the expected 
product of 1026  bp, corresponding to the sequence 
shown on Fig.  2a which includes a chloroplast coding 
segment (nucleotides 1–135). The 5′RACE results as well 
as the sequence provided from the G. ch transcriptome 

https://web.expasy.org/translate
https://web.expasy.org/translate
https://blast.ncbi.nlm.nih.gov
http://pfam.sanger.ac.uk
http://pfam.sanger.ac.uk
http://www.clustal.org
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analysis indicate the absence of CpcD domain. The cal-
culated pI for the FNR from G. ch was 6.26 and the cal-
culated molecular mass was 33,646.16  Da. The absence 
of the Cpc Domain was confirmed by mass spectrometry, 
in which the mass of a peptide corresponding to the N 
terminal sequence MAAVDKKK (1–8) was detected as 

well as the peptide VPINIFRPK (9–17). The analysis con-
firmed the 100% of the residues reported for the mature 
protein. The Cpc domain was not detected.

Sequence analysis and structural homology model of FNR
The sequence of 298 amino acids for the mature pro-
tein of G. ch in a multiple alignment with FNR from the 
plant Z. mays (2 domains enzyme), from the cyanobac-
teria Synechococcus sp. (three domains enzyme) and 
Anabaena (three domains enzyme, the third domain is 
not shown in the alignment), from the red algae Pyropia 
yezoensis and Chondrus crispus, is presented on Fig. 2b. 
Both cyanobacterial FNR present an N-terminal CpcD 
domain, which is absent in Z. mays and red algae FNRs. 
The alignment analysis on Fig.  2b shows the presence 
of the FAD and NADP+ binding domains, a signature 
for the FNR family. The residues indicated as belonging 
to NADP+ and FAD binding domains in the alignment 
are also conserved in most of the sequences of FNR; 
the corresponding motifs in G. ch are: 71–84 (RLYSIA) 
and 117–121 (GVCS) for the FAD binding region and 
194–196 (GVP) and 225–227 (SRE) for the binding of 
NADP+. To be able to capture electrons from Fd, FNR 
forms a ternary complex that includes NADP+. In this 
complex some residues, such as (KPHK) in Synechoc-
occus sp. (residues 74–77 in G. ch FNR), have been also 
reported to interact with Fd [47]. The phylogenetic analy-
sis produced the tree shown in Fig. 3, in which 4 mono-
phyletic clades of FNR sequences are clearly detected: 
cyanobacteria, plant leaves, plant roots, and red algae, in 
which the G. ch sequence of FNR is included. To build a 
model for the enzyme of G. ch, Modeller v.9.13 was used 
with the templates mentioned previously. The model 
proposed for FNR, shown on Fig. 4a, was stereochemis-
try and energetically stable. It shows two domains that 
have been described for plants FNR a: the FAD binding 
domain, formed by six antiparallel β strands organized 
in a β-barrel with a greek-key topology, that provides the 
backbone for the binding of the FAD molecule with the 
isoalloxazine ring located between the two domains, and 
b: the NADP+ binding domain, formed by three-layer 
sandwich α/β/α with a Rossmann-like topology and a 
parallel five membered β sheet stabilized by six helices 
[48]. As it was reported for other FNRs, C-terminal Y 
(306 in the alignment shown in Fig. 2b in G. ch), is part of 
the binding site and it has been proposed that it occupies 
the nicotinamide catalytic binding site in the free enzyme 
[49, 50]. The binding sites are presented in Fig. 4b, c as 
observed in the molecular model. The highlighted resi-
dues in the alignment (Fig. 2b) are labeled in Fig. 4b, c. 
Most of the residues forming the FAD and NADP+ bind-
ing site are conserved and occupy similar positions in the 
FNR structures.

Fig. 1  a Native PAGE of the purified phycobilisome, lane 1: phycobili‑
some enriched fraction, lane 2: phycobilisome enriched fraction after 
diaphorase assay in the gel, b SDS PAGE of the PBS enriched fraction, 
FNR is indicated by an arrow. c Western blot for detection of FNR

Table 1  Kinetic constants for FNR in PBSs and in the solu-
ble extract of G. ch

The same procedure was used to determine the kinetic constants for the semi 
purified enzyme from the soluble extract and for the enzyme that co-purified 
with phycobilisomes
a  Protein concentration was determined by densitometry in SDS polyacrylamide 
gels using bovine serum albumin (BSA) (Sigma-Aldrich) as standard

Constants FNRPBS FNRSOL

Km (μM) 12.5 ± 1.8 16.3 ± 0.3

kcat (s
−1)a 86 56.1

Catalytic efficiency (μM s−1) 6.9 3.4
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The co‑substrate, ferredoxin
Information from transcriptome assembly produce two 
sequences identified as Fd (FdL =  large ferredoxin, and 
FdS = short ferredoxin); both shared the motif CX5CX-
2CX29C, corresponding to plant Fds [51] and they are 
41% identical. The translated sequences are shown on 
Fig.  5. The sequence for FdS was not found complete 
in the transcriptome but from its high identity with Z. 
mays Fd (79%) and Anabaena Fds (71%), it is reasonable 
to propose it corresponds to a short plant ferredoxin of 
99 amino acids. FdL also belongs to the family of plants 
ferredoxins and has 105 amino acid residues.

Structural homology model for FdS, and the complex FNR/
FdS
In order to review the interaction surfaces in the pro-
tein complex, our analysis also included the study of the 
selected FNR partner FdS, which shares 79 and 71% iden-
tity with Fds present in the complexes FNR/Fd reported 
at the Protein Data Bank from Z. Mays (PDB code: 
1GAQ) [38] and Anabaena (PDB code: 1EWY) [37], 
respectively (Fig. 5b). FdL shares only 29 and 36% identity 
with Fd from the sequences in the complexes reported 
for Z. Maize and Anabaena respectively. Thus, FdS was 
chosen as an adequate partner for FNR.

Fig. 2  a Nucleotide sequence of the gene identified for FNR of Gracilaria chilensis. Nucleotides 1–135 (bold letters) codify for a chloroplastide transit 
signal. b Translated sequence of the G. ch mature protein, from amino acid 1. A sequence alignment with FNR from Zea mays, Pyropia yezoensis, 
Chondrus crispus, Synechococcus sp. and Anabaena sp.* is also shown. In Synechococcus, the sequence for a PBS binding third domain is shown (resi‑
dues – 1 to − 80). The NADP and FAD binding domains are indicated by arrows, the conserved residues for the binding of co-factor and substrate 
are also shown in blue squares and red squares for FAD and NADP binding residues respectively.Amino acid residues involved in the interaction 
with ferredoxin are also shown. *The third domain for Anabaena sp. is not shown for the clarity of the alignment. Only the common two domains 
present in the structural complex (1ewy) are shown
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A molecular model for FdS is shown Fig. 4c as a part-
ner for FNR. The model for FdS presents three helical 
regions (H1: I25–D32; H2: D67–E71; H3: E93–Y96) that 
flank the interaction surface and three beta strands (SA: 
A48–S54; SB: F74–L76, SC: T87–A89), which seems to 
contribute to the hydrophobic steadiness around the 
2F–2S cluster. The cysteines that maintain the clus-
ter in the correct position are C40, C45, C48 and C78, 
following the numbering in the structural alignment 
showed in Fig. 5b. The secondary structure described in 
FdS supports a less structured region facing the inter-
face with FNR. The essential amino acid residues for the 
activity have been reported as S46, F 64 and E93 in Ana-
baena Fd [38], these residues are also present in equiv-
alent positions in G. ch FdS, as well as in Z. mays, in 
which F64 is replaced by Y64 [37] performing an identi-
cal function.

The high ranked interaction model obtained with Clus-
pro [44] for the partners FNR and FdS is shown on Fig. 4c, 
d. The model was analyzed with PISA [44] revealing that 
10.5% of FNR residues and 37.3% of FdS residues are 
involved in the interaction surface corresponding to 865 

and 980 Å2 respectively. The interaction shows that elec-
trostatic interactions are important for the stabilization 
of the complex as they are in the complexes reported for 
Zea mays and Anabaena (PDB codes: 1GAQ, 1EWY) [37, 
38]. The interacting model shows that F64 in the hydro-
phobic core is close to the FeS cluster and to the isoallox-
azine ring of the cofactor FAD. It has been described that 
an aromatic residue in that position is important for the 
stability of the hydrophobic core, which is also formed by 
I74, L76, and V133 in FNR. The distance between the C8 
methyl of FAD and the FeS cluster is 7.4 Å which corre-
sponds fairly well with the distances found in 1GAQ and 
1 EWY. This distance is consistent with the evidence that 
suggest that C8 is involved in the energy transfer.

Discussion
Algae and cyanobacteria depend on their light harvest-
ing systems to survive. Phycobilisomes are the princi-
pal auxiliary light harvesting protein complexes in these 
organisms. The analysis of PBS had revealed previously 
the presence of FNR in the proximity of PBS and PSI in 
Synechococcus [15]. FNR has been extensively studied in 

Fig. 3  Unrooted phylogenetic tree built using the sequences 
of Gracilaria chilensis (Rhodophyta, eukaryote) Chondrus crispus 
(Rhodophyta, eukaryote), Pyropia yezoensis (Rhodophyta, eukaryote), 
Cyanidium caldarium (Rhodophyta, eukaryote), Cyanophora paradoxa 
(Glaucophyta, eukaryote), Thermosynechococcus elongates (Cyanobac‑
teria, prokaryote), Fremyella diplosiphon (Cyanobacteria, prokaryote), 
Anabaena variabilis (Cyanobacteria, prokaryote), Synechococcus elon-
gates (Cyanobacteria, prokaryote), Arthrospira platensis (Cyanobacte‑
ria, prokaryote), Chlamydomonas reinhardtii (Chlorophyta, eukaryote), 
Nicotiana tabacum (Magnoliophyta, eukaryote), Pisum sativum 
(Anthophyta, eukaryote), Arabidopsis thaliana (Tracheophyta, eukary‑
ote), Zea mays (Magnoliophyta, eukaryote), Oryza sativa (Magnolio‑
phyta, eukaryote), and Spinacia oleracea (Streptophyta, eukaryote). 
Letters in parenthesis indicate leaf (L) or root (R) isoforms

Fig. 4  a Comparative model of ferredoxin NADP+ reductase from 
Gracilaria chilensis. Secondary structures are shown by arrows (β 
strands) and cylinders (α helices); FAD is shown as orange sticks and 
NADP as purple sticks. b Close up of the residues involved in the 
NADP+ binding site, c close up of the residues involved in the FAD 
binding site. d Docking model of FNR (grey surface), showing the 
two co-substrates, NADP+ and ferredoxin, the co-factor FAD and the 
2[FeS] cluster. e Close-up of the complex showing residues of the 
interface included in the text
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plants, but not so frequently in eukaryotic alga. In plants 
and cyanobacteria, FNR contains at least two domains: 
the FAD binding domain and the NADP binding domain 
[28]. In cyanobacteria, an additional domain has been 
described, whose sequence is homologous to a PBS linker 
(CpcD), suggesting a role of PBS binding domain. In the 
red alga Gracilaria chilensis, we expected to find a simi-
lar domain considering that FNR activity was detected 
in purified phycobilisomes, as well as in soluble extracts 
(FNRSOL) [10]. However, the detected FNR had a molec-
ular weight of 34,000  Da, which accounts only for the 
FAD and NADP+ binding domains. The phylogenetic 
tree shown on Fig. 3 indicates a closer proximity of FNR 
from G. ch with FNR from leaves in plants (FNRL) than 
with those from cyanobacteria. This could be related to 
absence of the third domain.

The kinetic characterization performed with FNRPBS 
present in PBS enriched fractions, at high salt concen-
tration in order to avoid PBS dissociation, showed also 
similarity with two domains FNR from plants. The Km

PBS 
for NADPH was 12.5 μM, similar to the Km

Sol = 16.3 μM 
obtained for the FNR purified previously from solu-
ble extract in our laboratory. In addition, the kcat values 
in both samples are similar. These values agree with Km 
reported for two domains FNR in general and with leaves 
FNR [52, 53]. It has been also reported that the associa-
tion of the CpcD domain in Synechocystis FNR with Phy-
cocyanin, does not change the catalytic efficiency [54]. 
Nevertheless, in that study as well as in ours, no other 
components of the phycobilisome were considered [55]. 
The molecular weight (MW) suggests the absence of the 
CpcD domain.

To address the possibility that a 3 domain protein could 
exist temporarily, we looked for the nucleotide sequence 
of the gen in total DNA. To date, only one gene that codi-
fies for FNR (petH) has been identified in eukaryotes and 
cyanobacteria and it has been proposed that MW variants 
are a product of proteolytic cleavage of cpcD domain or 
different reading frames [56]. To design the primers to 
clone the gen in the G. ch genome, a bioinformatic study 
was performed using the chloroplast DNA information 
corresponding to an EST library for Gracilaria tenuistipi-
tata [57]. This sequence did not contain the cpcD domain 
as reported for Porphyra yezoensis by other authors [58]. 
Actually, the G. ch FNR amino acid translated sequence 
showed more similarity with FNR present in plants leaves 
than FNR from roots and Cyanobacteria, as shown by a 
Bayesian analysis (Fig.  3). It has been proposed that the 
presence of the CpcD domain of FNR associated to PBS 
in cyanobacteria would help the location of the enzyme 
in the vicinity of PSI to capture electrons from Fd, nev-
ertheless if this function occurs also in G. ch FNR, the 
mechanism for the association of FNR to PBS should be 
different.

As described in results, the transcriptome analysis 
detected two Fd sequences, that we called FdS and FdL. 
Both belong to plants Fds type [51]. FdS showed high-
est identity with the two ferredoxins in the complexes 
FNR/Fd reported in the protein data bank, so we use 
FdS as co-substrate for FNR. Considering all the previ-
ous information, and using the sequence just reported, 
the optimized model of FNR satisfied all the energetic 
and stereo-chemical requirements, and it accommodated 
well the FAD and NADP+ binding sites; the amino acid 

Fig. 5  Sequences of ferredoxins as detected in the transcriptome of Gracilaria chilensis. a Alignment of the FdS with FdL. b Sequence alignment 
among FdS and ferredoxins from Z. mays (1gaq) and Anabaena sp. (1ewy). Only the identities are shown as (*), the cysteines involved in the binding 
of the FeS center are displayed in red
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residues that are important for the function were all pre-
sent in the model. This model and the model obtained for 
FdS from G. ch were used to build an interaction model 
whose architecture is, in general, very similar to the three 
dimensional structures reported for the complexes: the 
two domains FNR/Fd for Z. mays and Anabaena (with-
out considering the PBS binding domain). The important 
residues for the activity, for the binding of the co-factor 
FAD and the substrates NADP and ferredoxin, are all pre-
sent and in the correct geometry to perform the function.

In summary, FNR from Gracilaria chilensis shows high 
similarity with two domains enzymes from plants and red 
alga. There is a possibility that FNR could be associated 
to phycobilisomes, which has been described for Synech-
ocystis (three domains enzyme) [54]. On the other hand, 
the possibility of interaction of FNR with the chloro-
plastidial membrane anchor proteins Tic62 [59] or Trol, 
a rhodanase like protein, responsible for the docking of 
FNR [60], as it has been found in Arabidopsis, should not 
be discarded; recent data show that Trol is necessary to 
the dynamic recruitment of FNR to membranes [61].

This and other possibilities can account for the reduc-
tase activity detected for FNRSOL and FNRPBS. Phycobili-
somes function is to harvest and transfer energy towards 
photosystems, function that also generate redox species 
that also need to be eliminated for protection of the light 
dependent processes, so it is possible that besides its 
binding to FdS, FNR could be associated to different part-
ners such flavodoxins or other oxidoreductases.

Conclusions
The nucleotide sequence for one FNR gene from G. ch, 
was sequenced and translated to a protein of 33,646 Da. 
Sequence analysis identified a FAD and a NADP+ bind-
ing domain, as well as a chloroplast signal sequence. 
FNR from G. ch lacked the PBS binding domain, which 
is present in some cyanobacteria. Transcriptome analy-
sis of G. ch revealed the presence of two Fds; FdL (large) 
and FdS (short), sharing the motif CX5CX2CX29X. The 
sequences and the structural analysis reported here, indi-
cate that the most probable partner for FNR in G. ch is 
FdS. The interaction model produced is consistent with 
functional properties reported for FNR in plants leaves.
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