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e utility of mass spectrometry-(MS-) based proteomic platforms and their clinical applications have become an emerging �eld
in proteomics in recent years. Owing to its selectivity and sensitivity, MS has become a key technological platform in proteomic
research. Using this platform, a large number of potential biomarker candidates for speci�c diseases have been reported. However,
due to lack of validation, none has been approved for use in clinical settings by the Food andDrugAdministration (FDA). Successful
candidate veri�cation and validation will facilitate the development of potential biomarkers, leading to better strategies for disease
diagnostics, prognostics, and treatment.With the recent new developments inmass spectrometers, high sensitivity, high resolution,
and high mass accuracy can be achieved. is greatly enhances the capabilities of protein biomarker validation. In this paper, we
describe and discuss recent developments and applications of targeted proteomics methods for biomarker validation.

1. Introduction

Recently, advanced proteomics technology and instrumen-
tations has allowed for the generation of more than a
thousand candidate biomarkers from the pro�ling of com-
plex biological samples. Most of these proteins were from
under powered studies or pooled samples that had a large
number of hypotheses being tested in similar conditions.
Protein biomarkers have great potential to improve diagnosis,
guide targeted therapy, and monitor therapeutic response
across a wide range of diseases [1]. Mass spectrometry-
based proteomics has become a powerful tool for biomarker
discovery and validation in recent years [2–4]. However, to
date, no protein biomarker identi�ed using proteomics has
been introduced into clinical use [5–9]. Although “omics”
technologies have revolutionized the discovery of candidate
biomarkers, several major technological limitations, includ-
ing sensitivity, accuracy, and reproducibility, have hindered
the application of proteomics as a platform for biomarker
research. Discovery proteomics has enabled the identi�cation
of hundreds of biomarker candidates in many disease types,
but the lack of well-established methods for validation of the
biomarker candidates involving a large number of clinical
samples is blamed for the low yield of clinically useful bio-
markers [10–12]. e linkage between new technological

platforms and the discovery of truly disease-related biomark-
ers needs to be established before moving candidate protein
biomarkers toward clinical implementation. Recent advances
in mass spectrometry and bioinformatics now enable con-
struction of a comprehensive biomarker pipeline from six
essential process components: candidate discovery, quali-
�cation, veri�cation, assay development and optimization,
candidate validation, and commercialization.

Targeted proteomics has emerged as a promising high-
throughput platform for biomarker candidate validation, as
well as systems biology applications. Centered on selected
reaction monitoring (SRM) mass spectrometry, quantitative
targeted proteomics has been used in the veri�cation and
validation of discovery data. SRM or Multiple Reaction
Monitoring (MRM) is a target quanti�cation technology with
greatest selectivity (speci�city) routinely performed on either
a triple-quad or an ion-trap mass spectrometry. It has been
widely used in small molecule quanti�cation and research
for decades [13]. It isolates a selected precursor ion in the
�rst quadrupole (Q1), produces product ions by collision-
induced dissociation (CID) in Q2, and �lters one or multiple
prede�ned product ions in Q3. e ion count of the product
ion(s) in Q3 represents the amount of the targets. For the
ion trap instrument, Q1 function in the triple-quad can be
mimicked with maximum sensitivity by enabling injection
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waveforms in the tune �le of the ion trap (e.g., LTQ). e
target selection by two unique signatures from Q1 and Q3
and chromatographic separation create a great selectivity
nature [14]. SRM technical details and target peptide/protein
quanti�cation guidelines are well documented [15, 16].

Many biomarker discovery studies have been performed
using human biological �uids, because it is relatively easy
to access and has a high potential for application to clinical
research. High abundant protein removal and multiple target
enrichment techniques were employed to achieve low abun-
dant biomarker candidate quanti�cation. Without additional
sample enrichment or fractionation, most advanced triple-
quad or ion-trap mass spectrometry alone offer a limit of
quantitation (LOQ) down to the high ng/mL range; however,
many clinically important biomarkers are in the low ng/mL
range in the blood. Since sensitivity is one of the challenges
for SRM-based assays, lots of efforts have been focused on
hardware development and target enrichment techniques
to improve the SRM assay sensitivity. Field asymmetric
ion mobility spectrometry (FAIMS) increased sensitivity via
improving the signal-to-noise ratio, and it achieved 1 nM of
standard peptide in rat plasma [17]. e combination of a
multicapillary inlet and dual funnel ion channel technology
reached 20- to 150-fold intensity improvement from regular
SRM [18]. e multicapillary inlet transfers signi�cantly
more ions to the mass spectrometry, and the dual funnel ion
channel captures, focuses, and transfers ions more efficiently
to achieve high sensitivity [18]. SRM3 in hybrid mass spec-
trometry also lowered limit of detection (LOD) to 1.5 ng/mL
in one application, and it still has potential to gain more
sensitivity by capturing only one �ltered ion with the trap
[19].

Although many advanced technologies are available,
none of the single technology platforms can cover all of
the possible protein targets at once. is paper provides

a decision tree (Figure 1) to choose the proper tools and
technologies for protein/peptide target quanti�cation to take
advantage of each method.

2. Are There Any Available Assays
for the Target(s)?

Immunoassays have been used as the gold standard for
decades to measure speci�c protein/peptide targets from
serum/plasma, tissue, or proximal �uids [20]. If the validated
antibody-based assay is available, it may still be the �rst
option for target protein quanti�cation due to its high sensi-
tivity, high throughput, and cost effective nature. It typically
requires a pair of well characterized antibodies, and most of
the commercially available immunoassays follow the FDA’s
bioanalytical method development and validation guideline
[21]. Almost 90 of the FDA-approved immunoassays are
readily available, and the number is over 200 if all clinical
protein tests are included [22]. Currently, they cover less
than 1% of the total human proteome, but many research
groups are actively developing new assays to meet important
medical needs.While antibody-based assaysmost commonly
use the monoplex assay format, multiplexed immunoassays
have also been adopted [23–26]. ere are planar assays and
suspension microsphere assays. Only few multiplexed assays
are currently approved by the FDA [27, 28]; however, other
multiplexed immunoassays are also available for diagnostics
and research purposes [29, 30].

Current immunoassay platforms have a certain intrinsic
limitation because of the existence of interfering substances,
such as autoantibodies of the target and close relatives, which
negatively affects clinical performance [31, 32]. To overcome
autoantibody interference, Anderson et al. implemented
the Stable Isotope Standards and Capture by Anti-Peptide
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T 1: e advantages, challenges, and applications of each target protein quanti�cation technique.

Advantages Challenges Applications

SRM/MRM-based assays

(i) High selectivity
(ii) Low development cost
(iii) Can be developed rapidly
(iv) Multiplex possibility
(v) Distinguish close related targets
(vi) Measure low or nonimmunogenic
targets

(i) Low sensitivity
(ii) Not easy to standardize (multiple
efforts in progress)
(iii) Complex sample preparation
(iv) High instrument cost
(v) Relatively low throughput

(i) Relatively high abundant
targets without antibody for
initial analytical validation
(ii) Small peptide targets
(iii) Low or nonimmunogenic
targets

ELISA, immunoassays

(i) High sensitivity
(ii) Low operating cost
(iii) No or simple sample preparation
(iv) Easy to standardize and distribute
(v) High throughput
(vi) Automation

(i) Development cost is high
(ii) Long timeframe to acquire a good
antibody
(iii) Hook-effects
(iv) Highly challenging on PTM
(v) Very hard to deal with
low-immunogenic target
(vi) Cross-reactivity

(i) Clinical applications when
good reagents are available
(ii) Low abundant targets

Immuno-mass
spectrometry

(i) High selectivity
(ii) High sensitivity
(iii) Multiplex possibility
(iv) Distinguish close related targets

(i) Still requires at least one
high-affinity antibody and an
expensive instrumentation

(i) Low abundant target and at
least one high affinity antibody
available
(ii) Undistinguishable by
antibody

Antibodies (SISCAPA) technique (Figure 2) [33]. (this tech-
nique will be discussed further in a later section) in a clin-
ical laboratory environment for the measurement of serum
thyroglobulin [34]. To distinguish close relative species,
Niederko�er et al. used mass spectrometry immunoassay
(MSIA) tips and matrix-assisted laser desorption/ionisation-
time of �ight (MALDI-T�F) for B-type natriuretic peptide
(BNP) measurements from heart failure patients [32]. ey
demonstrated a potential reason of the “natriuretic paradox.”
Unlike MSIA, a commercially available immunoassay cannot
distinguish active and inactive BNP, and it overestimates
BNP’s biological activity [32]. Lopez et al. used the mass
spectrometric immunoassay (MSIA) tips and SRM for the
quanti�cation of parathyroid hormone and variants for the
accurate diagnosis of endocrine disease and osteoporosis
[35]. Advantages, challenges, and possible applications of
each target quanti�cation technique were brie�y summarized
in Table 1.

�� �u�nti����e �� ��ss ��ectrometr�
without Enrichments?

Since quantitative immunoassays are not available for most
proteins [36] or impossible to be applied as immuno-
assay alone in certain cases, liquid chromatography-mass
spectrometry-(LC-MS-) based quanti�cation of biomolecu-
les may be an attractive forward option. Blood has a very
wide dynamic range of protein concentrations. Standard LC-
SRM can generally detect proteins down to the low ug/mL
range. Anderson and Hunter demonstrated that the top 47
proteins can be quanti�ed froma single runwithout extensive
sample enrichment using nano-LC-SRM [37]. Domanski et
al. expanded this idea using a high �ow ultra-high pressure
liquid chromatography (UHPLC or UPLC) SRM and quan-
ti�ed 117 proteins from human plasma without depletion or
enrichment, including 84 known to be cardiovascular disease
biomarkers [38]. Many of these proteins are in the available
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immunoassay list. Since the SRM-based approach is multi-
plexed, it may be a better option when multiple targets have
to be quanti�ed. Since these approaches use plasma without
depletion or enrichment, the assay can be higher throughput
and less expensive. In recent years, almost all high-pressure
liquid chromatography (HPLC) companies have released
their own cutting-edge UPLC system to achieve higher speed
(thus throughput), better resolution, and greater sensitivity.
Higher speed can be attained by pumping at a higher solvent
�ow rate without a�ecting the resolution. Higher resolution
can be achieved by using resin with a smaller particle
size or by using a longer column. Although high-�ow LC
(2.1mm, 400 uL/min) is less sensitive than nano LC (75 um,
300 nL/min), it improves retention time reproducibility and
narrows peak width [38]. Since the plasma amount is not
limited andmore protein can be loaded on the larger column,
the loss of sensitivity can be partially compromised, and it
is potentially a very useful tool to triage high-to-moderate-
abundant biomarker candidates from serum/plasma without
a signi�cant investment on reagents.

Recently, selectivity has been improved even more by
using a hybridmass spectrometer. A triple-quadrupole/linear
ion-trap hybrid instrument has a so-called MRM3 mode
which uses the same Q1 precursor selection and Q2 frag-
mentation; however, it traps the most intense optimally
de�ned product ion in Q3, generates a second generation of
product ions by activation in the linear ion trap, and �lters
prede�ned second generation product ion(s) [19]. Although
MRM3has intrinsic limitations due to its slow duty cycle (300
milliseconds), it has great value in certain applications.Due to
its greater selectivity, MRM3 should be able to quantify close
related peptides from complex mixture with minimal sample
preparation.

4. Is There an Available Antibody for the Target?

Low abundant protein target quanti�cation from plasma
has been challenging because of the very wide dynamic of
protein concentrations in plasma [39, 40]. As described in
the previous section, advancements in mass spectrometry
technology have allowed for the detection of plasma proteins
in the low ng/mL range without enrichment [18, 19]. When
target proteins are low in abundance and an immunoassay
is not available or is problematic, immunoaffinity is likely
the most efficient method for target enrichment due to its
sensitivity and selectivity nature. Immunoaffinity coupled
mass spectrometry-based assays using electrospray ioniza-
tion (ESI) or MALDI have allowed for reliable target protein
quanti�cation from blood samples [4, 32, 35, 41, 42]. Berna
et al. used immuno-SRM to measure one of the drug-
induced cardiotoxicity markers from rat plasma aer initial
enzyme-linked immunosorbent assay (ELISA) development
failed [41]. If the antibody is available for the target protein,
SISCAPA [37, 43] may be another option, and it can even
be multiplexed (Figure 2). is approach uses anti-peptide
antibodies to enrich for the target tryptic signature peptides
from the total tryptic digest. If a stable isotopically labeled
recombinant standard protein is available, it can be spiked

into each sample prior to trypsin treatment. Both heavy and
light peptides are eluted from the immobilized antibody and
quanti�ed by the SRM technique. In this case, the secondary
antibody function is replaced bymass spectrometry. By using
magnetic beads to immobilize the antibody, the enrichment
steps can be handled by robotics, and reproducibility and
throughput will be signi�cantly improved [43].

Immuno-SRM was also applied to quantify certain post-
translational modi�cations such as tyrosine-phosphorylation
and lysine-acetylation [44, 45]. Wolf-Yadlin et al. used an
anti-phosphotyrosine antibody and an immobilized metal
affinity chromatography (IMAC) column as enrichment tools
for phosphopeptide and quanti�ed 222 phosphotyrosine-
containing peptides aer epidermal growth factor (EGF)
stimulation [44]. Drogaris et al. reported quanti�cation of
histone lysine-acetylation aer treatment of histone deacety-
lase inhibitors using immuno-SRM [45]. Unlike ELISA, these
techniques do not require a pair of antibodies. A nonspeci�c
antibody may also be used in the initial enrichment step
if it has high affinity, because mass spectrometry has high
resolving power. e best sensitivity comes from antibody
enrichment, and a great selectivity comes from the SRM
nature. Due to these reasons, SRM may now be recognized
as an alternative technology to ELISA [12]. e marriage
of these two excellent features may be the most powerful
approach in biomarker research.

5. Are There Other Affinity Techniques
Available for the Target?

When targets are in low abundance and no antibody is
available, other affinity enrichment technique coupled with
SRM may need to be considered. Besides phosphoryla-
tion, glycosylation is another important posttranslational
modi�cation (PTM) that potential biomarker candidates
may possess. Glycosylated protein targets were generally
enriched by lectins [46] and hydrazide chemistry without
an antibody [47]. Ahn et al. used a fucose-speci�c aleuria
aurantia lectin coupled with SRM to identify biomarkers for
liver cancer without antibody [46]. N-glycosylated proteins
can be oxidized and captured with hydrazide resin, and
the glycosylated peptides can be released by Peptide N-
Glycosidase F (PNGase) treatment [47]. e eluted peptides
can be measured by MALDI or ESI mass spectrometry [47,
48].

6. Peptide Target

ere are many small peptide biomarker candidates in
biological �uids such as blood, urine, and cerebrospinal �uid
(CSF). To quantify the naturally existing peptides, the inter-
fering substances should be eliminated from the complex
matrix. Unlike large proteins, many peptides have a great
solubility in organic solvent. Organic extraction precipitation
or solid phase extraction (SPE) can be applied to enrichmany
small peptide targets [49]. By using a 96 well plate format,
overall throughput can be increased.ese techniques readily
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achieved detection in the single-digit ng/mL range from
blood samples [50].

7. Two-Dimensional Fractionation

Orthogonal separations prior to MS analysis, such as strong
cation exchange (SCX) fractionation and reverse phase (high
pH)-reverse phase (low pH) extraction achieved low ng/mL
LOQ with acceptable CVs (coefficient of variations) [51, 52].
ese approaches may be useful to prioritize targets when
we deal with tens of different targets at the same time.
ese separations usually utilize immunodepletion of high-
abundant proteins along with extensive 2-dimentional (2-
D) fractionation. Although it allows us to quantify low-
abundant protein targets (∼ng/mL), itmay have some caveats,
such as reducing overall throughput, increasing assay cost,
causing potential false positives due to the complex sample
processing, and causing potential false negatives due to the
removal of interesting targets along with the high abundant
proteins. Unlike the other techniques mentioned in Sections
2 to 6, sample preparation is not easily automated.

e combination of strong cation exchange and reverse
phase chromatography (SCX-RP) is a well-known 2-D pep-
tide separation technique used to separate peptides in com-
plex samples. is combination can be used as online (e.g.,
MudPIT� multidimensional protein identi�cation technol-
ogy) or offline SCX-RP. In addition to its role in reducing
sample complexity, the advantage of SCX-RP is its orthogo-
nal separation of peptides using different biochemical prop-
erties, such as charge states of the peptides, which make it
possible to identify low-abundance proteins. In addition, the
application of SILAC-MRM (MRM of stable isotope label-
ing by/with amino acids in cell culture) or mTRAQ-MRM
(MRM of mTRAQ-labeled peptides) technology increased
the abilities of SCX-RP [53, 54]. For instance, Shah et al.
successfully quanti�ed the ��een-candidate biomarkers in
human cervicovaginal �uid (CVF) samples from term and
preterm birth (PTB) cases [54], and DeSouza et al. applied
SCX-RP with the mTRAQ-MRM technology to quantify
two endometrial cancer biomarkers: pyruvate kinase (PK)
and polymeric immunoglobulin receptor (PIGR) [53]. e

concentration range of PK and PIGR was from less than
5 pmol/mg to several hundreds pmol/mg.

Very recently, a new antibody-free technology, known
as high-pressure, high-resolution separations coupled with
intelligent selection andmultiplexing (PRISM), used to detect
low-abundant proteins in bio�uids was developed by Shi
et al. (Figure 3) [55]. e robustness of this technology is
due to the online SRM monitoring of the heavy isotope-
labeled synthetic peptide internal standards during the �rst-
dimensional separation, which was performed by a reversed-
phase liquid chromatographic enrichment step in the pH
10 mobile phase. Using a tee union, they separated the
�ow streams 1 : 10. While the ma�or eluents were collected
every minute in 96 well plates, a small amount of the
column eluents went to the mass spectrometer for online
SRM monitoring of spiked peptides. With the advantage of
selection power, which they called intelligent selection or
iSelection, they could reduce the number of fractions to be
analyzed in the next step, and also the fractions of interest
were easily multiplexed with other target peptide fractions.
To evaluate the sensitivity of this assay, they spiked prostate-
speci�c antigen (PSA), which was the �rst FDA-approved
prostate cancer marker for early detection of cancer in blood,
into human female serum and measured it accurately and
reproducibly in the 50–100 pg/mL range.

SDS-PAGE-based protein separation is one of the most
popular methods in the �eld of protein biochemistry. Some
of the researchers found that this traditional technique could
be useful in targeted MRM analysis [56, 57]. 1-dimentional
(1-D) SDS-Gel/MRMassay is a powerful but simple approach
for targeted analysis. Samples are separated using 1-D SDS-
PAGE. e protein samples from 1-D SDS-PAGE are well
fractioned and can be easily used to directly target certain
molecular weight proteins. In addition, 1-D SDS-PAGE can
be used simply for enrichment purposes without using
antibodies [57]. Researchers can easily get speci�cally sized
protein samples from the gel slices. With this technology,
Halvey et al. quanti�ed tumor-derived mutant KRAS (v-Ki-
ras-2 Kirsten rat sarcoma viral oncogene) oncoprotein in
�uid from benign pancreatic cysts and pancreatic cancers
at concentrations from 0.08 to 1.1 fmol/𝜇𝜇g protein [57], and
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Ang and Nice detected colorectal cancer-associated proteins
(CCAPs) in the feces from a patient with colorectal cancer
[56].

8. Concluding Remarks

While pharmaceuticals move toward the personalized medi-
cine concept in many disease areas, the development of new
biomarkers and diagnostics are essential for this realization.
Patient strati�cation to show a favorable treatment response
andmonitoring the drug efficacy can be completed with suit-
able biomarkers. To select real biomarker(s) from the large
number of candidates, it is widely acknowledged that optimal
validation tools are required [58]. Many promising target
protein quanti�cation tools are available, and each platform
has its own advantages and challenges (Table 1). ey have
complementary roles in the validation process, especially
when one approach encounters a challenge. e �rst step of
the validation process would be analytical veri�cation. If we
categorize a long list of candidates by the decision tree, it may
be easier tomove forward to �nd clinically useful biomarkers.

Abbreviations

SRM: Selected reaction monitoring
SISCAPA: Stable Isotope Standards and Capture

by Anti-Peptide Antibodies
MSIA: Mass spectrometry immunoassay
IMAC: Immobilized metal affinity

chromatography.
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