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Abstract

Accurate measurement of blood pressure is important because it is a biomarker for cardiovascular 

disease. Diagnostic catheterization is routinely used for pressure acquisition in vessels despite 

being subject to significant measurement errors. To investigate these errors, this study compares 

pressure measurement using two different techniques in vitro and numerical simulations. Pressure 

was acquired in a pulsatile flow phantom using a 6F fluid-filled catheter and a 0.014” pressure 

wire, which is considered the current gold standard. Numerical simulations of the experimental 

set-up with and without a catheter were also performed. Despite the low catheter-to-vessel radius 

ratio, the catheter traces showed a 24% peak systolic pressure overestimation compared to the 

wire. The numerical models replicated this difference and indicated the cause for overestimation 

was the increased flow resistance due to the presence of the catheter. Further, the higher frequency 

pressure oscillations observed in the wire and numerical data were absent in the catheter, resulting 

in an overestimation of the pulse wave velocity with the latter modality. These results show that 

catheter geometry produces significant measurement bias in both the peak pressure and the 

waveform shape even with radius ratios considered acceptable in clinical practice. The wire allows 

for more accurate pressure quantification, in agreement with the numerical model without a 

catheter.

Index Terms

Catheterization; medical signal detection; pressure measurement; in vitro; arterial blood pressure; 
computational fluid dynamics; pulse wave analysis

I Introduction

Accurate measurement of blood pressure in the cardiovascular system provides essential 

information to classify the severity of a variety of diseases. Despite recent advances in 

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/
licenses/by/3.0/.
* Nicolas.smith@kcl.ac.uk. 

Europe PMC Funders Group
Author Manuscript
IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 November 05.

Published in final edited form as:
IEEE Trans Biomed Eng. 2014 June ; 61(6): 1844–1850. doi:10.1109/TBME.2014.2308594.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


noninvasive techniques, catheterization remains the most common method for pressure 

acquisition; however, the measurement accuracy of fluid-filled catheters can be affected by 

technical limitations, including the reflection of the pressure wave at the tip and its distortion 

inside the probe [1], [2]. This latter effect is due to the column of fluid that fills the catheter, 

which is necessary to transmit the pressure to an external transducer [3], [4]: this design can 

give rise to inertial artifacts that alter the shape of the recorded waveform as it travels 

downstream inside the probe. The dynamic response of the catheter-transducer system 

required to reproduce the pressure waveform faithfully is still a matter of concern in clinical 

applications [5]. The catheter typically acts as a low-pass filter that attenuates all frequencies 

above the natural frequency. Further, as the signal frequency approaches the natural 

frequency, the system tends to resonate causing large errors. The catheter must therefore 

have a correct combination of length, diameter and compliance of the material to maximize 

the accuracy in the signal, as these parameters dictate the amount of damping of the system 

and its natural frequency. The properties and dimensions of catheters should be chosen to 

provide the highest possible natural frequency and thus maximize the flat frequency 

response necessary to produce a high-fidelity measurement [6]–[8]. In general, stiffer 

catheters increase the accuracy of the measurement; however, more compliant materials are 

necessary for better navigation in complex anatomies. Another source of disturbance 

impairing the dynamic response is the presence of air bubbles in the lumen, which can 

appear if the catheter is too compliant or too long, or with too small a diameter [5].

The signal distortion has significant potential to compromise important clinical markers that 

can be derived from waveform shape analysis, such as the pulse wave velocity (PWV) and 

the ratio of the stroke volume to the pulse pressure (defined as the difference between the 

peak systolic and diastolic pressure, Ps – Pd). The PWV is the speed at which a pressure 

wave travels along the artery and is measured by recording pressure transients at two 

different locations separated by a known distance Δx: the transit time Δt can then be 

obtained by aligning the foot of the waveforms (foot-to-foot methods), which is calculated 

based on the shape of the systolic upstroke [9]. The PWV, expressed as Δx/Δt, is directly 

related to the square root of the artery stiffness. These parameters have been shown to be 

independent predictors of adverse cardiovascular events in pathologies related to arterial 

stiffening and subsequent hypertensive pressures, increased ventricular afterload and higher 

myocardial oxygen demand [10]–[12]. Abnormal pulse pressure, waveform shape and PWV 

are also factors that can predispose patients with repaired aortic coarctation to increased 

cardiovascular risk [13].

Another potential source of measurement bias is related to a high value of the ratio between 

the catheter and the vessel radius (radius ratio), i.e. a relatively large catheter compared to 

the vessel size. This can generate partial obstruction of the lumen, resulting in pressure 

overestimation in relatively smaller vessels including coronary arteries, peripheral 

circulation and pediatric cases [14], [15]. Analytical flow models of a straight catheterized 

tube have shown that, for radius ratios ranging from 0.3 to 0.7, partial blockage can induce 

an increase in the flow resistance by a factor of 3-33 [16]. In the patient context, such 

artifacts can produce significant discrepancies in the disease evaluation based on catheter 

data. Pressure measurements are also used for risk stratifications in pulmonary hypertension 

patients waiting for heart transplant, where pulmonary vascular resistance, pulmonary artery 
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systolic pressure and transpulmonary pressure gradient are key markers for pre-operative 

assessment [17], [18]. Errors in the measurement of these parameters have important 

diagnostic implications associated with both cost and treatment options.

Pressure wires can, to a significant extent, overcome these drawbacks: the transducer is 

placed directly at the tip and the wire thickness is negligible compared to that of a fluid-

filled catheter. This leads to a significant reduction of both the inertial effects and the 

obstruction artifacts, making this technique the current gold standard for invasive 

measurements [19], [20]. However, despite these results, pressure wires remain less 

commonly applied clinically due to technical complications (i.e. kinking, entangling with 

other intravascular equipment), increased cost and a higher degree of operator training [21].

To understand and quantify the causes of measurement errors, this study compares the 

performance of a 0.014” pressure wire to that of a 6F fluid-filled catheter, which is routinely 

used in the clinic for aortic pressure measurement, during pressure acquisition in a pulsatile 

flow phantom. The in vitro set-up provides a range of physiological systolic pressures 

without adding confounding factors typical of the patient context, such as beat-to-beat 

variability and localized changes in wall stiffness. This allows a close control of the fluid-

dynamic conditions, which can be accurately modeled using computer simulations to 

provide a physical interpretation of the observed discrepancies.

II Material and methods

A Experimental set-up

The pulsatile flow phantom was built to simulate a working ventricle with simplified 

pulmonary and systemic vessels. The different parts forming the experimental rig are shown 

in Fig. 1. The piston pump (1) ejected the fluid contained in a cylindrical chamber (2) 

through a tri-leaflet polyurethane valve (3) into a straight silicone tube (7). At the opposite 

end, a Windkessel system consisting of an adjustable resistance screw (10) and a compliance 

chamber (11) provided the desired afterload. The working fluid was then redirected to the 

ventricle via a venous channel (8) and reservoir (6). The systemic vessel (silicone “aorta”) 

had an inner radius Ri=8mm and an outer radius Ro=9.5mm. The pressure measurements 

were collected over 200mm towards the distal end. More details on the flow phantom setup 

can be found in [22].

A pulsatile flow with 1Hz frequency (corresponding to 60 beats per minute) was supplied by 

the pump using water at room temperature with viscosity μ=0.001002 Pa·s and density 

ρf=998 kg/m3, respectively. Pulsatile flows can be defined by the Reynolds and the 

Womersley number, two dimensionless parameters that express the ratio of inertial to 

viscous force and the pulse frequency in relation to viscous effects, respectively:

Re =
2RiUρ f

μ ; α = Ri =
2π f ρ f

μ

1
2

(1)
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In this experiment, the Reynolds number based on the mean flow velocity U was 1308 and 

the Womersley number 20, hence in the physiological range for a normal aorta [23], [24]. 

The flow phantom was designed to be compatible with Magnetic Resonance Imaging (MRI). 

In addition to direct pressure measurements, phase-contrast MRI (PC-MRI) data were 

acquired in the same catheter configuration of the numerical model in a 3T MR Scanner 

(Achieva, Philips Medical Systems, Best, The Netherlands) using a flow-sensitive gradient 

echo sequence (field of view: 120x120x64 mm3; voxel size: 0.94x0.94x8 mm3; flip angle: 

10°; velocity encoding: 60 cm/s; ratio of repetition time to echo time, TR/TE: 3.59/2.74 ms).

B Direct pressure measurement in vitro

Pressure data was acquired using a 6F Swan Ganz catheter (Boston Scientific, Natick, MA, 

USA) with two lumens, a total length l of 800mm and an external radius Rc of 1mm. Since 

the shape of the fluid-filled lumen was not circular, an internal radius R of 0.32 mm was 

calculated based on the estimated internal area. A Young’s modulus, Ecath, of 32Mpa was 

obtained from torsional and flexural tests carried out at our institution on an MR-compatible 

catheter similar to the one used in the experiment [25]. The undamped natural frequency fn 

and the damping coefficient ζ can be derived from the equations describing the behavior of a 

mass-spring system and are expressed as:

f n = 1
2π

πR2

ρl
dP
dV ; ζ = 4μl

R3 ϱlπ dP
dV

(2)

where μ and ρ are the viscosity and density of the fluid that fills the lumen, respectively. The 

inverse of the compliance, dP/dV, can be related to the Young’s modulus by the following 

equation [26]:

Ecath = dP
dV

2
t

V3

πl (3)

where P is the pressure necessary to displace a volume of fluid V and t is the thickness of the 

catheter annulus enclosing the lumen. The catheter used in the experiment had a natural 

frequency of 40Hz and a damping coefficient of 0.15.

The catheter was inserted in the tube facing the flow direction, resulting in a radius ratio 

(Rc/Ri) of 0.125. It was then progressively pulled back to gauge the pressure at 10 axial 

positions with 20mm intervals. Additional recordings were subsequently performed at the 

same locations using a 0.014” PressureWire Certus (St. Jude Medical, St. Paul, MN, USA), 

which corresponds to a radius of 0.18mm and to a radius ratio of 0.0225. The analogue 

signals from the transducers were acquired at 100Hz via a data acquisition card (USB-6009, 

National Instruments, Austin, TX, USA). The pressure wire was interfaced to the acquisition 

card via a Radi Analyser Xpress (St. Jude Medical, St. Paul, MN, USA). Atmospheric 

pressure in the catheter was set to zero using in-house software and the calibration followed 

a standard procedure using a saline filled sheath. To avoid the appearance of air bubbles the 
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device was carefully flushed. Klee et al [27] presented a method based on the mathematical 

concept of curvature of a signal (defined as the rate at which a curve recedes from its 

tangent) to detect the distortion of the pressure waveform due to air bubbles: a threshold 

value for the sum of the curvatures of 3.85 was found to separate severely distorted signals 

from controls. When this method was applied to our signals, the sum of the curvatures was 

between 6 and 8.7, hence above of this threshold value. The signals were therefore 

considered to be free from air bubbles.

C Numerical models

Two numerical models of the systemic vessel were generated to investigate the differences 

between the two sets of experimental measurements. The first one consisted of just the 

elastic vessel without any measuring probe inserted (catheter or wire). This configuration 

was compared to the vessel with the pressure wire inserted, as this device has a negligible 

radius ratio and thus causes minimal disturbance in the flow field. The second one included 

a coaxial rigid body with the same radius of the catheter and sought to reproduce the flow 

dynamics inside the catheterized vessel. This scenario replicated the in vitro configuration 

with the catheter tip at z=140mm, as shown in Fig. 2. The fluid-structure domain consisted 

of a tetrahedral mesh with approximately 128000 elements for the fluid, coupled to a 

hexahedral mesh with 440 elements for the solid (Fig. 3). In both cases, the silicone tube 

was modeled as an isotropic neo-Hookean material with Young’s modulus Es=384KPa and 

density ρs=1250kg/m3.

D Numerical study

The numerical study has been set up to match the experimental conditions as close as 

possible. Numerical simulations of fluid-structure interaction (FSI) were performed on both 

models using a the finite element software CHeart, which has been previously applied and 

validated in cases of non-linear FSI in physiological flows [28], [29]. The solver is based on 

a coupled fluid-solid algorithm: the solid mechanics is modeled using the quasi-static 

incompressible finite elasticity equations, while the Arbitrary Lagrangian-Eulerian (ALE) 

formulation of the full incompressible Navier-Stokes system is used to solve the fluid 

problem. These sets of equations, combined with the corresponding constraints imposed on 

the boundaries, are discretized and solved using a Galerkin technique. A boundary condition 

based on the pressure wire data was applied to the outlet of the model without a catheter. 

When the catheter was included, the outflow pressure boundary condition was based on the 

catheter traces in the outlet. This was dictated by the necessity to take into account the 

increased resistance due to the reduction of the area that occurs when the catheter is inserted. 

The velocity profile at the inlet of the model with a catheter was derived from the PC-MRI 

data acquired in a two-dimensional slice in the corresponding location. This same inflow 

boundary condition was used for the model without a catheter, since the inlet is sufficiently 

distant from the tip of the catheter to be considered unaffected by blockage effects. Three 

pulsatile cycles were simulated with a time step of 2ms, necessary to ensure the numerical 

stability of the model.
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III Results

A Peak pressure overestimation

The peak systolic pressures from the catheter and the two numerical models are compared to 

the wire data in the bar graph of Fig. 4a. The black bar on the left-hand side shows that a 

peak pressure overestimation of 24% is observed in the catheter data relative to the wire. 

This discrepancy is replicated by the catheterized FSI model, which predicted a peak 

pressure 29% larger than the corresponding wire measurement (Fig. 4a, grey bar). The FSI 

model without a catheter successfully reproduces the wire data, with a maximum 

discrepancy of only 1.5% (Fig. 4a, white bar). The FSI results also show that, in the absence 

of the catheter, the pressure in an axial cross-section perpendicular to the flow direction is 

approximately constant: in the cross-section highlighted in Fig. 4b the pressure at peak 

systole is 106.4 mmHg, with minor fluctuations of +/-0.1 mmHg. When the catheter is 

accounted for in the numerical model, the systolic pressure spatially averaged in a cross-

section at the same location (now corresponding to the tip of the catheter) is 135.5 mmHg as 

shown in Fig. 4c. A region of higher pressure forms around the tip: however, the maximum 

pressure difference between the center and the periphery of the cross-section is not 

significant (1 mmHg), suggesting that this localized disturbance due to the impact of the 

flow against an “obstacle” is not the main factor in the peak pressure overestimation. The 

pulse pressure, Ps – Pd, at this location is 100.86 mmHg, 132.29 mmHg and 101.62 mmHg 

calculated from the wire, the catheter and the numerical results, respectively. The values 

from the wire and the numerical simulations are therefore approximately 76% of the 

corresponding catheter result.

B Waveform shape analysis and pulse wave velocity

The temporal transients of pressure from experimental measurements and numerical 

simulations in two cross-sections, at z=100mm and z=140mm respectively, are reported in 

Fig. 5a-b. The waveforms from the FSI model without a catheter and the wire are in 

agreement; similarly, the curves from the FSI model with a catheter replicate the catheter 

data collected in vitro. In both cases, the maximum discrepancy between the experimental 

measurements and the corresponding numerical models is below 5%.

A Fast Fourier Transform (FFT) analysis of the pressure waveforms reveals a main 

frequency peak of 1 Hz, corresponding to the pulse value of 60 beats per minute (Fig. 5c-d). 

A second, higher frequency is also present in the signals. To increase the resolution of this 

frequency mode, the waveforms have been interpolated using a standard zero-padding 

technique: the plots with magnified axes show that the second peak corresponds to a 

frequency of 5.4 Hz and has similar magnitude in the data from the wire and both the 

numerical models, but is significantly damped in catheter measurements. This frequency 

value is compatible with the oscillation that gives rise to the dicrotic notch in the descending 

part of the pressure waveform observed in Fig. 5a-b. As a result of the higher frequencies 

damping, the dicrotic notch is absent in the signal recorded by the catheter. To better 

understand the consequences of this frequency damping, the pulse wave velocity is derived 

from the direct in vitro measurements (wire and catheter), from the PC-MRI data acquired in 

the scanner and, finally, from the numerical FSI simulations with and without a catheter 
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(Fig. 6). An algorithm based on the foot-to-foot method [9] has been used to calculate the 

transit time of the waveform, Δt, between two locations separated by a distance Δx of 80mm, 

100mm and 120mm. The resulting PWV for each axial length is the average of three values 

corresponding to different locations along the tube of the distance Δx considered. The PWV 

calculated from the catheter data is approximately 3.5 times higher than that obtained from 

wire and PC-MRI data, and FSI simulations. On the longer distance of 120mm, where the 

relative error in the transit time calculation is lower, the FSI model without a catheter, the 

wire and the PC-MRI data indicate a range of PWV of 6.7 to 7.2; the PWV in the FSI model 

with a catheter is approximately 5.4, hence in approximate agreement with the values 

obtained from these modalities. However, this value is considerably lower than that of 19 

from the in vitro catheter traces, despite the similar value of peak systolic pressure in the two 

cases (see Fig. 5a-b).

IV Discussion

This study shows that: 1) catheter measurements can significantly overestimate peak 

pressure even with a moderate radius ratio of 0.125; 2) numerical results reproduced this 

pressure overestimation without the frequency damping of the catheter in vitro; 3) the 

suppression of higher frequencies of pressure in the catheter data results in a PWV 

significantly higher than that from the wire, PC-MRI and numerical data.

Fluid-dynamic principles provide physical explanations for the pressure overestimation in 

the catheter measurements. When the catheter is inserted, the same rate of fluid must flow 

through a narrower duct (annulus). The flow resistance downstream of the tip is thus higher 

than that of a noncatheterized vessel with the same radius. If this increased resistance is 

taken into account in the FSI model, the numerical results reproduce the pressure 

overestimation observed in vitro. Further, the model shows that the radial pressure change in 

the cross-section at the catheter tip is not significant (Fig. 4c). This suggests that, for this 

value of radius ratio, the major determinant of the pressure overestimation is the increased 

flow resistance in the annular region, rather than the artifacts around the tip. An increment in 

the mean flow resistance by a factor of 3 has been reported in analytical flow models with a 

radius ratio of 0.3 as a consequence of partial blockage [16]. The present experiment 

demonstrates that the measurement error is significant even with a lower radius ratio of 

0.125, which is routinely used in the clinic. This is of particular significance in the 

evaluation of pulmonary hypertensive patients waiting for heart transplant based on 

pulmonary artery pressures and vascular resistance, as right heart catheterization typically 

results in radius ratios similar to that of the present study [17]. Elevated systolic pressures in 

the pulmonary artery are associated with high post-operative mortality in this cohort [18] 

and thus an error of over 20% can potentially bias the assessment of the disease severity.

Another consequence of the measurement inaccuracy using fluid-filled catheters that could 

influence clinical decisions comes from the slow dynamic response of this type of probe. As 

described above, the column of fluid in the catheter lumen dampens higher frequencies in 

the signal as it travels along the probe towards the external transducer: the system acts 

consequently as a low-pass filter. The catheter traces recorded in vitro showed a distinct 

absence of higher frequency modes, which were instead present in the wire and in both FSI 
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models (Fig. 5c-d). This frequency damping clearly affects the shape of the measured 

pressure waveforms. Despite being qualitatively similar, the traces from the in vitro catheter 

and from the FSI model with a catheter result in a considerable discrepancy in the position 

of the foot of the waveform and hence in the pulse wave velocity. The main difference 

between the experimental catheter and the corresponding numerical model is the absence of 

the internal column of fluid in the latter, which is responsible for the attenuation of the 

higher frequencies of pressure. Consistently, this frequency damping is only observed in the 

in vitro catheter traces and is not replicated in the numerical model. The subsequent bias in 

the calculation of the PWV is not negligible and can therefore be a confounding factor for 

disease diagnosis in pathologies related to arterial stiffening. Similarly, the absence of the 

dicrotic notch in the catheter signal also has clinical relevance as this parameter is correlated 

with isolated systolic hypertension, which exposes patients to a stroke risk two to four times 

higher than in normotensive subjects [30]. It should however be noted that frequency 

damping is not the only factor that may affect the accuracy of the PWV computation. The 

impedance mismatch due to the insertion of the catheter and the increased downstream 

resistance also play an important role in the wave propagation by inducing a discontinuity of 

conditions. As mentioned previously, the presence of the catheter causes an obstruction 

leading to a decrease of the cross-sectional area. In PWV analysis this corresponds to a 

reflection point, which generates an additional reflected wave that is not present in the PC-

MRI or wire data. This wave, as well as the transmitted wave, is reflected back and forth by 

the inlet and outlet boundary condition and interferes with the original waveform. These 

additional reflections can alter the shape of the measured signal and consequently the PWV, 

resulting in a less accurate estimate of its value. However, the numerical results from the 

model with a catheter suggest that the error in the PWV is mainly related to the frequency 

damping from the internal fluid rather than to the wave reflections.

The optimal level of damping is related to the shape of the waveform and to the heart rate, 

with higher rates and steeper upstrokes requiring higher natural frequencies and damping to 

avoid the risk of resonance during measurement. In clinical applications this level of 

damping is however rarely achieved due to constraints in the length and internal radius of the 

lumen. Underdamping in fluid-filled catheters can result in overestimation of systolic 

pressure [7]. High natural frequencies can nonetheless limit this artifact [3]: in a case 

presented by [5], the arterial pressure measured in a patient using an underdamped system 

with fn=15Hz and ζ=0.15 resulted in approximately an 8% overestimation of the systolic 

pressure compared to the high-fidelity signal measured by a catheter tipped pressure 

transducer. When the natural frequency was increased to 24Hz, however, the high-fidelity 

pressure waveform could be reproduced with minimal distortion. The catheter used in this 

experiment has the same damping coefficient but a higher natural frequency of 40Hz: it is 

thus reasonable to expect that the lumen size and the material properties of the catheter have 

a more limited influence on the observed pressure overestimation of 24%.

Finally, although the experimental and numerical simulations were set up to achieve realistic 

systolic pressure and waveform shape, some limitations should be mentioned. The diastolic 

pressure value is lower than the physiological range and the pulse pressure is consequently 

higher than normal. This is due to a technical constraint in the experimental set-up. As the 

systemic and venous vessel are parallel to each other, the pressure in the compliance 
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chamber had to reduce the velocity of the flow to zero and then accelerate it in the opposite 

direction down the venous return. This posed a restriction on the minimum value of the 

impedance that could be achieved: the diastolic pressure had thus to be lowered to obtain a 

physiological flow profile. However, this scaling of the pressure waveform does not affect 

the PWV calculation, which is only based on the shape of the wave, nor the validity of the 

comparison between the measurement accuracy of the catheter and the wire in the same 

conditions. Further, the flow phantom did not include peripheral vessels and side branches, 

whose impedance is thus not accounted for. The use of a single straight tube instead of a 

more realistic aortic geometry is motivated by the necessity to avoid reproducing anatomical 

features that can introduce more complex fluid dynamics effects and thus hinder the 

identification of the causes of error in the measurements. A major difference between the 

simulations and the in vitro study is that the catheter in the FSI model is rigid and fixed 

coaxially to the aorta, while in the experiment it is flexible, free to fluctuate and therefore 

not concentric. In the controlled settings of the experiment, the oscillations experienced by 

the catheter were nonetheless small and the tip did not touch the wall during measurement. 

Generating a flexible, free to move and fluid-filled FSI model for the catheter was not 

thought necessary since the agreement between the pressures waveforms in the FSI 

simulations and in the in vitro experiment was strong. In this context, it should also be 

stressed that, although considered the gold standard for invasive measurement, the pressure 

wire is more flexible than the catheter and is thus prone to experience larger fluctuations that 

might affect the reproducibility of the measurements. As for the catheter, however, this is 

more likely to happen in complex anatomies and physiological conditions. In this in vitro 
study, pressure traces were recorded twice at each location and showed negligible variability.

In conclusion, the choice of the most suitable catheter should be based upon considerations 

of the radius ratio and the frequency response. Decreasing the diameter size to avoid 

excessive blockage of the vessel can affect the natural frequency of the system; similarly, the 

use of stiffer materials to achieve a high dynamic response can compromise the navigation 

properties and the conformability to complex anatomies. Pressure wires can minimize errors 

in peak systolic pressure and PWV, and provide more accurate measurement in small 

vasculature.
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Fig. 1. 
Diagram of the pulsatile flow phantom.
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Fig. 2. 
Catheter position in the numerical model. The flow is aligned with the positive z axis.
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Fig. 3. 
Tetrahedral mesh (fluid domain) and hexahedral mesh (solid domain) in the numerical FSI 

model with a catheter.
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Fig. 4. 
(a) Percentage difference in the measured peak systolic pressure between wire and catheter 

in vitro, and wire and FSI models. Pressure isocontrours in a cross-section of the FSI model 

without (b) and with a catheter (c).
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Fig. 5. 
Pressure waveforms from catheter, wire and FSI simulations in two cross-sections at 

z=100mm (a) and z =140 mm (b). Single-sided amplitude spectrum of the frequencies in the 

pressure signals at z =100 mm (c) and z =140 mm (d).
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Fig. 6. 
Pulse wave velocity from wire, catheter, PC-MRI and numerical signals over three distances 

Δx.
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