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Abstract: (1) Background: Parkinson’s disease (PD) is a neurodegenerative disorder represented by
the progressive loss of dopamine-producing neurons, it decreases the individual’s motor functions
and affects the execution of movements. There is a real need to include quantitative techniques and
reliable methods to assess the evolution of PD. (2) Methods: This cross-sectional study assessed the
variability of wrist RUD (radial and ulnar deviation) and FE (flexion and extension) movements
measured by two pairs of capacitive sensors (PS25454 EPIC). The hypothesis was that PD patients
have less variability in wrist movement execution than healthy individuals. The data was collected
from 29 participants (age: 62.13 ± 9.7) with PD and 29 healthy individuals (60.70 ± 8). Subjects
performed the experimental tasks at normal and fast speeds. Six features that captured the am-
plitude of the hand movements around two axes were estimated from the collected signals. (3)
Results: The movement variability was greater for healthy individuals than for PD patients (p < 0.05).
(4) Conclusion: The low variability seen in the PD group may indicate they execute wrist RUD and
FE in a more restricted way. The variability analysis proposed here could be used as an indicator of
patient progress in therapeutic programs and required changes in medication dosage.

Keywords: Parkinson’s disease; wrist movement; capacitive sensors; variability; quantitative
evaluation; principal component analysis

1. Introduction

Parkinson’s disease (PD) is a condition of the central nervous system (CNS), which
affects the basal ganglia, causing progressive loss of dopamine-producing neurons in
the substantia nigra [1,2]. This age-associated neurodegenerative disorder can lead to
significant motor and non-motor disability [3].

PD is the second most prevalent neurological disorder. It affects individuals of different
ages and epidemiological studies highlight an incidence of 17 cases per 100,000 people
per year, with a higher incidence in men [4]. The reports of PD have shown an increased
concern as it affects the patient’s quality of life [5,6].

A Parkinson’s Disease diagnosis is purely clinical and relies on medical history and
neurological evaluation [7]. Clinically, the disease is characterized by four cardinal signs,
i.e., bradykinesia, tremor, rigidity, and postural instability. Motor and non-motor dys-
functions are usually common during all stages of PD, although impairments become
increasingly prevalent and obvious over the course of the disease [8]. The manifestations of
Parkinson’s disease are diverse and occur in a heterogeneous way, with motor dysfunctions
as the most well-known complications. Thus, reliable methods are needed to diagnose and
assess the evolution of PD [9].

The need for a common and consistent method for the evaluation of PD led to the
creation of the Unified Parkinson’s Disease Rating Scale (UPDRS) in 1984 [10]. The Interna-
tional Parkinson and Movement Disorder Society (MDS) revised and updated the scale in
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2008, and it is now known as MDS-UPDRS [10,11]. The MDS-UPDRS has been the most
widely used clinical scale for PD diagnosis and follow-up [12]. Since the last update of
MDS-UPDRS, several technological advancements have been developed to aid in obtaining
more precise information from patients with PD, including the addition of quantitative
measures using various types of signal processing methods and sensors. Electromyogra-
phy (EMG), electroencephalography (EEG), and inertial sensors are examples of typical
quantitative measures [13–15], but these approaches require careful preparation of the skin,
can cause skin irritation, and may not be used in situations with a high risk of contact
contamination [7]. The capacitive measurement is an alternative solution for data collection
without requiring contact with the skin and without restricting movement [16].

Correct monitoring is essential for Parkinson’s disease patients receiving appropri-
ate treatment and follow-up. Qualitative approaches are typically used to assess motor
dysfunctions in PD, for example, Part III of the MDS-UPDRS is retained as “motor exami-
nation”, which requires the training and experience of a health professional in a clinical
setting. In this sense, a quantitative method would help to improve the evaluation of the in-
dividual, leading to more detailed information about the execution of a specific movement.
Quantitative assessments provide more complete data but should be used in parallel with
the clinical assessment. Quantitative evaluations are more useful for evaluating treatment
strategies or describing movement than for diagnosing and preventing disease [9].

Among the quantitative measures, we can highlight the movement’s variability as the
ability of the motor system to performing under a wide range of tasks and environmental
constraints [17]. Literature defines two types of variability, coordinative and ‘end-point’,
and they have opposing interpretations. Coordinative variability is defined as the variability
of the interaction between segments or joints, whereas ‘end-point’ variability is defined
as the variability of the product of a movement [18]. In 2002, a hypothesis put forward
by Lipsitz [19] suggested that a lack of variability may be a characteristic of dysfunction
in a performance, frailty, or disease. On the other hand, Hausdorff et al. [20] concluded
that under usual walking conditions, step time variability is larger in a patient with PD,
compared to healthy subjects. Hamill et al. [18] disclosed that the two types of variability
are different, have different interpretations, and are related when goal-directed movements
are examined.

Studies highlight the beneficial and adaptive aspects of variability in system function.
From this perspective, increased variability is no longer rigidly associated with decreased
skill levels, injury, and health [18,19]. In a clinical context, variability can be a source
of information for the discrimination of patterns and the characterization of differences
among studied populations [21]. Variability can be quantified using linear measures, such
as magnitude variability, e.g., the average standard deviation along strides [22,23], or
nonlinear measures, such as entropy that quantifies the structure of the temporal variability
or regularity of a time series [23,24].

Several movements related to different joints and body segments can be used for
objective measurements in people with PD, such as hip, knee, ankle, elbow, trunk, hand,
finger, neck, and wrist movements [14,15,25].

Little is known about how wrist flexion and extension (FE) performance differs be-
tween people with Parkinson’s disease and healthy people, and how these movements
affect other fine motor control tasks [26–28]. Wrist FE movements are acknowledged to
play a significant role in the execution of several daily activities, such as taking a glass to
the mouth, pouring from a pitcher, cutting with a knife, taking a fork to the mouth, using a
telephone, reading a newspaper, and rising from a chair [26]. According to a review [29],
wrist FE is an important activity for the assessment of motor signs in people with PD, even
though it is not included in the MDS-UPDRS. From wrist FE, it is possible to estimate speed,
amplitude, hesitations, interruptions, and decreases in the range of wrist motion, which are
the main characteristics considered in the standard clinical evaluation.

Radial-ulnar deviations (RUD) are secondary movements for wrist FE, as well as for
pronation and supination, which are movements present in Part III, motor examination, of
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the MDS-UPDRS [30]. It is known that RUD movements are necessary to achieve optimal
flexion/extension and pronation/supination movements [31].

In most cases, PD initially affects the upper limbs of the individual [32]. Since the
wrist is the joint responsible for coordinating hand movements, it has a direct impact on
the performance of several important daily activities. Considering the subjectivity of hand
movement assessment in Parkinson’s disease patients, the limitations of clinical scales, and
the difficulties in performing a quantitative test in an appropriate laboratory, we propose
a variability assessment of the hand movement execution in Parkinson’s disease patients
using two pairs of non-contact capacitive sensors.

The need for this work stems from the fact that Parkinson’s disease still lacks a
standard exam for diagnosis, follow-up, and treatment, and there is no agreement on
whether it is better to have a single index for each parkinsonian symptom or if a set of
variables is preferable [21]. Despite much research into the execution of hand movements in
Parkinson’s disease, there are still problems to be solved and opportunities for innovation.

The proposed study is an objective evaluation of hand movement execution in Parkin-
son’s disease. The MDS-UPDRS has low internal consistency and agreement among
evaluators for hand functions compared to full-scale scores [29]. Using an objective and
quantitative evaluation, such as wrist movement assessment using capacitive sensors, could
overcome these limitations.

The scale was last updated in 2008, and since then, various signal processing methods
and sensors have been used to collect data from individuals with PD. The capacitive
measure used in this study aims to provide an objective way to assess disease progression
and evaluate care and therapy. Objective evaluation does not replace clinical evaluation
but rather supplements it [9].

Considering that variability can be a source of information for pattern discrimination
and characterization of differences among studied populations and that it refers to the
ability of the motor system to performing in a wide variety of tasks, the goal of this study is
to assess the variability of the wrist radial-ulnar deviation and flexion/extension execution
measured in the electric field created by two pairs of capacitive sensors. The hypothesis is
that people with Parkinson’s disease have less variability in their wrist movement execution
than healthy people.

2. Materials and Methods

The study was conducted according to the guidelines of the Declaration of Helsinki,
and all protocols were approved by the Ethics Committee of the Federal University of
Uberlândia, Brazil. Informed consent was obtained from all subjects involved in the study.

Using two pairs of non-contact capacitive sensors, signals were collected from
29 healthy subjects (HS group, 60.70 ± 8.4 years) and 29 participants with Parkinson’s
disease (PD group, 62.13 ± 9.7 years) [5,33]. Each group consisted of 20 men and nine
women. Following the Shapiro-Wilk test for assessing the normality of the variables (p >
0.05), the Student’s t-test (p > 0.05) confirmed the statistical equality between the mean
ages of the two groups (Table 1). Subjects were evaluated in laboratory research and the
recruitment used a convenience sample.

Table 1. Comparison between the mean age of PD and HS groups.

Group Mean Age Shapiro-Wilk p-Value (t-Test)
PD 62.13 0.4614

0.5547HS 60.70 0.2989

2.1. Sensors

Non-Contact Capacitive (NCC) sensors were used to collect signals. NCC sensors
are capable of measuring perturbations in the electric field induced by dielectric objects,
such as the human body [33,34]. These sensors are based on electric potential sensing
technology (sensor PS25454 EPIC, Plessey semiconductors, UK) and are capacitive sensors
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with ultra-high input resistance (~20 GΩ), input capacitance as low as 15 pF, lower −3 dB
point typically of 0.2 Hz, typical upper −3 dB point of 20 kHz, and size of 10 mm × 10 mm.
These features allow the detection of a disturbance in the electric field and the recognition
of human activities due to the movement of a nearby object such as the hand.

For data collection, a 0.21 m × 0.21 m board with markers represented as targets
(Figure 1) was created to assist the subject during wrist radial-ulnar deviations and flex-
ion/extension; additionally, a laser was placed on the back of the subject’s hand with a
micropore in order to facilitate the performance of experimental tasks. As shown by the
arrows in Figure 1, the four sensors were placed at the four middle edges of a square area
to create a field in which the hand can be inserted. Thus, each pair of sensors defined an
axis, with the two perpendicular axes y (radial-ulnar axis) and z (proximal-distal axis).
The acquisition system with a 2-D array of four NCC sensors PS25454 was validated by
Oliveira et al. [7].
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Figure 1. A 2-dimensional array of NCC sensors. Each sensor pair provides information regarding
motion along the y and z axes, represented by the red arrows. A board with markers was placed in
the background to aid the subject during the execution of experimental tasks. Orange arrows indicate
the location of the four EPIC sensors.

2.2. Tasks

Subjects performed ten tasks, described as follows:
Task 1 (T1)—Relaxed position
Task 2 (T2)—Pose against gravity with the laser pointed at the central region of the

board (Figure 1)
Task 3 (T3)—Radial deviation
Task 4 (T4)—Ulnar deviation
Task 5 (T5)—Wrist flexion
Task 6 (T6)—Wrist extension
Task 7 (T7)—Radial deviation high speed
Task 8 (T8)—Ulnar deviation high speed
Task 9 (T9)—Wrist flexion high speed
Task 10 (T10)—Wrist extension high speed
Subjects completed the tasks while seated. They were instructed to place their hand

in the system and begin the motor task in a relaxed position (T1) for 10 s, then switch to a
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pose against gravity (T2) with the laser pointed at the center of the board for 10 s. Figure 2
shows the flowchart of the study protocol.
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Figure 2. The study protocol shows volunteer allocation in PD and HS groups and presents the data
collection protocol.

Task 1 and task 2 were used solely to familiarize the subject with the signal acquisition
system and were not included in the analyses. In addition, participants performed four
wrist movement tasks, as shown in Figure 3: radial deviation, ulnar deviation, flexion, and
extension. These tasks were used for analysis at normal and fast speeds.
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Figure 3. (a) hand in neutral position; (b) radial deviation; (c) ulnar deviation; (d) flexion and
(e) extension.

Radial and ulnar deviation (T3, T4, T7 e T8) is the turning of the hand in the radial-
ulnar direction (y-axis of the board) on the transverse plane and rotation around the
proximal-distal axis with the following articular range: radial deviation from 0◦ to 15–25◦,
and ulnar deviation from 0◦ to 30–45◦, as shown in the Figure 3b,c. Figure 3d,e demonstrate,
respectively, flexion and extension (T5, T6, T9, and T10) of the wrist as the turning of the
hand in the proximal-distal direction (z-axis of the board) on the coronal plane and rotation
around the radial-ulnar axis, with the following articular range: flexion from 0◦ to 80–90◦

and extension from 0◦ to 70–90◦ [35]. Three trials were conducted to increase the number
of observations, thereby contributing to a more reliable statistical result.

From task 3 to task 6, participants were required to perform the hand movements five
times at normal speed per trial. A beep sounded every 2 s (auditory cue) for the subject to
initiate movement, whereas from task 7 to task 10, they were required to perform the same
movements as quickly as possible [34].

2.3. Signal Processing

Figure 4 shows the sequence for signal processing.
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Figure 4. Flow diagram of signal processing.

2.3.1. Preprocessing

The signals detected by the capacitive sensor contain components of high frequency
that are unrelated to voluntary movement. In order to obtain a waveform that best represents
voluntary movement, it was necessary to eliminate these components. The linear trend of the
signal was removed by fitting a linear model to the time series and then subtracting this trend
from the data. The discrete wavelet transform was then used to decompose the signal into
ten components. The employed wavelet was Daubechies of length 8. The lowest frequency
component was selected as the component representing voluntary movement (Figure 5). The
R packages brainwaver (Basic wavelet analysis of multivariate time series with visualization
and parameterization using graph theory) and pracma (Practical Numerical Math Functions)
were employed in the signal preprocessing stage.
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Figure 5. The graphics show the capacitive signal on the y and z−axis. The original signal is plotted
in gray and the filtered signal, representing the voluntary movement, is plotted in black.

2.3.2. Windowing

The process of windowing was performed based on manual annotations. As shown in
Figure 6, the initial and final times for each task were determined by observing the signal’s
waveform. The dygraphs package in R was used to validate the correctness of the windowing
process, where the function ‘dyShading’ was used to shadow the windowing index, and
the ‘dyAnnotation’ function assisted in the visualization of the extracted features.
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Figure 6 depicts a typical windowed signal for each hand movement task.

2.3.3. Feature Extraction

The features were defined according to previous works [33,36–38], which collected
attributes related to the amplitude of the signal. Based on this, we computed six features
related to the amplitude. Table 2 shows the features used in this work, for I = 1, . . . , n,
where n is the number of observations.

Table 2. Feature description and definition.

Feature Description Definition

F1 MAV mean absolute value
of the vector x MAV =∑n

i=1 |I|
n

F2 RMS root mean square of x RMS =

√
1
n

n
∑

i=1
x2

i

F3 MAVFD
mean of the absolute

values of the first
differences of x

MAVFD = 1
n−1

n−1
∑

i=1
|x i+1 − xi|

F4 MAVFDN

mean of the absolute
values of the first

differences of
normalized x

MAVFDN = 1
n−1

n−1
∑

i=1

|x i+1− xi|−
−
x

σ

F5 MAVSD
mean of the absolute
values of the second

differences of x
MAVSD = 1

n−2

n−2
∑

i=1
|x i+2 − xi|

F6 MAVSDN

mean of the absolute
values of the second

differences of
normalized x

MAVSDN = 1
n−2

n−2
∑

i=1

|x i+2−xi

∣∣∣−−x
σ

All the features were estimated for each task from the PD and HS groups. The variables
were named based on the experimental conditions and feature extraction methods so that
the task, movement execution speed, feature, and axis could be identified.

The tasks were identified as T = {T3, . . . , T10}, the features as F = {F1, . . . , F6} and
the sensors as S = {S1, S2}. For instance, T4F1S1 represents the mean absolute value (F1) of
the windowed capacitive signal during ulnar deviation (T4) along the y axis (S1), whereas
T8F1S2 represents the estimate for the same feature (F1) during the maximum speed of
ulnar deviation (T8) along the z-axis (S2).
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2.3.4. Standardization of Data

Data standardization is fundamental to facilitating and improving the use of data
when comparing different features or physical parameters. Thus, the z-score was used for
standardization of the variable as defined in Equation (1).

z = x−µ
σ (1)

where x is the feature vector and µ and σ, respectively, correspond to the mean and standard
deviation of x. Basically, the z-score measures how far a given value deviates from the
mean in units of standard deviations. In general, this process of converting a raw score to a
standard score is required for the use of multivariate data analysis and machine learning
techniques because the models are often quite sensitive regarding the variances of variables.

2.3.5. Bootstrap

For each variable, the overall mean coefficient of variability (CV) and the overall mean
standard error (σCV) were estimated for each individual of the group by means of the
use of the Bootstrap method for 1000 samples with replacement [39,40]. The coefficient of
variability was calculated as follows in Equation (2):

CV =
σ

µ
(2)

where σ is the standard deviation and µ is the mean of the samples of an individual in
a group.

2.3.6. Principal Component Analysis

To represent the pattern of similarity and reduce the dimensions of the data set, we
applied the Principal Component Analysis (PCA), which reduces the data into its basic
components [41], but minimizes information loss. This multivariate data analysis technique
is based on data projection. Algebraically, data are represented through a set of linear
transformations to preserve as much variability as possible and reduce redundancies. The
goal is to represent the directions of the data that explain a maximal amount of variance in
a K-dimensional space, using a set of orthogonal variables.

To decide how many principal components should be retained, it is common to
summarize the results of a principal components analysis by using a scree plot, which we
can do in R using the ‘screeplot’ function.

The results of PCA can be plotted on a biplot graph, which is a very popular way
to view Principal Component Analysis results as it combines the main component scores
and loading vectors in a single biplot screen. This allows us to quickly locate similar
observations, clusters, outliers, and time-based patterns.

2.3.7. Statistical Analysis

Initially, the normality of the coefficient of variation (CV) of each group was verified
by the Shapiro–Wilk test with a significance level of 0.05 (p > 0.05). Student’s t-test was
performed when data had a normal distribution, otherwise, the Mann-Whitney U test was
performed to compare studied groups, both with a significance level of 0.05 (p < 0.05).

3. Results

In total, 96 TFS variables (8 tasks× 6 features× 2 axes) were estimated for each subject.
Figure 7 shows the boxplot for the HS and PD groups of the T5F6S2, which represents the
distribution of the values of the feature MAVSDN for motion task 5 (wrist flexion) in the z-axis.
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Figure 7. The table contains 96 TFS variables, and the boxplot on the right depicts T6F6S2 for the HS
and PD groups.

Figure 8 shows the boxplot of the coefficient of variation estimated from each variable.
The estimates were based on 1000 Bootstrap samples.

The scree plot was used to determine the number of principal components used.
There is no objectively accepted method for determining how many principal components
are required. This will be determined by the specific field of application and dataset.
The Scree Plot, a plot of eigenvalues ordered from largest to smallest, is another method
for determining the number of principal components. The number of components is
determined when the remaining eigenvalues are all relatively small. As a result, the
number of principal components used was determined in Figure 9.

According to Figure 9, 80.4% of the variability of the data is retained by the first two
principal components for movements on the radial-ulnar axis (y). Similarly, 79.6% of the
variability of the data is retained by the first two principal components for movements on
the proximal-distal axis (z). Figure 10 depicts biplots of Principal Component Analysis for
the most relevant variables in terms of explained variability for the principal components.

Correlated variables share the same direction. Positively correlated variables are
located in the same quadrant, whereas negatively correlated variables are positioned in
opposite quadrants of the graph origin. The cos2 values are employed to determine the
quality of the representation. A high cos2 value indicates that the PCAs accurately represent
the variable, and a low cos2 indicates that the PCAs do not perfectly represent the variable.

Table 3 lists, for the y and z axes, the seven and three (in gray) variables in Figure 10
that contribute the most. A table with the description of the variables that contribute the
most to data variability is available on Supplementary Material.
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Figure 10. The top seven and three variables that contribute to data variability. (A) The top seven
contributing variables to the radial-ulnar axis; (B) The top seven contributing variables to the proximal-
distal axis; (C) The top three contributing variables to the radial-ulnar axis; and (D) The top three
contributing variables to the proximal-distal axis.

Table 3. Seven and three variables (in gray) that contribute the most to data variability.

Axis Variables
Y axis T6F2S1 T10F2S1 T10F4S1 T6F3S1 T10F1S1 T6F5S1 T6F4S1
Z axis T10F2S2 T5F2S2 T9F2S2 T6F2S2 T6F1S2 T6F5S2 T6F3S2

Table 4 shows the results of coefficient of variability (CV) for the two groups consider-
ing the seven most relevant variables that contribute to data variability.
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Table 4. Results of coefficient of variation for the two groups, with the p-value of the Shapiro-Wilk
test and the p-value for the statistical test (t-test or Mann-Whitney U test).

TFS T6F2S1 T10F2S1 T10F4S1 T6F3S1
Group CV p-value U CV p-value U CV p-value U CV p-value U

HS 2.431 0.232 4.316 0.548 0.063 0.300 1.225 0.314
<0.001PD 0.074 0.024 <0.001 0.083 0.009 <0.001 40.100 <0.001 <0.001 0.100 0.461

TFS T10F1S1 T6F5S1 T6F4S1 T10F2S2
Group CV p-value U CV p-value U CV p-value U CV p-value t-test

HS 1.892 0.616 1.1821 0.357
<0.001

0.073 0.919 0.978 <0.001
<0.001PD 0.09 <0.001 <0.001 0.100 0.161 1.817 0.002 <0.001 0.048 <0.001

TFS T5F2S2 T9F2S2 T6F2S2 T6F1S2
Group CV p-value t-test CV p-value t-test CV p-value t-test CV p-value U

HS 2.115 <0.001 2.77 <0.001
<0.001

1.920 <0.001 1.591 <0.001
<0.001PD 0.026 <0.001 <0.001 0.02 0.005 0.039 <0.001 <0.001 0.035 0.037

TFS T6F5S2 T6F3S2
Group CV p-value t-test CV p-value t-test

HS 1.779 <0.001
<0.001

1.762 0.002
PD 0.039 0.002 0.038 <0.001 <0.001

Figure 11 shows that the adopted method employing capacitive sensors can distinguish
between PD patients and healthy older adults. The graph of individuals for radial-ulnar—
y-axis (S1) and proximal-distal—z-axis (S2) depicts the dimension of the two first principal
components for each axis, which represents the percentage of variances explained, and
they are sufficient to distinguish between the two groups.
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4. Discussion

Data analysis of the present study has delineated consistent results concerning wrist
movement execution variability to properly differentiate the investigated groups. In all
tasks and related features extracted, the PD group exhibited less variability compared to
the HS group (Table 4).

The execution of the wrist movement could be captured by the two pairs of capacitive
sensors, as shown in Figure 6, and the identification of the four hand movements (wrist
radial-ulnar deviations and flexion/extension) does not require any additional nontrivial
signal processing, for example, the peaks in the y axis, radial-ulnar direction, represent the
capacitive sensor’s closeness during radial and ulnar deviation, and the peaks in the z-axis,
proximal-distal direction, represent flexion and extension.

According to our results applying Principal Component Analysis (PCA), the combi-
nation of some features and tasks has higher relevance to different HS and PD groups, as
demonstrated in Figure 10. After PCA, the variables that presented the greatest importance
to discriminate the HS and PD groups were T6F4S1, T6F5S1, T10F1S1, T6F3S1, T10F4S1,
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T10F2S1, and T6F2S1 for y-axis; and T6F3S2, T6F5S2, T6F1S2, T6F2S2, T9F2S2, T5F2S2 and
T10F2S2 for z-axis; as shown in Table 3.

According to PCA, task 5 and task 9 represent hand flexion and have high relevance
to distinguishing HS from PD groups, but only in the proximal-distal axis. Furthermore,
the findings suggest that, regardless of the evaluated axis, the extension movement (Task 6
and Task 10) is the most important for characterizing wrist movement and distinguishes
HS from PD groups. It is known that the wrist joint has a key role in the kinetic chain that
regulates hand movements and the wrist extensor muscles provide stability to this joint,
increased grip strength, and optimal finger positioning [28,42], so the results are compatible
with the literature.

Table 4 shows the coefficient of variability with greater values for healthy individuals
than PD patients. Based on the results shown in Figure 8, it was possible to verify that all
the investigated features were able to capture distinct variability measures, which considers
the overall variability of the movement execution. These results are consistent with the
hypothesis that a lack of variability may be a characteristic of dysfunction in a performance,
frailty, or disease [19]. Variability influences the ability to control movement, therefore, the
low variability seen in the PD group may indicate problems due to the lack of mapping of
the sensory cortex with disturbances in the individual’s motor function [43]. Volunteers
with Parkinson’s disease may think and concentrate to make the movement, once they
have great difficulty performing learned movements automatically [44], therefore they do
it in a more restricted way. Healthy people with full motor functions use several strategies
to make the same movement.

The features that presented the greatest importance to discriminate the HS and PD
groups were MAVFD, the mean of the absolute values of the first differences of x (F3),
MAVSD, the mean of the absolute values of the second differences of x (F5), and MAV, the
mean absolute value of x (F1), followed by RMS, root mean square (F2).

The manifestations of Parkinson’s disease are diverse and occur in a heterogeneous
way [45], this highlights the need for an evaluation centered on the patient since correct
monitoring is essential for PD patients to receive appropriate treatment and follow-up [9].
The subjectivity of the evaluation in PD remains nowadays, and Luiz et al. [46] proved that
for a suitable evaluation in PD using the Movement Disorder Society—Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS), the golden-standard clinical scale, the health profes-
sional should have experience and internal consistency, what does not happens according
to the literature [29].

Clinical evaluation of the hand movement has been included in the MDS-UPDRS [10],
in items 3.4 finger tapping, 3.5 opening, and closing hand, and 3.6 pronation and supination
of the hands, of Part III (MDS-UPDRS), the motor examination, hand movement assessment
is performed by an evaluator who should rate the patient’s movement execution with a
score from 0 (no problems) to 4 (unable or barely able to perform the task) [10]. The MDS-
UPDRS has the advantage of being available to most clinicians, however, it requires the
experience [46]. It is simple to identify extreme scores, 0 and 4, although, for scores 1, 2,
and 3, the evaluator may have difficulty in accurately classifying the patient [47]. During
the execution of the hand movement in which the patient performs the movement 10 times
as fast and wide as possible, the evaluator scores each side separately, assessing speed,
amplitude, hesitations, interruptions, and amplitude decrease. Additionally, following the
MDS-UPDRS protocol, the patient should not repeat the movement series to solve doubts
due to fatigue and familiarization.

When compared to full-scale scores, MDS-UPDRS Part III hand movements have
lower values of internal consistency and agreement among evaluators [29]. Furthermore,
it is important to note that Part III of the MDS-UPDRS contains 18 items in total, three of
which are specific to the hand movement execution assessment. As a result, when it comes
to assessing hand movement execution, the gold standard in Parkinson’s disease leads to a
quick and superficial clinical evaluation.
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The limitations of Parkinson’s disease follow-up have motivated the development of new
methods for PD assessment [48]. These techniques are attempting to provide an objective way
to measure the disease’s motor symptoms with the intention of improving the assessment of
the disease progression and evaluating the effectiveness of care and therapy.

Therefore, a solution to improve the evaluation of PD is to combine clinical assessment
with a quantitative measurement [28,49]. This study proposes a novel method for assessing
wrist variability to differentiate between individuals with PD and healthy age-matched
adults, using two pairs of capacitive sensors. One of the advantages of capacitive sensors is
that they can be used to collect wrist movement data without direct contact with the skin.

Recent studies [28,50] show that a quantitative method would provide more complete
data about the individual’s movements, e.g., the parameters collected by Rabelo et al. [28]
could discriminate Parkinson’s disease patients from healthy older adults, proving that both
inertial and EMG sensors are sensitive to the group’s differences while performing wrist
extension against gravity with the forearm on pronation. Our findings show that capacitive
sensors can also distinguish patients with PD from healthy older adults (Figure 11).

The discrimination between the groups, based on objective evaluation, may contribute
to the accurate diagnosis of PD and to the monitoring of therapies [28]. The proposed
method involves the analysis of four different movements of the wrist, RUD, and FE, by
using capacitive sensors, on two axes, radial-ulnar (y-axis) and proximal-distal (z-axis) and
the findings show that flexion and extension are the tasks that most distinguish the groups.

Six amplitude features, i.e., MAV, RMS, MAVFD, MAVFDN, MAVSD, MAVSDN, were
chosen for analysis from the four movements and analyzed axes, to create a variable that
represented the hand task, the amplitude of the movement, and the respective axis, and,
from these features, to calculate variability using the coefficient of variation (CV) and
compare the two groups (HS and PD). The variable representing the same task, feature,
and axis could be seen for both groups, allowing the difference in variability between PD
and HS to be visualized.

The movements radial ulnar deviation (RUD), represented in this study as task 3,
task 4 (normal speed), task 7 and task 8 (high speed), and wrist flexion and extension
(FE), represented in this study as task 5, task 6 (normal speed), task 9 and task 10 (high
speed), have been used in numerous studies [28,30]. Recent studies have confirmed the
relevance of wrist FE for the evaluation of PD motor signs [29], highlighting that alternative
movements to those available in the MDS-UPDRS should be investigated. Among them,
the use of distinct types of signal processing methods and sensors to collect data from
patients with Parkinson’s disease can be studied further.

According to Corona et al. [49], the kinematic analysis of “hand-to-mouth” movement,
particularly the reduced velocity and range of motion of elbow flexion-extension, is appro-
priate for representing upper limb movement alterations in people with Parkinson’s disease.
The deviation from a physiological pattern allows for the tracking of disease progression
or the effectiveness of pharmacologic and rehabilitative treatments. Our findings show
the same reduced range of motion. In Figure 8, the boxplot of the coefficient of variation
estimated from each variable and group shows that healthy individuals have a greater
range of motion in variability than PD patients.

Muniz et al. [50] concluded that the variability can potentially be monitored as an
indicator of patient progress in some therapeutic programs, and the proposed approach
advances toward patient-centered monitoring.

Another important observation in Table 4 is that F4, the normalized mean of the
absolute values of the first differences (MAVFDN) for extension is an outlier on the y-axis.
T6F4S1 is the first principal component and T10F4S1 is the fifth principal component,
according to PCA, and these are the only results in which the variability is greater for the
PD group than for the HS group. According to Figure 10, T6F4S1 and T10F4S1 variables
are negatively correlated with T6F5S1, T10F1S1, T6F3S1, T10F2S1 and T6F2S1 variables.

The outliers in T6F4S1 and T10F4S1 can be explained by considering F4 as a confound-
ing feature. The wrist extension movement (T6 and T10) occurs in the proximal-distal
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direction, z-axis in the experiment. Conversely, when evaluating the same movement in
the radial-ulnar direction, y-axis, the coefficient of variation is higher for the PD group. The
interpretation of variability depends on the goal-directed movements and has adaptive
aspects in system function [18]. Therefore, one can conclude that a healthy volunteer’s
wrist is more stable in the radial-ulnar axis during wrist extension than PD volunteers.

Furthermore, the goal of this study was to contribute to the evaluation of Parkinson’s
disease patients by providing a method for objectively measuring wrist movement and
analyzing variability in movement execution using capacitive sensors. There is still room
for technological innovation in Parkinson’s disease because we have not reached a point of
agreement on whether it is better to have a single index for each parkinsonian symptom
or a set of variables, and what is important to consider during the characterization of the
motor signs.

Finally, because the control group defines the standard of normality and it is possible
to measure how far an individual’s result is from normal, the variability analysis proposed
here could potentially be used as an indicator of patient progress in therapeutic programs,
such as physiotherapy treatment, or to monitor the change in medication dosage.

Study Limitations

Any research on Parkinson’s disease progression depends on how we define the disease
severity and the methods we use to measure severity and progression. The variability of the
wrist tasks execution assessment with capacitive sensors can quantify the hand movement,
specifically the extension movement. According to Regnault [51], when looking at the rate
of PD progression, the key question is how we can best quantify the change (i.e., through
imaging results, a physician-rated severity rating, and patient self-report). Therefore, the
underlying issue of measuring the severity of PD is fundamental in this context.

5. Conclusions

This study described a non-contact sensing technology application that is completely
passive and works to detect variations in the electrical field of the ambient. We assessed the
variability of the wrist radial-ulnar deviations and flexion/extension execution measured in
the electric field created by two pairs of capacitive sensors, using the coefficient of variation
(CV). The wrist movement variability is greater for the HS group than for the PD group
and it can help to discriminate between both groups. This confirms the hypothesis that
people with Parkinson’s disease have less variability in their wrist movement execution
than healthy people.

The features mean absolute value (first and second differences) extracted from wrist
extension at normal and high speed are the combination most capable of illustrating the
differences between the groups.

The methods used in this study can identify relevant landmarks for the progression
monitoring of Parkinson’s disease, and they may be directly applicable to other neuromotor
disorders. From a practical and clinical standpoint, the wrist movement assessment device
based on two pairs of capacitive sensors could be used to extract a number of relevant
parameters in hand movement execution.
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