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Decodingmodels based on pattern recognition (PR) are becoming increasingly important tools for neuroimaging
data analysis. In contrast to alternative (mass-univariate) encoding approaches that use hierarchical models to
capture inter-subject variability, inter-subject differences are not typically handled efficiently in PR. In this
work, we propose to overcome this problem by recasting the decoding problem in a multi-task learning (MTL)
framework. In MTL, a single PR model is used to learn different but related “tasks” simultaneously. The primary
advantage of MTL is that it makes more efficient use of the data available and leads to more accurate models by
making use of the relationships between tasks. In this work, we construct MTL models where each subject is
modelled by a separate task. We use a flexible covariance structure to model the relationships between tasks
and induce coupling between them using Gaussian process priors. We present an MTL method for classification
problems and demonstrate a novel mapping method suitable for PR models. We apply these MTL approaches to
classifyingmanydifferent contrasts in a publicly available fMRI dataset and show that the proposedMTLmethods
produce higher decoding accuracy andmore consistent discriminative activity patterns than currently used tech-
niques. Our results demonstrate thatMTL provides a promisingmethod formulti-subject decoding studies by fo-
cusing on the commonalities between a group of subjects rather than the idiosyncratic properties of different
subjects.

© 2014 The Authors. Published by Elsevier Inc.Open access under CC BY license.
Introduction

Pattern recognition (PR)methods are becoming increasingly impor-
tant tools for neuroimaging data analysis and are complementary to
more conventionalmass-univariate analysismethods based on the gen-
eral linearmodel (GLM; Friston et al. (1995)).Mass-univariatemethods,
or encoding models (Naselaris et al., 2011), are well suited to mapping
focal, group level associations between experimental variables and
brain structure or function. On the other hand, PRmethods, or decoding
models, aim to make predictions based on the spatial or spatiotemporal
pattern within the data. In particular, PR methods have been useful for
making predictions at the single subject level in clinical research studies
(Orru et al., 2012) and for detecting neural activity patterns characteris-
tic of instantaneous cognitive states (Norman et al., 2006).

Neuroimaging data are well-known to be characterised by substan-
tial inter-subject variability, due to a range of factors including residual
registration error, variations in inter-subject functional anatomy (Frost
and Goebel, 2012; Morosan et al., 2001) and individual variations in
the haemodynamic response (Aguirre et al., 1998; Handwerker et al.,
2004). In amass-univariate context, this variability has been historically
atry, De Crespigny Park, London
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tackled using hierarchical classical or Bayesian random- or mixed-
effects models (e.g. Holmes and Friston (1998); Friston et al. (2005);
Woolrich et al. (2004)), but in a PR context these individual differences
are not usually dealtwith efficiently. The twomost commonapproaches
for PR inmulti-subject neuroimaging studies are: (i) training an individ-
ual classification or regression model for each subject (e.g. references
in Norman et al. (2006)) or (ii) pooling data across subjects (e.g.
Mourao-Miranda et al. (2005); Marquand et al. (2011); Brodersen
et al. (2012); Grosenick et al. (2013)). Both these approaches are subop-
timal; the first approach does not take advantage of similarities
between different subjects and results in training PR models with a
greatly reduced number of samples. The second method incorrectly
assumes that all data are drawn from the same distribution and may
lead to impaired predictive performance. A further problem is that
most current PR approaches employed in neuroimaging provide no
means of accommodating repeated measurements from the same
subjects and again make the incorrect assumption that all data are
independent and identically distributed.

In this work, we propose an alternative approach to accommodate
the within- and between-subject covariance structure in neuroimaging
data by recasting the decoding problem in a multi-task learning frame-
work (MTL; Caruana (1997)).Multi-task learning is an emergingfield of
machine learning that aims to solve a number of related problems
(“tasks”) simultaneously, taking into account the relationships between

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2014.02.008&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2014.02.008
mailto:andre.marquand@kcl.ac.uk
http://dx.doi.org/10.1016/j.neuroimage.2014.02.008
http://www.sciencedirect.com/science/journal/10538119
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


299A.F. Marquand et al. / NeuroImage 92 (2014) 298–311
them. One of the key aims is to avoid learning each task from scratch
and instead, MTL aims to extract more information from the data by
sharing information between tasks. It is particularly beneficial in situa-
tions where only a small number of samples are available for each
task, but other related tasks are available which share some salient
properties (Bakker and Heskes, 2003; Evgeniou et al., 2005; Sheldon,
2008). In many cases MTL can lead to substantial improvements in pre-
dictive performance (Pan and Yang, 2010). In this work, we model the
functional neuroimaging data for each subject as a separate task, induce
coupling between them, and then estimate the optimal correlation
structure for the tasks. In this way, we aim to learn a consistent pattern
of activity across subjects, which is usually what is of primary interest in
multi-subject neuroimaging studies. At the same time, this framework
still allows flexibility to model the idiosyncratic properties of individual
subjects and the ability to accommodate the statistical dependencies
between scans (e.g. due to repeated measurements), since all the
scans for individual subjects are grouped into tasks.

We propose to model the relationships between the tasks using a
free-form covariance matrix and induce coupling between the tasks
using Gaussian process (GP) priors (Bonilla et al., 2008). Under this
framework, the task covariance matrix can be either specified in
advance or estimated automatically from the data. This data-driven
property is a crucial requirement for neuroimaging data, because it can
be difficult to know in advance theextent of inter-subject variation func-
tional anatomy in an experimental population. Gaussian processmodels
are a flexible class of models for non-parametric regression and classifi-
cation (Rasmussen andWilliams, 2006). They are well-suited to neuro-
imaging data and hold advantages over alternative methods, including
accurate quantification of uncertainty andelegantmethods for automat-
ic parameter optimisation.We have demonstrated in previouswork that
they are useful for whole-brain binary and multi-class classification of
neuriomaging data, in addition to metric and ordinal regression (Doyle
et al., 2013; Filippone et al., 2012; Marquand et al., 2010, 2013b).

In contrast tomany other application domainswhere predictive per-
formance is of primary interest, an important second objective of PR
methods for neuroimaging is to quantify the contribution of different
brain regions to the discriminative patterns that underlie the prediction.
This is typically done bymappingmodel coefficients in the voxel space,
which is also a useful method to assess the reproducibility of the spatial
patterns under perturbations to the data (Strother et al., 2004). This
formalises the intuition that we should prefer models that yield stable
parameter values for different training datasets (i.e. are trustworthy).
In view of these desiderata, we focus on linear models, which have an
exact representation of model coefficients in the voxel space, although
the MTL approach can be also be applied to non-linear models. We
also present a novel brain mapping method for MTL and other PR
models based on sign-swap permutation.

Multi-task learning has attracted substantial interest over recent
years and a large volume of work exists within the machine learning
literature (reviewed in Pan and Yang (2010)). There are many different
approaches to MTL, including neural networks (Caruana, 1997),
Bayesian approaches (Bakker and Heskes, 2003) including Gaussian
processes (Bonilla et al., 2008; Boyle and Frean, 2005), kernel methods
(Evgeniou et al., 2005), collaborative filtering (Abernethy et al., 2009)
and learning a set of features shared between the tasks (Argyriou
et al., 2007). Multi-task learning using GP models has also received a
lot of attention in the spatial statistics field, where it is referred to as
“co-kriging” (Cressie, 1993). In spite of this rich literature, to date
there are only a handful of applications of MTL to neuroimaging:
Zhang and Shen (2012) presented an approach to combine different im-
aging modalities to predict multiple clinical variables from regionally
averaged structural MRI data. This approach induced coupling between
the tasks at the feature selection stage, the PR models generating the
final predictions were learned independently. Zhou et al. (2013)
presented a multi-task regression approach to predict cognitive decline
longitudinally, based on a set of regionally averaged cortical surface
features and used structured regularisation penalties to induce coupling
between the tasks. Varoquaux et al. (2010) presented an application of
MTL to the estimation of functional connectivity matrices from fMRI data
and Leen et al. (2011) presented amethod to discriminate somatosensory
stimuli based on a set of independent component analysis factor loadings
derived from fMRI data. The work of Leen et al. (2011) shares similarities
with the approach presented here in that is a GP model, but it differs
in that it is asymmetric, whereby information is only shared in a uni-
directional manner between tasks, and therefore has a different applica-
tion focus to the present work (see Discussion). Also in contrast to
these previous applications, scalability to voxel-wise analysis was an
important motivating factor behind the present work because such
analyses are important for exploratory neuroimaging data analysis.

In view of the related work outlined above, the contributions of this
paper are the following: (i) a translational application of a symmetric
MTL approach to whole-brain (voxel-wise) neuroimaging data; (ii) a
comparison of the derivedMTLmodels with conventional decoding ap-
proaches that learn each task independently (“single-task learning”/
STL); (iii) contribution of a method for transforming MTL regression
models into classificationmodels,which is important because classifica-
tion models are far more common in decoding studies; (iv) a compari-
son of free-form and restricted covariance structures for modelling
inter-task dependencies and (v) presentation and evaluation of a
brain mapping method for mapping discriminating brain regions in an
MTL context. We evaluated all MTL and STL methods for predicting a
range of contrasts from a publicly available dataset and hypothesized
that MTL would lead to improved accuracy relative to STL and that the
patterns of predictiveweights would bemore consistent across subjects
owing to the coupling induced by the model.

Methods

Multi-task learning using Gaussian processes

In this section, we describe the Gaussian process MTL (GP-MTL)
approach employed here, which is based on the approach outlined in
(Bonilla et al., 2008). Further background on GP models for regression
and classification can also be found in Rasmussen and Williams (2006).
For didactic purposes, we describe GP-MTL for regression first, then gen-
eralise to classification. We also provide a simple simulation in the sup-
plementary material illustrating the concepts introduced in the next
few sections. We begin with a dataset {X, y}, where X ¼ x1;…; xnx½ �T is
an nx× dmatrix containing d-dimensional data vectors. In themost gen-
eral case, y is an ny × 1 vector of target variables that are grouped intom
tasks. The goal is then to learn a set ofm functions that predict the data as
accurately as possible. We refer to the case where ny = mnx as a com-
plete design, in that each input has an associated target value for every
task. Multi-output models with no missing data provide an example of
such a case. In many other cases, however, the design is incomplete. An
important special case of an incomplete design is one where each input
is associated with only one output and the tasks are coupled through
the inputs. The fMRI dataset evaluated here provides an example of a
scenario where such an incomplete MTL design would be appropriate.
Clearly, STL is also a special case of MTL withm= 1.

For multi-task regression, we model the real-valued targets
using a likelihood with m latent functions, collectively referred to
as f = [f1T ,…,fmT ]T. Each function, fq, has an associated Gaussian noise
term σq

2. We apply a zero mean GP prior to the latent functions,
p(f|X,κ) ∼ N(f|0,K) with a covariance function (i.e. kernel) given by:

k x;pð Þ; z; qð Þð Þ ¼ K f
pqk

x x; zð Þ: ð1Þ

Here Kpq
f denotes the covariance between task p and q, kx(x,z)

describes the covariance between input data points and K is an ny × ny
matrix evaluating the covariance function at all data points. The input
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covariance is typically taken as one of the covariance kernels used in a
conventional STL framework (e.g. linear covariance or squared expo-
nential/Gaussian covariance).We use κ to denote any hyperparameters
on which the covariance function depends and collect the noise vari-
ables in a vectorσ=[σ1,…,σm]Tσ2=[σ2

1,…,σ2
m]T. Inference then pro-

ceeds by computing the posterior distribution of the latent function by
Bayes rule:

p fjX; y;σ;κð Þ ¼ p yjf;σð Þp fjX;κð Þ
p y X;σ;κj Þ:ð ð2Þ

Details about how to compute this distribution dependon thepartic-
ular form used for the likelihood, p(y|f,σ), and will be discussed later
(see also Rasmussen and Williams (2006)).

2.2. Multi-task learning with complete designs: multi-output regression

Before considering the most general case of MTL, we first consider
the special case of a complete design. To simplify things further, we con-
sider multi-output regression, where: (i) the outputs are continuous
under the Gaussian noise model given above and (ii) the input data
points are the same for each of the different outputs. In other words,
each unique input vector is associated with a set ofm targets. For nota-
tional convenience we also assume that the data samples are ordered
such that the samples belonging to each task are clustered in blocks.
In this case, the (noise-free) covariance function assumes a block diag-
onal structure and can be efficiently represented using a Kronecker
product:

K ¼ K f⊗Kx
: ð3Þ

Here Kf is an m × m positive definite matrix describing the covari-
ance between tasks and Kx describes the covariance between each
(unique) data point. We can then rewrite Eq. (2) as:

p fjX; y;σ;κð Þ ¼
N yjf;D⊗Inx
� �

N fj0;Kð Þ
N yj0;Σð Þ ð4Þ

where D is a diagonal noise matrix with σ2 along the leading diagonal,
and

Σ ¼ Kþ D⊗Inx : ð5Þ

Note that in a multi-output regression model under Gaussian noise,
the maximum likelihood estimates of the regression coefficients are
equal to those derived by estimating the regression coefficients for
each task independently (see Bishop (2006)). In contrast, under the
proposed model, the tasks are coupled a posteriori through the GP
prior. We provide a simulation illustrating the coupling between
outputs in a multi-output model in the supplementary material.

Covariance function and parameter optimisation

The covariance function is the crucial element imbuing GP models
with modelling flexibility and expressive power. In the case of MTL, it
is responsible for coupling the samples belonging to each task. The co-
variance function is typically dependent on a set of parameters (κ),
which in this case are the task covariance (Kf) and any parameters relat-
ing to the input covariance (e.g. length scale parameters). In addition,
any hyperparameters for the likelihood (e.g. σ) must also be optimised
to compute the posterior distribution of the latent function. Following
the common notational convention, we collect all model parameters
into a vector θ. In the context of GP models, all these parameters can
be efficiently optimised by maximising the log marginal likelihood
(also referred to as “type II maximum likelihood”). In this work we
use Carl Rasmussen's conjugate gradient optimiser (minimize.m,
available from www.gaussianprocess.org/gpml/code) for finding
optimal parameter values. For regression models, the log marginal like-
lihood is Gaussian:

log pðyjX; θÞð Þ ¼ −1
2
yTΣ−1y−1

2
logjΣj−ny

2
log 2πð Þ: ð6Þ

Its partial derivatives, required for optimisation by gradient descent,
can be computed using standard approaches (see Rasmussen and
Williams (2006)) and are given by:

∂log p yjX; θð Þð Þ
∂θ j

¼ 1
2
tr
�

ααT−Σ−1
� � ∂Σ

∂θ j

�
ð7Þ

where we have defined a vector of weights α = Σ−1y, which we will
discuss in detail later.In this work, we use a simple linear covariance
for the data points, Kx = XXT, having no hyperparameters. We employ
two approaches tomodelling the task covariance: (i) a free-form covari-
ance matrix having m(m + 1)/2 distinct hyperparameters and (ii) a
restricted covariance matrix having only one hyperparameter.

To estimate a free-form covariance matrix, it is necessary to con-
strain the matrix to be positive definite. This can be achieved by
reparameterising using a Cholesky decomposition, K f ¼ L f L f T . We let
λ denote a vector containing the lower triangular (i.e. non-zero) ele-
ments of Lf, the entries ofwhich are unconstrained and can be optimised
safely. Similarly, to constrain the noise variables to be positive, we opti-
mise them in the log domain. Thus, the final vector of hyperparameters
we need to estimate for the free-form covariance is:

θ ¼ κT
; log σT

� �h iT ¼ λT
; log σ1ð Þ;…; log σmð Þ

h iT
:

To compute the derivatives of the log marginal likelihood in
Eq. (7), we require the derivatives of Eq. (5) with respect to the
hyperparameters, which are:

∂Σ
∂Lf

pq

¼ JpqL
T⊗Kx þ L Jpq

� �T⊗Kx ð8Þ

and

∂Σ
∂log σq

� � ¼ 2σ2
q Jqq⊗Inx ð9Þ

where Jpq is anm ×m indicator matrix equal to one in the p-th row and
q-th column and zero elsewhere and Inx is an nx-dimensional identity
matrix.

For the restricted covariancematrix,we use a parametric form, given
by:

K f ¼ 1−γð Þ1m�m þmγIm ð10Þ

where 1m × m is amatrix of ones. This form for the covariancematrix is a
GP equivalent of a method presented in (Evgeniou et al., 2005), and has
the effect of forcing the predictive weights for each task to be similar to
their common average, with the parameter γ ∈ [0,1] governing the
strength of the coupling. Many other forms for the task covariance are
possible, which enables prior knowledge about possible relationships
between the tasks to be encoded (e.g. Sheldon (2008)). Since γ is
constrained to the unit interval, we apply a logit variable transformation
before optimisation. Thus, the final vector of hyperparameters we need
to optimise for the restricted task covariance is:

θ ¼ logit γð Þ; log σ1ð Þ;…; log σmð Þ½ �T :

http://www.gaussianprocess.org/gpml/code)
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In addition to the derivatives of the noise parameters given above,
we require derivatives of the covariance with respect to the
hyperparameter γ, which are:

∂Σ
∂logit γð Þ ¼ γ 1−γð Þ mIm�m−1m�m½ �⊗Kx

: ð11Þ

Generalising multi-task learning to incomplete designs

The foregoing description assumed a complete design (i.e. that the
covariance assumes a Kronecker product structure). The covariance
function specified in Eq. (1) is also suitable for incomplete case where:
(i) the inputs may be distinct for each output or (ii) the number of
outputs are not the same for each input. However, this requires some
modification to the notation. One possible approach is to employ a
structured “communication matrix” to handle missing data as in
Skolidis and Sanguinetti (2011). In this work we pursue an alternative
approach based on the element-wise (Hadamard) product. To
keep the notation simple, we assume for the remainder of this paper
that nx = ny = n and use n to refer to the total number of samples in
the dataset. Note that this does not entail a loss of generality because
the inputs can beduplicated as is implicitly doneby the Kronecker prod-
uct. We define an n ×m indicator matrixM representing task member-
ship, where Mip = 1 if sample i belongs to task p and zero otherwise.
Using this notation, wewrite:KF=MKfMT and denote the noise free co-
variance function by K = KF ⊙ KX. Here, ⊙ denotes the element-wise
product and the (n × n) matrix KX denotes the covariance between all
data points. Note that this is distinct from Kx, which describes the
covariance between data points shared between outputs in a complete
design. KX can be thought of as the input covariance component of
the full Kronecker product with missing data removed. We add noise
by Σ = K + N, where N is a diagonal noise matrix with Mσ on the
leading diagonal. Using this notation, the derivatives of the covariance
function with respect to the hyperparameters can be derived in the
obvious way, equivalently to Eqs. (8), (9) and (11). For example,

∂Σ
∂Lpq

¼ M Jpq L f
� �T þ L f Jpq

� �T� �
MT⊙KX

:

Making predictions in regression models

For multi-task regression, the Gaussian likelihood leads to a Gaussian
posterior in Eq. (2). Thus, the standard closed form equations for GP
prediction apply (Rasmussen and Williams, 2006), and we can write the
predictive distribution for a test point x∗ from task q as:

p y�jX; y; x�; θ; qð Þ ¼ N y�jμ�;σ
2
�

� �
ð12Þ

μ� ¼ kF
q⊙kX

�
� �T

α ð13Þ

σ2
� ¼ kF

��k
X
��− kF

q⊙kX
�

� �T
Σ−1 kF

q⊙kX
�

� �
: ð14Þ

Here, kq
F denotes the q-th column of KF, k∗

X denotes the input covari-
ance of the test point and kF∗ ∗ and kX∗ ∗ refer respectively to the task and
input variances of the test point.

Turning regression models into classifiers

Most applications of MTL in a GP context aim to solve regression
problems (e.g. Boyle and Frean (2005); Alvarez and Lawrence (2008);
Bonilla et al. (2008)). However, in neuroimaging studies, applications
of classification vastly outnumber applications of regression. Therefore,
we propose a straightforward approach for generalisingGP-MTLmodels
to classification. We employ a sigmoidal likelihood function to model
the class labels then compute a Gaussian approximation the posterior
distribution. To achieve this, we first replace the Gaussian likelihood in
Eq. (4), with a cumulative Gaussian or probit likelihood, p(yi|fi) =
Φ(yifi), whereΦ(z) = ∫−∞

z N(x|0, 1)dx, to model the binary class labels
yi ∈ {−1, 1}:

p fjX; y;κð Þ ¼ ∏
n

i¼1
p yij f ið ÞN fj0;Kð Þ

p yjX;κð Þ : ð15Þ

In this case, the nonlinear likelihood means that neither the posteri-
or nor the marginal likelihood admit closed form solutions, so we ap-
proximate both with the expectation propagation (EP) algorithm
(Minka, 2001). Expectation propagation is well-known to provide high-
ly accurate estimates of the posterior distribution and marginal likeli-
hood (Nickisch and Rasmussen, 2008) and is the approximation of
choice for binary GP classification. In preliminary work, we also found
EP to provide more accurate predictions than an alternative approach
based on optimal scoring (Hastie et al., 1993, 1995), which has recently
been applied to neuroimaging (Grosenick et al., 2008, 2013). We refer
the reader to (Rasmussen and Williams, 2006) for further details
about EP.

Computing predictive weights in the input space

There are two equivalent perspectives on GPmodels, the weight-
and function space views (Rasmussen and Williams, 2006). For the
foregoing description, we adopted the function space view because
for high-dimensional data with relatively few samples, the predic-
tive equations are more efficient and non-linear relationships can
be modelled. However, it is also highly desirable to visualise the dis-
criminating patterns in the input (i.e. voxel) space, which can be
achieved by adopting the weight space view. This will require intro-
ducing some additional notation: we let eX represent the n × md
block diagonal matrix obtained by stacking the elements of X be-
longing to each task in a block-wise fashion. We let w = [w1

T ,…,
wm

T ]T, where eachwq is a d dimensional vector of predictive weights
for task q. In correspondence with the function space view, the prior
over the predictive weights is Gaussian, p(w|κ) ∼ N(w|0,Σp). Fol-
lowing the approach described in our previous work (Marquand
et al., 2010), we write K ¼ E½yyT � ¼ eXE½wwT �eXT

and see that the co-
variance function used here corresponds to a prior over the weights
where Σp is a dm × dm Toeplitz matrix constructed by stacking diag-
onal submatrices such that the j,k-th block has 1

dK
f
j;k along the leading

diagonal. The off-diagonal components of this prior induce coupling
between the tasks. The posterior over the weights is then:

pðwjeX; y; θÞ ¼ N yjŵ; Sð Þ ð16Þ

ŵ ¼ ðeXT
N−1eXþ Σp� �−1Þ−1eXT

N−1y ð17Þ

S ¼ ðeXT
N−1eXþ Σp� �−1Þ−1 ð18Þ

From this it follows that the equations for predicting an unseen data
point from task q are simply:

p y�jeX; y; x�; θ; q
� �

¼ N y�jμ�;σ
2
�

� �
ð19Þ
μ� ¼ xT
�ŵq ð20Þ
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σ2
� ¼ xT

�Sq;qx� ð21Þ

where ŵq is the weight vector for task q and Sq,q is the corresponding
block of the posterior covariance matrix. In practice, computation of
Eq. (17) is infeasible for high-dimensional data because it involves the
inversion of a large dense matrix ðeXT

N−1eXþ Σp� �−1Þ, but this can be
easily overcome using the one of the Woodbury identities, i.e.:

ŵ ¼ ΣpeXT ðeXΣpeXT þ NÞ−1
y ¼ ΣpeXTα: ð22Þ

Wenote in passing that an equivalent trick can be employed to com-
pute the posterior variance if the dimensionality is low enough that the
md × md covariance matrix can be stored in computer memory. This
could be very useful, for example to derive marginal variances for the
weights at each voxel, but is impractical here because md is in the
order of 600,000 (≈35,000 voxels × 18 subjects).

From the two sets of predictive equations (Eqs. (13) and (20)), it is
clear that α and ŵ play equivalent roles: the inner product between ei-
ther quantity and the data determines themean of the predictive distri-
bution (in the feature or input space respectively). A similar
correspondence exists for classification and vectors of predictive
weights directly analogous to α and ŵ can be easily derived to describe
the mean of the Gaussian approximation to the posterior distribution.
See Rasmussen and Williams (2006) for more details. For didactic pur-
poses we show a simple simulation of the effects of MTL on the predic-
tive weights in the supplementary material.

The predictive weights for the comparison STL models (denoted
here by ŵs) can be computed using the approach described in our pre-
vious work (Marquand et al., 2010). To enable a fair comparison of the
proposed MTL models with the STL models for which data are pooled
across subjects (see below), it will also be useful to decompose the
weight vectors for pooled models into the components attributable to
each subject. These subject-specific weight vector components can
easily be extracted owing to the linearity of the predictive weights. In
other words, because a (d × 1) STL weight vector can be written as
ŵs ¼ ∑m

q¼1 ŵ
s
q , where q = 1,…,m indexes subjects in the pooled STL

model.

Visualising the discriminating pattern through predictive mapping

Themost commonmeasure employed in neuroimaging formapping
the discriminative pattern is a spatial representation of the weight vec-
tor (ŵ in a GP context). However, if we are interested in inferring the
contribution of each brain region to the prediction, the weights only
provide part of the story. As is clear from Eqs. (13) and (20), we cannot
ignore the contribution of the data. In some cases, this has been tackled
by presenting both weight maps and t-statistic images and considering
both in drawing conclusions from the data (e.g. Mourao-Miranda et al.
(2005); Marquand et al. (2012)).

In thiswork,we use theweight vector for assessing the reproducibil-
ity of the spatial patterns (because this is principally a property of the
model) but we propose an alternative approach for performing infer-
ence over the discriminative brain regions. For a given test sample,
(x∗)i, the predictive mean for task q is given by μ�ð Þi ¼ x�ð ÞTi
ŵq ¼ ∑d

j¼1 x�ð Þijŵ j , where (x∗)ij denotes the j-th voxel in the i-th
sample. This suggests a natural approach for mapping the total contri-
bution of each voxel to classification: First, for every test sample, we
compute:

x�ð Þi⊙ŵq: ð23Þ

Note that the predictive mean can be recovered by simply summing
over this quantity. Assuming an appropriate cross-validation approach
is employed, this yields n images – one for each test sample – which
can then be summarised using an appropriate statistical testing
procedure. In this work, we use a one-sample t-test (against zero). We
then threshold this image using permutation testing as described in
the next section. Finally, this thresholded image can be mapped across
all voxels in the same way as the weight vector. We refer to this proce-
dure as “predictive mapping” to distinguish it from the “discriminative
mapping” approach commonly used in neuroimaging (i.e. mapping
the weight vector).

Adopting the predictive mapping approach provides two advan-
tages: first, it is intuitively appealing in that it quantifies the total contri-
bution of each brain region to making the predictions we are actually
assessing, not just the contribution of the weights. Second, it allows us
to take a statistical view of the behaviour of the classifier within the
test (or training) set. In contrast, the weight vector effectively provides
a point estimate, which becomes problematic in a cross-validation
context, where a distinct weight vector is estimated for each fold and
must be summarised in someway. This has been done in neuroimaging
studies by: (i) presenting a single example weight vector (e.g. from one
cross-validation fold); (ii) presenting a single weight vector image
derived after retraining the model with all data or (iii) averaging
the weights over all cross-validation folds. None of these alternatives
faithfully represent the actual behaviour of the classifier: the first alter-
native provides only a single estimate, whichmay be misrepresentative
if theweights are not highly reproducible; the second alternative suffers
from a similar problem and presents a weight vector that was not used
formaking any of the predictions; the third alternative involves an aver-
aging process, which may result in artificially smoothing the weight
maps.

Permutation test to identify discriminating regions

To highlight the most important regions of the discriminating
pattern across all samples, and to facilitate comparison of the different
methods, we threshold the predictivemaps using a sign-swappermuta-
tion procedure. Similar permutation testing approaches are common-
place in neuroimaging both for mass-univariate analysis (Meriaux
et al., 2006; Nichols and Holmes, 2002) and pattern recognition
(Brodersen et al., 2012; Mourao-Miranda et al., 2005; Valente et al., in
press; Wang et al., 2007). We emphasize that we adopt this approach
to identify the most important regions in the discriminative patterns,
thereby assisting their interpretation. We do not suggest that these
are the only regions that are important because GP models, like other
kernel methods, are characterised by a non-zero contribution from
every brain region.

To achieve this, we first compute predictive maps for every subject
as described above, yielding a t-statistic for each voxel. We then con-
struct a null distribution for this statistic by randomly permuting the
images 1000 times. For each permutation, we multiply the sign of
each image randomly by either +/−1. By permuting entire images
we accommodate the spatial correlation structure in the data. We
then retrain the model and compute the permuted predictive map.
Finally we derive a p-value for each voxel by counting the number of
times the permuted statistic for that voxel exceeds the true statistic
and dividing by 1000. For the present work we display maps
thresholded at the arbitrary, but commonly used, value of p b 0.001.

Evaluation dataset: overview

We evaluate the proposed MTL models on a publicly available
dataset downloaded from the OpenfMRI repository (http://openfmri.
org). The Open fMRI project is managed by Russ Poldrack at the Univer-
sity of Texas at Austin, with computing resources provided by the Texas
Advanced Computing Center. It is funded by a grant from the National
Science Foundation (OCI-1131441).

The data employed for the present work are described in detail in
Uncapher et al. (2011). In brief, 18 healthy subjects (9 females, aged
18–27 years) were scanned on 10 occasions with a T2*-weighted

http://openfmri.org)
http://openfmri.org)
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gradient echo spiral-in/out imaging sequence while performing a
Posner cueing paradigm task. For each of the 10 fMRI runs, 190 volumes
were acquired on a 3T SignaMRI scanner (GEMedical Systems)with ac-
quisition parameters: repetition time = 2 s; echo time = 30 ms; flip
angle 75°; 64 × 64 matrix; 30 4 mm axial slices and 3.44 mm2 in-
plane resolution. To assist accurate normalization of subjects to stan-
dard space, a high resolution T1-weighted spoiled gradient recalled
structural image was also acquired for each subject. These images
each had 130 1.5 mm thick slices, a 256 × 256 matrix and 0.86 mm2

in-plane resolution.
The Posner task investigated the effect of top-down versus bottom-

up attentional processes on episodic memory encoding. During the
task, subjects viewed two white boxes to the left and right of a central
fixation crosshair. A green arrow cue presented for one second signaled
the beginning of each trial. This arrowpointed either left or right, cueing
subjects to covertly shift their attention to the box indicated. On 82% of
trials, a line drawing of an object appeared in the cued box (“Valid
trials”), and in the remainder of trials it appeared in the non-cued box
(“Invalid trials”). Subjects were required to indicate by button press
whether the drawing depicted a real object or an imaginary class of
objects referred to as “greebles”. After the final scanning session, sub-
jects performed a surprise memory test where they viewed a series of
line drawings (350 studied and 180 unstudied items) and were asked
to indicate whether each item was viewed during any of the scanning
sessions, and indicate their level of confidence for that decision. This
allowed the scanned stimuli to be categorised along a number of dimen-
sions, such aswhether theywere successfully encoded (“hit” or “miss”),
whether the cue was valid or invalid, what the confidence associated
with the encoding was and whether a real object or a greeble was pre-
sented (Table 1). See Uncapher et al. (2011) for further experimental
details.
Evaluation dataset: neuroimaging data preprocessing

Neuroimaging data preprocessingwas performed using the SPM12b
software. Data from each fMRI run were first realigned to the mean
image in each timeseries then coregistered to the T1-weighted structur-
al image from that subject. These structural images were segmented
and normalised to a standard space using the Segment tool in SPM12b
(formerly “new segment”). The deformations obtained from the seg-
mentation were then applied to normalise the fMRI images, during
which they were resampled to the original acquisition resolution.
These images were then smoothed with an isotropic 8 mm Gaussian
kernel prior to analysis.
Table 1
Experimental conditions for the evaluation dataset. See text for details. Abbreviations: HC =

Name

1 Valid HC hit cue
2 Valid LC hit cue
3 Valid miss cue
4 Invalid HC hit cue
5 Invalid LC hit cue
6 Invalid miss cue
7 Valid other cue
8 Valid other greeble cue
9 Invalid other greeble cue
10 Valid HC-hit object
11 Valid LC-hit object
12 Valid miss object
13 Invalid HC-hit object
14 Invalid LC-hit object
15 Invalid miss object
16 Valid other object
17 Valid greeble object
18 Invalid greeble object
Since this is a relatively fast fMRI design, GLM regression coefficient
imageswere used as samples to train the classificationmodels. The GLM
model design followed that reported in Uncapher et al. (2011), where
an independent regressorwas constructed for each experimental condi-
tion (Table 1) and convolved with the canonical haemodynamic re-
sponse function provided by the SPM software. Movement parameters
derived from the image realignment were also included as nuisance re-
gressors. A high-pass filter cutoff of 128 s was specified for detrending
with a cosine basis transform and themodelwas estimated using a clas-
sical least-squares approach. Note that an independent GLMmodel was
estimated for each fMRI run. After model estimation, the resulting GLM
coefficient images were masked to exclude non-brain tissue and
supplied to the classifier for analysis. For comparisonwith thepredictive
maps from the classifiers, univariate statistical parametric maps (SPMs)
were also generated using the followingprocedure: at the first level, one
sample fixed effect t-contrasts were performed for each of the groups of
regressors used to train the classifiers (described below). The resulting
contrast images were then entered into a second-level flexible factorial
random effects model where a two sample t-test was used to assess the
difference between the conditions in a mass-univariate sense.

Clearly, this experiment has a complex design and there are many
possible hypotheses that can be tested. To obtain an unbiased yet com-
prehensive estimate of the performance of the models evaluated, we
adopted two analytical approaches. For the first approach we identified
a priori three primary contrasts that are broadly representative of some
of the most important experimental questions that the data could an-
swer. We denote these by: (i) CUE v OBJ, corresponding to a task effect
contrasting the activity patterns between cue and object presentation.
This was constructed by contrasting regressors 1 and 2 with regressors
10 and 11 in Table 1; (ii) VAL vs INVAL, corresponding to the effect of
cue type (valid or invalid) and is referred to in Uncapher et al. (2011)
as a “bottom up attention effect” (regressors 10 and 11 with 13 and
14); (iii) HIT vs MISS, corresponding to successful encoding, that is,
items that were subsequently remembered contrasted with those that
were not (regressors 10 and 13 with 12 and 15). Since there are many
other contrasts that may be of interest, we also followed a second ap-
proach where we trained binary classifiers to discriminate all pairwise
combinations of regressors (66 in total).

Classifier configuration and model assessment

For each of the contrasts noted above, we trained a total of four
classification models. First, we trained simple baseline models where
each subject was analysed independently (“single subject”). Next, we
trained single classification models after pooling data from all subjects
high confidence, LC = low confidence.

Description

Valid cue where following object was a subsequent high confidence hit
Valid cue where following object was a subsequent low confidence hit
Valid cue where following object was a subsequent miss
Invalid cue where following object was a subsequent high confidence hit
Invalid cue where following object was a subsequent low confidence hit
Invalid cue where following object was a subsequent miss
Valid cue where following stimulus was an untested or no response object
Valid cue where following stimulus was an untested or no response greeble
Invalid cue where following stimulus was an untested or no response greeble
Object that was a subsequent high confidence hit and that followed a valid cue
Object that was a subsequent low confidence hit and that followed a valid cue
Object that was a subsequent miss and that followed a valid cue
Object that was a subsequent high confidence hit and that followed an invalid cue
Object that was a subsequent low confidence hit and that followed an invalid cue
Object that was a subsequent miss and that followed an invalid cue
Stimulus that was an untested or no response object and that followed a valid cue
Stimulus that was an untested or no response greeble and that followed a valid cue
Stimulus that was an untested or no response greeble and that followed a invalid cue



Table 2
Classification accuracy for each classifier on the illustrative contrasts under leave-one-run-
out cross-validation. Models showing the best performance are highlighted in boldface
and values in parenthesis are the standard error across 10 cross-validation folds. Abbrevi-
ations: MTL (F) = multi-task learning (free-form), MTL (R) = multi-task learning
(restricted).

Contrast Single subject Pooled MTL (F) MTL (R)

CUE v OBJ 93.68 (1.44) 95.65 (1.08) 97.00 (0.79) 96.86 (0.80)
VAL v INVAL 66.70 (1.94) 69.09 (2.72) 70.64 (2.73) 74.26 (1.55)
HIT v MISS 67.57 (2.55) 67.11 (2.39) 68.42 (1.94) 68.42 (1.74)
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(“pooled”). These models are collectively representative of current
practice in neuroimaging decoding studies. Next, we trainedMTL learn-
ingmodels using the approach outlined abovewhere task dependencies
are modelled using free-form and restricted task covariance matrices
(“MTL (F)” and “MTL (R)”). For each classifier, type-II maximum likeli-
hood was used to estimate hyperparameters from the training set. To
investigate the possibility of multiple modalities in the marginal likeli-
hood, we performed several pilot runs using different starting points.
For these data, this resulted in only small numerical differences to the
predictions. In cases where evidence is found for multiple modes, a
simple approach is to choose the hyperparameter settings having the
largest value for the marginal likelihood.

We assessed the accuracy of each classifier using a cross-validation
scheme where for each fold we excluded all data from one run
(“leave-one-run-out cross-validation”). We also excluded data for the
small number of runs that did not have at least one sample from each
class. Note that in general classifiers were approximately balanced.
Prior to classification, data were standardized across subjects within
each fold using the mean and standard deviation from the training set.
We report accuracy measures for all classifiers in addition to receiver
operating characteristic (ROC) curves for the primary contrasts. For
the single subjectmodels, classification accuracieswere averaged across
subjects to provide an overall assessment of performance. To derive a
summary ROC curve from the different single subject classifiers, we
employed the simple method proposed in (Obuchowski, 2007).

Generalisation to new subjects

The leave-one-run-out cross-validation approach described above
provides an indication of the generalizability across runs within the
same group of subjects. However, for many applications it is important
to generalise to new subjects or tasks. For example, in a clinical setting
predictions for new subjects are of primary interest. Surprisingly, the
problem of transferring knowledge to new tasks that do not exist in
the training set has received relatively little attention in the MTL litera-
ture andmost applications employ validation schemeswhere partitions
of data are withheld for all tasks.

To demonstrate the generalizability of the proposed method to new
subjects, we evaluate the performance of MTL under a leave-one-
subject-out cross-validation framework. This enables us to estimate
generalizability to the population. For this purpose, we compare MTL
(R) to a pooled model combining the data from all subjects. For MTL
(F), generalisation to unseen data is more complex because it is neces-
sary to estimate cross-covariances for tasks in the test set that do not
exist in the training set. One potential solution to this problemwas pro-
posed in Skolidis and Sanguinetti (2012) and consists of constraining
the magnitude of entries of the task covariance to the unit interval
then employing a multinomial likelihood function to estimate the
similarities between the tasks in the test and training sets. However,
we do not pursue this approach here.

We also note that the proposedMTLmethod is equallywell suited to
other cross-validation approaches, subject to the constraints noted
above and provided that the independence of training and test sets is
preserved (see Pereira et al. (2009)).

Pattern reproducibility

In addition to predictive accuracy, we compared classifiers based on
the reproducibility of the patterns of predictive weights using Pearson
product-moment correlation (i.e. cosine distance), both within and
between subjects under leave-one-run-out cross-validation. This is a
useful tool to quantify the coupling between the models that is induced
by the MTL framework and can provide information about the variabil-
ity of the patterns of responses between subjects. It is also important
because a tradeoff exists between prediction accuracy and the repro-
ducibility of spatial patterns under perturbations to the training set
(Rasmussen et al., 2011; Strother et al., 2004). To date, this has meant
that for some applications slightly less accurate models that show
more reproducible patterns of weights may have been preferred.
Multi-task learning potentially provides way to simultaneously achieve
both objectives, providing models that are both accurate and
reproducible.

While it may seem obvious that inducing coupling between tasks
will result in weight vectors that are more similar to one another, it is
important to point out that applying the proposed MTL framework
does not necessarily lead to coupling between the weight vectors
because the degree of task coupling is estimated from the data and
can be estimated to be zero if the tasks are very different. Further, a
high degree of coupling between tasks in one particular training set
(i.e. cross-validation fold), does not imply that the weight vectors will
be more reproducible across folds.

Results

Accuracy of illustrative contrasts

The classification accuracies obtained on the primary contrasts (CUE
v OBJ, VAL v INVAL and HIT v MISS) under leave-one-run-out cross-
validation are summarised in Table 2. Receiver operating characteristic
curves and the area under the curve (AUC) for each of these classifiers
are presented in Fig. 1 and Table 3 respectively. These results indicate
that for the illustrative contrasts, MTL lead to higher categorical classifi-
cation accuracy than any of the other classifiers and also achieved better
performance at nearly all decision thresholds. On these contrasts, MTL
(F) and MTL (R) performed similarly.

Accuracy of all pairwise contrasts

Accuracies for each of the 66 pairwise contrasts under leave-one-
run-out cross-validation are reported graphically in Fig. 2 and numeri-
cally in the supplementary material. To assist visualisation, the compar-
isons in Fig. 2 that were difficult to predict are indicated by crosses
(i.e. classifiers that did not exceed 60% accuracy). These results indicate
that: (i) it was more difficult to discriminate the Cue conditions from
one another relative of any of the Object conditions from the Cue condi-
tions or one another and (ii) MTL (F) andMTL (R) produced the highest
performance over all pairwise constrasts with a slight advantage for
MTL (R) over MTL (F).

To further facilitate the comparison of the best-performing method,
MTL (R), with the other methods, a graphical representation of the dif-
ferences in accuracy is presented in Fig. 3 along with a high-level sum-
mary of the differences in Table 4. These comparisons illustrate that: (i)
MTL (R) produced significantly higher accuracy than all other classifiers
(Wilcoxon signed rank test); (ii) the difference in accuracy was greater
for the contrasts that improved relative to the ones that did not and (iii)
the contrasts where MTL (R) did not provide a performance improve-
ment corresponded to contrasts that were the most difficult to predict
and that in many cases could not be accurately predicted by any classi-
fier. A similar pattern of resultswas observed forMTL (F)with respect to
the other classifiers (Supplementary material). The pooled classifiers
performed broadly similarly to the single subject classifiers.



Fig. 1.Receiver operating characteristic curves showing improvedperformance ofMTL relative to STL approaches on the illustrative contrasts (leave-one-run-out cross-validation). For the
CUE v OBJ contrast an enlargement is shown. Abbreviations: MTL (F) =multi-task learning with a free-form covariance, MTL (R)=multi-task learning with a restricted covariance, STL:
single task learning.
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Generalisation to new subjects

Consistent with the results reported above, under leave-one-subject
cross-validationMTL (R) classifiers produced higher categorical classifica-
tion accuracy than two of the three pooled classifiers and produced a
greater AUC than all pooled classifiers (Tables 5 and 6). Accuracies for
each of the 66 pairwise contrasts under leave-one-subject-out cross-
validation are reported graphically in Fig. 4 andnumerically in the supple-
mentary material. For the pair-wise contrasts, MTL (R) produced higher
classification accuracy for 89.39% of contrasts, with a mean increase of
3.81% accuracy (p= 1.1 × 10−7, Wilcoxon signed rank test; Fig. 4). Con-
versely, the MTL (R) classifiers produced lower accuracy than the pooled
classifiers for only 9.09% of contrasts with a mean decrease of (−1.15%).

Inter-task coupling

In addition to the predictive accuracy, formany applications it is use-
ful to quantify the coupling between tasks or subjects, which can be
achieved by visualising the task covariance matrix (Kf). As illustrative
examples, the task covariances for each of the primary contrasts for
theMTL (F) classifier under leave-one-run-out cross-validation are pro-
vided in Fig. 5. These show that: (i) the overall coupling was strong for
the CUE v OBJ and VAL v INVAL contrasts but weaker for the HIT v MISS
contrast, which corresponds with the relative differences in classifica-
tion accuracy afforded by MTL for each contrast; (ii) the first two
subjects appear to be somewhat anomalous across all contrasts and
are relatively weakly coupled to the other subjects.

Reproducibility of the weight vectors

For brevity, only the results from the VAL v INVAL contrast are
presented in detail. The weight vectors for the other contrasts
(CUE v OBJ and HIT v MISS) show a similar behaviour, albeit with a
slightly lower coupling induced for HIT v MISS. The reproducibility
of the weight vectors for the VAL v INVAL contrast across leave-
one-run-out cross-validation folds was high within subjects for the
single subject, MTL (F) and MTL (R) classifiers (mean [SEM]
Table 3
Area under the ROC curve for each classifier on the illustrative contrasts under leave-one-
run-out cross validation. Models showing the best performance are highlighted in bold-
face. Abbreviations: MTL (F) = multi-task learning (free-form), MTL (R) = multi-
task learning (restricted).

Contrast Single subject Pooled MTL (F) MTL (R)

CUE v OBJ 0.995 0.996 0.999 0.999
VAL v INVAL 0.657 0.755 0.793 0.820
HIT v MISS 0.706 0.702 0.764 0.750
correlation = 0.845 [0.028], 0.834 [0.012] and 0.905 [b0.001]
respectively). Reproducibility within subjects was substantially
lower for the pooled classifier (0.702 [0.048]). Spatial representa-
tions for the weight vectors from each classifier are provided in the
supplementary material.

To assess the similarity of the weight vectors between different sub-
jects for each classifier, the correlations between the mean weight vec-
tor for each subject are presented in Fig. 6. In contrast to the within-
subject reproducibility, these results show that the weight vectors for
different subjects from the single subject and pooled models are nearly
uncorrelated. The differences between the weights for each subject are
also apparent by inspection of the weight vectors themselves (see Sup-
plementary material). Taken together, these results show that: (i) the
single subject models were able to learn a reproducible set of weights
across cross-validation folds but primarily learned idiosyncratic proper-
ties of each subject and (ii) the pooled models were less reproducible
across cross-validation folds, and also seem to focus mostly on idiosyn-
cratic properties of different subjects. In contrast, both MTL models
learned a strong coupling between the tasks which enforced a high de-
gree of similarity for the weight vectors, leading to high reproducibility
between and within subjects. Note that the coupling between the
weights was learned from the data and is not imposed directly by the
MTL model. Also, the high reproducibility between the weight vectors
of different tasks is not simply a result of including multiple subjects
in the same model, because the between-subject reproducibility of the
pooled models was low.
Predictive maps

Multivariate predictive maps derived from the one-sample t-
tests are presented in Fig. 7 for the VAL v INVAL contrast (under
leave-one-run-out cross-validation). For comparison with the pre-
dictive maps, mass-univariate SPMs for the same contrast are also
presented. These maps have been thresholded at an uncorrected
value of p b 0.001 to ensure a fair comparison with the predictive
maps. All predictive maps indicate a similar pattern of effects across
brain regions, but the MTL classifiers show more consistent effects
in that the magnitude of t-statistics are higher and more voxels sur-
vive the p b 0.001 threshold, relative to the STL classifiers; from a
total of 35,449 voxels in the brain mask, 11,536 survive
thresholding in for MTL (R), relative to 9264 for MTL (F), 6662 for
single subject classifiers and 5743 for pooled classifiers. All predic-
tive maps show more voxels surviving thresholding relative to the
SPMs (2704). The predictive maps and SPMs largely overlap, but it
is notable that some of the regions showing strong univariate
differences are not the most important for prediction (e.g. posterior
cingulate cortex).



Fig. 2. Accuracy of all classifiers for all pairwise contrasts (leave-one-run-out cross-validation). Crosses denote comparisons for which the classifier did not exceed 60% accuracy.
Abbreviations: HC = high confidence, LC = low confidence, MTL (F) = multi-task learning with a free-form covariance, MTL (R) = multi-task learning with a restricted covariance.
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Discussion

In this work, we demonstrated a translational application of MTL for
fMRI data analysis. We evaluated several different MTL approaches
based on GPswhich enabled the automatic estimation of the covariance
structure between fMRI data from different subjects. We compared the
accuracy obtained by these models to commonly used STL approaches
in predicting many contrasts in a publicly available fMRI dataset. In ad-
dition, we presented a novel method for mapping the predictive contri-
bution of each brain region for MTL and STL models. We report four
main findings: (i) combining tasks using MTL improved predictive per-
formance for amajority of contrasts relative to single subject and pooled
STL models; (ii) imposing a restricted covariance structure between
tasks may improve performance if this structure is appropriate for the
data; (iii)MTLmodels produced amore reproducible pattern ofweights
across subjects and cross-validation folds and (iv) were more effective
for detecting brain regions predictive of the class labels relative to
competing PR and mass-univariate models.
Fig. 3. Accuracy of MTL (R) in relation to all other classifiers for all pair-wise contrasts (leave-o
MTL (R) and each comparisonmethod. In this setting,MTL (R) leads to significantly improved pe
did not exceed60% accuracy. Abbreviations: HC=high confidence, LC= low confidence,MTL (
restricted covariance, STL = single task learning.
Multi-task learning is a natural paradigm for neuroimaging data
analysis, and the approach pursued here –where each subject is framed
as a task – is directly analogous to other types of problem to whichMTL
has classically been shown to be beneficial: for example, predicting sub-
jective preferences for purchasing different products based on the pref-
erences derived from other subjects (e.g. Evgeniou et al. (2005);
Argyriou et al. (2007)) and predicting exam scores from students that
are grouped into schools (e.g. Bakker and Heskes (2003); Evgeniou
et al. (2005); Bonilla et al. (2008)). Such an approach can also be consid-
ered analogous to the use of mixed effects models in a mass-univariate
context to model inter-subject variability in fMRI. Our results show that
for neuroimaging data, this MTL approach leads to consistent improve-
ments in predictive performance. For the dataset we considered, MTL
provided the largest improvements over the single subject models
(Table 4). This indicates that training an independent model for each
subject makes inefficient use of the data available. This corresponds
with results from the machine learning literature indicating that MTL
is most beneficial for scenarios where each task has a small number of
ne-run-out cross-validation). The colour scale denotes the difference in accuracy between
rformance relative to STL andMTL (F). Crosses denote comparisons forwhich the classifier
F)=multi-task learningwith a free-form covariance,MTL (R)=multi-task learningwith a

image of Fig.�2
image of Fig.�3


Table 4
Summary of the proportion of classifiers forwhichMTL (R) afforded an advantage relative to the other baseline classification approaches across all 66 pairwise classifiers under leave-one-
run-out cross-validation. P-values were determined by Wilcoxon signed rank test. Abbreviations: MTL (F) = multi-task learning (free-form), MTL (R) = multi-task learning
(restricted).

Baseline method MTL (R) N baseline
(% contrasts)

Mean
increase
(% acc.)

MTL (R) b baseline
(% contrasts)

Mean
decrease
(% acc.)

p-value

Single subject 77.27 5.39 22.73 −2.91 6 × 10−7

Pooled 74.24 4.18 21.21 −1.46 3 × 10−7

MTL (F) 59.09 2.13 37.88 −0.01 0.004
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data points, but a large number of such tasks are available (Bakker and
Heskes, 2003; Evgeniou et al., 2005; Sheldon, 2008). This is precisely
the regime that is characteristic of many neuroimaging studies. In addi-
tion to improving predictive performance over the single subject
models, MTL also consistently improved predictive performance over
the pooledmodels (Table 4). This shows that the performance improve-
ment afforded by MTL is not just due to learning from more data.
Instead, it is important to model the relationships between scans to
obtain optimal predictive accuracy.

In a neuroimaging context, the main focus for applications of MTL
has been to predict multiple outputs based on a single structural MRI
image for each subject (Zhang and Shen, 2012; Zhou et al., 2013), an ap-
proach also referred to as multi-output learning. As we have indicated,
multi-output learning is a special case of MTL where the inputs are the
same for each output. A related approach for accommodating multiple
target variables in amultivariate linear regressionwas also recently pro-
posed (Valente et al., in press), although this approach was not framed
in anMTL context. One of themain contributions of this work is to dem-
onstrate that MTL has a broader applicability for neuroimaging data
analysis than has been demonstrated to date in that it is also suited
to:(i) multi-subject fMRI studies and (ii) classification problems. In ad-
dition to the application demonstrated here, there aremany other prob-
lems in neuroimaging data analysis for whichMTL is a natural analytical
approach. For example, for accommodating inter-scanner and inter-site
variability, which is a major challenge in multi-site neuroimaging stud-
ies. Another notable difference between the present work and these
previous applications is that it is framed within a kernel framework
and therefore scales easily to the whole brain and can be used with
non-linear covariance functions.

One of the only previous applications ofMTL for fMRI data analysis of
which we are aware presented an asymmetric MTL approach – also
based on GPs – for discriminating somatosensory stimulation from au-
ditory and visual stimulation (Leen et al., 2011). In asymmetric MTL,
one task is designated as the primary task, and the others as secondary
tasks. In contrast to the symmetric approach pursued in this paper, the
goal is to improve the performance of the primary task, by using infor-
mation from the secondary tasks. In other words, information is only
allowed to flow from the secondary tasks to the primary task, and
other dependencies (e.g. between secondary tasks) are ignored. Leen
and colleagues reported that asymmetric MTL performed better than
symmetric approaches. However, the MTL configuration employed
was somewhat contrived in that the primary task was a somatosensory
stimulation paradigm and the secondary tasks included somatosensory,
visual and auditory stimulation. Further, for many fMRI tasks (such as
the one considered here), it is not obvious which task should be
Table 5
Classification accuracy for pooled and MTL (R) classifiers on the illustrative contrasts
under leave-one-subject-out cross-validation. Models showing the best performance are
highlighted in boldface and values in parenthesis are the standard error across 18 cross-
validation folds. Abbreviations: MTL (R) = multi-task learning (restricted covariance).

Contrast Pooled MTL (R)

CUE v OBJ 88.90 (2.35) 93.52 (1.73)
VAL v INVAL 70.44 (2.25) 72.14 (1.71)
HIT v MISS 66.30 (2.32) 64.41 (1.31)
designated as “primary”. While there is certainly a role for asymmetric
approaches, symmetric MTL is better suited to routine neuroimaging
data analysis.

An important feature of the GP approach we employed is the ability
to specify or estimate a free-form covariance matrix to model relation-
ships between the tasks (i.e. subjects). This provides useful information
about the learned coupling between the tasks and confers MTL models
with a high degree of flexibility; for example, it allows prior knowledge
about the relationships between tasks to be incorporated. For this
dataset, a restricted covariance structure encapsulating such prior
knowledge led to further performance improvements over a free-form
covariance matrix, although the performance increase was smaller
than the difference between multi- and single-task models. This pro-
vides clear evidence that the restricted task prior is appropriate for
this dataset. However, a restricted prior is unlikely to be appropriate
in all cases. In multi-output regression for example, it is common that
the regression targets associated with different tasks are not calibrated
across the same range. In such situations it is crucial to be able to
model the task covariances quantitatively. Also, with a larger training
dataset than was used here, it may be possible to estimate more subtle
interactions between tasks. In such cases a more flexible model may
also be preferred. In line with this interpretation, the contrasts that
were more accurately predicted using the restricted covariance
corresponded to those that were the most difficult to predict (Fig. 3),
suggesting that the rigid covariance structure facilitated tasks borrow-
ing strength from one another. More generally, an undirected graphical
model could also be specified for the task covariance (see for
example Sheldon (2008)), which could model more complex interac-
tions such as session or site effects. Aswe have shown, this can be effec-
tively combined with the automatic parameter optimisation provided
by GPmodels to automatically fine-tune the structure of the task covari-
ancematrix. A final benefit of using a flexible covariancematrix is that it
may help to minimise the effect of “negative transfer”, which is known
to be a challenge in MTL models. Negative transfer refers to the induc-
tion of coupling between tasks that are in fact unrelated, whichmay ul-
timately degrade performance rather than improving it (see Pan and
Yang (2010) for further discussion). In a neuroimaging context, this
may be useful to downweight subjects with a poor signal to noise
ratio or an atypical response profile, that otherwisemaydegrade predic-
tive accuracy for the other subjects.

Many neuroimaging studies focus on the predictive aspect of PR
models, particularly for clinical applications. However, it is usually also
important to interpret the coefficients of the model to quantify the
contribution of each brain region to the predictions and to assess the
reproducibility of model coefficients under perturbations to the data.
Table 6
Area under the ROC curve for pooled and MTL (R) classifiers on the illustrative contrasts
under leave-one-subject-out cross validation. Models showing the best performance are
highlighted in boldface. Abbreviation: MTL (R) = multi-task learning (restricted).

Contrast Pooled MTL (R)

CUE v OBJ 0.976 0.996
VAL v INVAL 0.759 0.794
HIT v MISS 0.709 0.720



Fig. 4. Top panels: Accuracy of MTL (R) and pooled classifiers for all pairwise contrasts (leave-one-subject-out cross-validation). Bottom panel: difference between MTL (R) and pooled
classifiers (leave-one-subject-out cross-validation). In this setting, MTL (R) leads to significantly improved performance relative to pooled classifiers. Crosses denote comparisons for
which the classifier did not exceed 60% accuracy. Abbreviations: HC = high confidence, LC = low confidence, MTL (R) = multi-task learning with a restricted covariance.
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This is most commonly done by mapping the classifier weight vector in
the voxel space (e.g. Mourao-Miranda et al. (2005); Kloppel et al.
(2008); Marquand et al. (2012); Gaonkar and Davatzikos (2012)).
Since the weights alone do not determine the contribution of each
voxel to the prediction, we propose to take this approach a step further
bymapping the product of the weights and the data at each brain voxel.
This “predictive mapping” approach is applicable to many of types of
classifier employed in neuroimaging (e.g. support vector machines
and penalised linearmodels) and yields twomain benefits: (i) it is intu-
itively appealing in that it quantifies the total contribution of what was
actually used tomake predictions at each brain voxel and (ii) it lends it-
self naturally to a statistical approach to assess the predictive contribu-
tion of different brain regions. In theVALv INVAL contrastwe examined,
the MTL models induced strong coupling between the tasks (i.e. sub-
jects). As expected, this resulted in high within- and between subject
Fig. 5.Hinton diagram showing examples of task covariancematrices for each of the primary co
the covariances from the first leave-one-run-out cross-validation fold. Abbreviation: MTL (F) =
reproducibility in the patterns of discriminative weights. In contrast,
single-subject and pooled classification approaches yielded discrimina-
tive patterns that were either inconsistent across subjects or that
showed poor reproducibility across cross-validation folds. This in turn
led to an increase in both the magnitude of t-statistics and the number
of voxels surviving an arbitrary but commonly used threshold in the
predictive maps for the MTL- relative to STL models (Fig. 7). All PR ap-
proaches detectedmore significant voxels than a comparable univariate
SPM, which provides an indication of the utility of predictive mapping
for detecting spatially distributed effects. However, it is important to
note that the SPMs and predictive maps have a different interpretation:
the SPMs describe focal, group level effects; the predictive maps sum-
marise the total contribution of each brain region to predicting the
class labels at the single subject level. Correspondingly, the regions
with a large group-level difference are not necessarily the same as
ntrasts. This illustrates the inter-task coupling learned by theMTL (F) classifiers. Shown are
multi-task learning with a free-form covariance.

image of Fig.�4
image of Fig.�5


Fig. 6.Hinton diagram showing the correlations between theweight vectors for each subject and classifier. This shows that bothMTL approaches lead tomore reproducibleweight vectors.
Abbreviation: MTL (F) = multi-task learning with a free-form covariance, MTL (R) = multi-task learning with a restricted covariance.
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those that are most useful for prediction. Another important caveat to
the foregoing is that the degree of regularisation employed also influ-
ences the reproducibility of the spatial patterns (Rasmussen et al.,
2011), so we cannot exclude the possibility that different degrees of
regularisation between single- andmulti- task learningmodels contrib-
uted to their differential effects. To investigate this, we repeated the STL
analysis using a range of different regularisation strengths with the co-
variance function described in (Marquand et al., 2010), and obtained
nearly identical results, which would seem to eliminate this possibility.

We argue that by accommodating inter-subject variations as differ-
ent tasks and searching for commonalities between subjects, MTL
models are better able to capture the consistent discriminative pattern
across the group relative to the corresponding single-task models.
This consensus pattern is usually what is of primary interest in multi-
subject neuroimaging studies, and is probably responsible for the im-
provement in accuracy provided byMTL over STLmodels. This rationale
also bears similarities with recent work that aims to select themost sta-
ble features for decoding cognitive states (Gramfort et al., 2011;
Rondina et al., 2014; Ryali et al., 2012). In general, the magnitude of
the improvement provided by coupling the subjects through MTL is
likely to be dependent on the particular application and the nature of
the pattern of responses elicited by the fMRI task. This is because the
functional anatomy in some brain regions (e.g. frontal eye fields) is
well aligned to cortical structures whereas the anatomical locations of
other highly specialised regions (e.g. fusiform face area) are more vari-
able across subjects, even after subjects have beenwell aligned structur-
ally (Frost and Goebel, 2012). Similarly, the degree of spatial smoothing
applied to the datamay influence the similarity of the images belonging
to different subjects. However, it is important to point out that the pro-
posed method is still able to accommodate the settings where variabil-
ity between subjects is high or the smoothing is not optimal by reducing
the coupling induced between the tasks.

In this work, we framed the MTL problem in the context of
GP models, which have desirable properties for neuroimaging (e.g.
probabilistic predictions and the ability to automatically tune model
hyperparameters using type-II maximum likelihood). Another impor-
tant motivation for our choice of method was the scalability of the
method to whole-brain voxel-wise data and large numbers of tasks.
We expect that many of the benefits of MTL models we have demon-
strated are not limited to GPs and may generalise to different MTL
approaches. For further work, it would be interesting to evaluate
approaches that confer different benefits, such as structured sparsity
(e.g. Michel et al. (2011); Grosenick et al. (2013); Sohn and Kim
(2012); Marquand et al. (2013a)). However, an important point to
bear in mind is that for MTL it is necessary to estimate a large number
of weight vectors (at least one per task). This may become problematic
if the analytical method scales according to the dimensionality of the
input space, as is often the case for sparse models. In contrast, the

image of Fig.�6


Fig. 7. One sample t-test measuring the contribution of each brain region to the classifier prediction for the VAL v INVAL contrast. A mass-univariate SPM is also presented for comparison
(see text for details). All maps were thresholded voxel-wise at p b 0.001. Abbreviation: MTL (F) =multi-task learning with a free form covariance, MTL (R) =multi-task learning with a
restricted covariance, SPM = statistical parametric map.
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computational complexity of GPs and other kernel methods is
governed by the number of samples and does not increase with in-
creasing dimensionality. This implies that sparse models are proba-
bly suited to different types of problems (e.g. regional summary
measures). On the other hand, a well-known limitation with GP
models is an unfavourable cubic scaling in the number of data
points. Therefore, for very large samples it may be necessary to
use approximations to speed up computation. To provide an indica-
tion of the computational cost of the proposed methods on the
dataset we examined, the most computationally expensive method
proposed (MTL (F)) requires a few minutes to optimise
hyperparameters and 1–2 s to make predictions for a dataset with
350 samples using a single 2.8 GHz CPU core.

Other avenues of future work include generalising the MTL models
employed in this work to other likelihood functions, such as multi-
class classification (Filippone et al., 2012) and ordinal regression
(Doyle et al., 2013), integrating out the dependency on model
hyperparameters using Markov chain Monte Carlo approaches and
investigating the effect of preprocessing operations (e.g. spatial smooth-
ing) on the accuracy of MTL models.

In summary, we have presented an empirical evaluation of MTL
models for decoding multi-subject functional neuroimaging data.
We have demonstrated that by providing a flexible framework to
capture inter-subject variation in neuroimaging data, MTL confers
two concrete benefits: (i) the potential to improve the accuracy
of PR models in neuroimaging and (ii) more consistent representa-
tions of the discriminating patterns underlying the predictions rel-
ative to the single-task models most commonly used in current
practice. Our results suggest that MTL is a promising method for
neuroimaging data analysis.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.02.008.
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