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Air pollution is associated with staggering levels of cardiovascular morbidity and mortality. Airborne particulate
matter (PM), in particular, has been associatedwith a wide range of detrimental cardiovascular effects, including
impaired vascular function, raised blood pressure, alterations in cardiac rhythm, blood clotting disorders, coro-
nary artery disease, and stroke. Considerable headway has beenmade in elucidating the biological processes un-
derlying these associations, revealing a labyrinth of multiple interacting mechanistic pathways. Several studies
have used pharmacological agents to prevent or reverse the cardiovascular effects of PM; an approach that not
only has the advantages of elucidating mechanisms, but also potentially revealing therapeutic agents that
could benefit individuals that are especially susceptible to the effects of air pollution. This review gathers inves-
tigations with pharmacological agents, offering insight into the biology of how PM, and other air pollutants, may
cause cardiovascular morbidity.
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1. Introduction

History has demonstrated the deadly consequences of air pollution:
the 1930Meuse Valley fog in Belgium saw a 3-day persistence of indus-
trial emissions that resulted in 60 deaths; 3 days of high air pollution
from the 1948 Donora air inversion in the USA led to ill-health in over
one-third of the town's population; the 5-day period of high air pollu-
tion of the 1952 London smog in the United Kingdom is estimated to
have caused between 4000 and 10,000 deaths. While these events
have not been forgotten, the awareness of the health effects of air pollu-
tion has grown considerably over the last decade. Today, governments
in both developed and developing countries alike have declared their
commitment to tackle the issue. Yet despite this attention, the health ef-
fects of air pollution persist at staggering levels, with estimates that air
pollution is responsible severalmillion premature deaths globally every
single year (Lim et al., 2012; World Health Organization, 2014). Indeed,
using 2015 data, the Global Burden of Disease group ranked ambient
(outdoor) air pollution as the fifth biggest risk factor for all-cause dis-
ease (Cohen et al., 2017). It is clear now that air pollution has effects
far beyond the lung; in almost all areas of the body, in fact
(Schraufnagel et al., 2019a, 2019b). However, the cardiovascular effects
of air pollution are especially prominent, with ischaemic heart disease
and stroke accounting for approximately a half of the early deaths at-
tributed to air pollution (Burnett et al., 2018; Cohen et al., 2017;
Lelieveld et al., 2019).

The biological mechanisms underlying the link between air pollu-
tion and cardiovascular disease has been the subject of intense research
over the last two decades. It is now recognised that the small particles in
air pollution can have detrimental effects throughout the cardiovascular
system; on the heart, the vasculature and the blood (Miller & Newby,
2020). Substantial progress has also been made in identifying the bio-
logical pathways by which particles inhaled into the lung then progress
to effects on the cardiovascular system (Miller, 2014, 2020; Miller &
Newby, 2020; Munzel et al., 2017). This mechanistic knowledge has
practical value as it sheds light on which pollutants are likely to be the
most harmful, whomay be themost susceptible, and reveals the param-
eters with which to measure to investigate the potential benefits of in-
terventions. Yet the sheer volume of data amassed has also brought the
new challenge of trying to ascertain which mechanisms are the key
drivers for pathophysiological effects. The complexity of the underlying
biological processes involved in the health effects of air pollution, and
their many interactions, has left researchers with a vast maze of path-
ways to negotiate. To this end, this review gathers together research
that has used pharmacological agents to prevent or reverse the cardio-
vascular effects of air pollutants, especially those caused by inhaled par-
ticles. While reducing air pollution should undoubtedly be the primary
route to reduce its health impact, a safe cost-effective pharmacological
intervention could have value in ameliorating the effects of air pollution
in those that are especially susceptible to the actions of pollutants and/
or have an unavoidable high exposure. Additionally, one of the key ad-
vantages of pharmacological studies is that they offer an additional de-
gree of certainty on the issue of causality of specific biological pathways
underlying any observed associations. Thus, pharmacological ap-
proachesmay provide some useful signposts through the biological lab-
yrinth of air pollution and cardiovascular disease.

2. What is air pollution?

There are many different sources of air pollution in our environ-
ment; from natural sources such as dust storms, wild-fires and volcano
eruptions, to anthropological sources such as agriculture, crop-burning,
industry, heating, cooking and vehicle emissions. While biomass burn-
ing is a prominent source of air pollution in developing countries, the
focus of the majority of global research attention has been on urban
pollutants and those from combustion of fossil fuels. Urban air pollution
is a complex mixture of many different gases, volatile liquids and
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particulates (Niemann et al., 2017) (Miller, 2020). People are exposed
to a mixture of air pollutants, varying over time and between environ-
ments, and the complexities of thismixture and the biological responses
present a challenge in identifyingwhich specific pollutantsmay bemost
harmful to health. Both gaseous pollutants (such as ozone, nitrogen ox-
ides and sulphur dioxide) and particulates have detrimental effects on
cardiovascular health, however, epidemiology studies have found the
greatest and most robust associations for the particulate matter (PM)
in the air (Brook et al., 2010). Urban PM is a highly heterogenous mix-
ture of particulates arising from many sources and containing particles
of different sizes and composition. These characteristics of particles in-
fluence their potential toxicity, for example, by determining the ability
of the particle to access different regions of the body (Raftis & Miller,
2019), the chemical reactivity of the particle and the consequent actions
of the particle in the biological compartment (Miller, 2020) (see
Section 4). PM in the environment is monitored by using a mass metric
of particles of certain sizes, with PM10 and PM2.5 representing
particulate matter with a diameter smaller than 10 or 2.5 μm,
respectively. A third category of particles is ultrafine particles (PM
with a diameter of 100 nm of less: PM0.1 or ‘nanoparticles’) which
cannot currently be measured routinely outside the laboratory on any
great scale. Th The very small size of ultrafine PM means it has a low
mass and is not adequately measured by PM10 or PM2.5 metrics.
However, the small particle size and high surface area engenders the
particles with a high capacity to cause detrimental health effects
(Ohlwein, Kappeler, Kutlar Joss, Kunzli, & Hoffmann, 2019). In urban
environments, a significant proportion of PM2.5 and ultrafine PM is de-
rived from combustion of fuels, and vehicle exhaust in particular is a
major source of ultrafine PM (Geller et al., 2006; Steiner, Bisig, Petri-
Fink, & Rothen-Rutishauser, 2016). The complex composition of urban
PM also plays a major role in toxicity. Combustion-derived nanoparti-
cles, such as diesel exhaust particulate (DEP), are primarily composed
of an elemental and organic carbon core, with a vast mixture of many
thousands of different chemicals adsorbed to its surface (Alves et al.,
2015; Schuetzle et al., 1994; Steiner et al., 2016; Wichmann, 2007)
(Fig. 1). Organic carbon species and reactive transition metals on the
surface of DEP are believed to be key drivers of their toxicity (Cassee,
Heroux, Gerlofs-Nijland, & Kelly, 2013; Gerlofs-Nijland et al., 2009;
Miller, Shaw, & Langrish, 2012; Schwarze et al., 2007; Steiner et al.,
2016).

3. Air pollution and cardiovascular disease

While the respiratory effects of air pollution have been recognised
for many decades, the last two decades of research have cemented car-
diovascular disease as a significant consequence of air pollution. Both
acute and chronic exposure to air pollution has been implicated in a
wide range of cardiovascular conditions, including myocardial infarc-
tion, heart failure, hypertension and stroke (Brook et al., 2010; Miller
& Newby, 2020). Epidemiological studies have more consistently
shown relationships between these conditions with particulate compo-
nents, as compared to gaseous constituents, although there is still a sub-
stantial body of evidence showing detrimental effects of gases such as
nitrogen dioxide (NO2) in cardiovascular conditions (Brook et al.,
2010; Newby et al., 2015). Long-term exposure to PM2.5 has been
shown to be associatedwith both all-causemortality and cardiovascular
mortality (Hoek et al., 2013; Lelieveld et al., 2020; Pope III et al., 2004;
Pope III et al., 2019; Pun, Kazemiparkouhi, Manjourides, & Suh, 2017;
Wang et al., 2020). Furthermore, endpoints such as carotid intima thick-
ness and coronary artery calcification, have linked air pollution expo-
sure with chronic conditions like atherosclerosis (Hoffmann et al.,
2007; Kunzli et al., 2005; Provost, Madhloum, Int Panis, De Boever, &
Nawrot, 2015). Associations tend to be more robust for PM2.5 than
PM10 (Brook et al., 2010; Liu et al., 2019), suggesting PM2.5 is also
responsible for a substantial proportion of the effects of PM10. Due to
the difficulty of measuring ultrafine particles at a population level,



Fig. 1.Composition and categorization and air pollution andparticulatematter. a. Examples of key sources of air pollution,which can be both natural or anthropological. b. Air pollution can
be broadly characterized into gases, volatile liquids and particles. c. Different size categories of PM. d. Schematic showing the complex composition of a combustion-derived nanoparticle
such as diesel exhaust particulate. Adapted from (Miller & Newby, 2020).
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epidemiological evidence is limited for this PM category, although using
particle number as a surrogate for ultrafine PM supports associations
with cardiovascular disease (Stone et al., 2017).

Controlled exposure studies provide a useful means to explore the
actions of specific pollutants withoutmany of the confounders of epide-
miological studies. In these investigations, a volunteer inhales a specific
pollutant at a controlled level for a short period of time (usually 1–3 h)
within a chamber or directly to the nose and mouth. Exposures can be
concentrated ambient particles (CAPs) or purer sources of pollutants
such as diluted vehicle exhaust. Our own group carried out a pro-
gramme of studies in both healthy volunteers and patients with cardio-
vascular disease, with participants being exposed to dilute diesel
exhaust to study the cardiovascular effects of combustion-derived
nanoparticles (Mills et al., 2009). Acute exposure (1 or 2 h) to diesel ex-
haust at a concentration representative of traffic-congested city centre
roads had profound actions across the cardiovascular system. Exposure
impaired vascular relaxation responses (Mills et al., 2005), increased ar-
terial stiffness (Lundback et al., 2009), promoted blood clotting (Lucking
et al., 2008), impairedfibrinolysis (Mills et al., 2005) and increased isch-
aemic stress in the heart (Mills et al., 2007). Other studies also found
that controlled exposure to diesel exhaust impairedmicrovascular func-
tion (Wauters et al., 2013) and increased blood pressure (Cosselman
et al., 2012; Tong et al., 2014). There are also isolated studies demon-
strating that diesel exhaust may alter the rhythm of the heart (Tong
et al., 2014), although such effects are more common to other forms of
urban PM than pure vehicle exhaust in human studies (Mills et al.,
2011). The particulate elements of diesel exhaust drives these acute car-
diovascular effects, as exposure of gaseous pollutants in isolation (e.g.
NO2 or ozone (O3)) do not induce cardiovascular changes (Barath
et al., 2013; Langrish et al., 2010), and removal of particulates from
the whole exhaust prevents the acute cardiovascular impairment
(Lucking et al., 2011; Mills et al., 2011). Additionally, animal studies
have shown that particulate components of urban PM or vehicle
exhaust have the capacity to promote growth of atherosclerotic
3

plaques, as well as increase markers of vulnerability to plaque rupture
(plaque rupture may be the trigger for a heart attack, stroke or
embolism) (Bai et al., 2011; Campen et al., 2010; Miller et al., 2012;
Miller et al., 2013; Moller et al., 2011). Overall, PM, and combustion-
derived nanoparticles in particular, have the capacity to cause multiple
types of dysfunction throughout the cardiovascular system,with thepo-
tential to instigate early events in disease, exacerbate existing disease
processes and potentially even trigger the acute cardiovascular events
associated with mortality.

4. Biological pathways

The cellular pathwaysmediating the cardiovascular effects of PM are
many and varied (see Miller & Newby, 2020; Munzel et al., 2017 for
more detailed description). Oxidative stress and inflammation are hall-
marks of pollutant exposure both in the lung and throughout the cardio-
vascular system (Kelly & Fussell, 2017; Miller, 2020; Miller et al., 2012).
Urban PM and DEP have the capacity to generate oxygen free radicals
from the particle surface (Briede et al., 2005; Ikeda, Suzuki, Watarai,
Sagai, & Tomita, 1995; Miller et al., 2009). Furthermore, a number of
components within PM can disrupt cellular homeostasis, inducing the
formation of free radicals from the mitochondria and a series of cellular
enzymes, such as nicotinamide adenine dinucleotide phosphate (NAD
(P)H)-oxidase, myeloperoxidase, xanthine oxidase, and uncoupled ni-
tric oxide synthase (Miller, 2014; Valavanidis, Fiotakis, & Vlachogianni,
2008). A tiered approach to particle toxicity has been formulated for
the respiratory effects of inhaled nanoparticles, whereby successive an-
tioxidant defences are depleted (e.g. the lung lining fluid, followed by
the epithelial cell defences) eventually leading to insurmountable
changes to cell function inducing oxidative stress and changes in cell
function (Nel, Xia, Madler, & Li, 2006). A similar scenario is likely to
occur in other organs systems following persistent transmission of the
signal to that organ (see below). Indeed, a meta-analysis found clear as-
sociations between PM exposure of levels of oxidatively-modified lipids
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and DNA in the blood (Moller & Loft, 2010). Oxidative stress also plays
specific roles in the cardiovascular system, one ofwhich is the loss of en-
dothelial cell function. Nitric oxide (NO) is a key mediator within the
vasculature, opposing vascular contractility, dampening down the prolif-
erative response in the smooth muscle, inhibiting platelet aggregation
and regulating circulating inflammatory cells. Particulates such as DEP
have a high capacity to generate the free radical superoxide, which scav-
enges NO (Miller et al., 2009). The resultant loss of NO bioavailability
promotes vasoconstriction, vascular remodelling, platelet aggregation
and interaction of the vasculature with inflammatory cells. Thus, the ox-
idative effects of PM have the capacity to promote numerous steps in the
pathophysiology of different cardiovascular diseases.

Inflammation goes hand-in-handwith oxidative stress formany dis-
ease processes, but it is also a key pathway in the biological effects of in-
haled particles. PM within the lung is readily phagocytosed by alveolar
macrophages, presumably as an attempt to defend against the invading
xenobiotic. The overload of these cells by large numbers of bio-
persistent particulates containing pro-inflammatory chemical constitu-
ents readily leads to over-activation of themacrophage triggering an in-
flammatory response (Stone et al., 2017). The inflammation resulting
from neutrophil andmacrophage activation, leads to recruitment of ad-
ditional inflammatory cells to the alveoli, which can amply the inflam-
mation to an extent that causes injury to the surrounding tissue,
potentially leading to fibrosis and loss of pulmonary function. PM expo-
sure also promotes inflammation in the cardiovascular system (Hiraiwa
& van Eeden, 2013; Liu et al., 2019). A combination of pro-inflammatory
changes in endothelial cell phenotype (Shaw et al., 2011) and over-
activation of circulating leucocytes (Yatera et al., 2008) leads to associ-
ations between the two cell types that are representative of key pro-
cesses in the initiation of atherosclerosis. Similarly, PM exposure can
exacerbate several later stages of different cardiovascular diseases
through inflammation, from increased recruitment of inflammatory
cells to myocardial infarction, promoting inflammation within
Fig. 2. Biological pathways through which inhaled pollutants could induce cardiovascular mor
inhaled particles have actions on the cardiovascular system. These include: 1) the passage of bi
passage of particles (or chemicals eluting from particles) into the circulation to directly impair
neural afferentswhich can alter the activity of the autonomic nervous system. Oxidative stress is
that urban PM exerts many pathophysiological changes on different aspects of the cardiovascu
rate variability. Adapted from (Niemann et al., 2017).
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atherosclerotic plaques and through synergies with platelets and coag-
ulation factors to increase the risk of thrombosis (Hadei & Naddafi,
2020). The complex molecular mechanisms by which oxidative and in-
flammatory actions of PM could promote cardiovascular disease are
well described in a recent review (Rao, Zhong, Brook, & Rajagopalan,
2018).

One current area of mechanistic research in this field is the means by
which the pulmonary actions of particulates are transferred into actions
on the cardiovascular system. Several pathways have been hypothesised
(see Miller & Newby, 2020 for further details; Fig. 2). Briefly, the inflam-
matory response induced by inhaled PMmay ‘spill-over’ into the circula-
tion, the mediators of which then induce a systemic response and
indirectly affect the cardiovascular system (Seaton, MacNee, Donaldson,
& Godden, 1995). Alternatively, inhaled PM (or the inflammation/oxida-
tive stress induced by it) may stimulate sensory receptors on the alveolar
surface that leads to changes in cardiac function via alterations in auto-
nomic regulation (Perez, Hazari, & Farraj, 2015) or central-control of en-
docrine factors (Kodavanti, 2016). Lastly, the smallest ultrafine particles
maybe sufficiently small to cross the alveolar-capillary barrier themselves
and gain access to the blood whereby theymay directly interact with the
cardiovascular system, or other organs (Miller et al., 2017; Oberdorster
et al., 2002). The subtleties of each of these pathways are still being de-
fined, but together these processes have the means to encompass the
multiple actions of inhaled PM on cardiovascular function. The relative
contribution of these different routes is likely to impact the effectiveness
of different agents that could be used to prevent the actions of PM.

5. Pharmacological-inhibition of the cardiovascular actions of PM

Surprisingly, there has been relatively little attention given to phar-
macological interventions that could block the cardiovascular effects of
inhaled PM. A number of epidemiological studies have adjusted for pa-
tient medication as confounders in their analysis, although this has not
bidity and mortality. Three main hypotheses have been proposed for the means by which
ological mediators (e.g. inflammatory cytokines) from the lung into the circulation; 2) the
cardiovascular function; 3) activation of alveoli sensory receptors leading to triggering of
a common feature atmultiple stages of thedifferent pathways. Thediagramalsohighlights
lar system that ultimately increases cardiovascular morbidity and mortality. HRV = heart
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been investigated as a primary aim in large scale studies or meta-
analyses. Given the prominent role of oxidative stress, pharmacological
approaches to prevent or reverse the effects of air pollution have
centred on compounds with antioxidant properties (Barthelemy,
Sanchez, Miller, & Khreis, 2020; Peter et al., 2015; Romieu, Castro-
Giner, Kunzli, & Sunyer, 2008). A recent review discussed the use of an-
tioxidants to protect against the pulmonary effects of air pollution
(Whyand, Hurst, Beckles, & Caplin, 2018). The current review focuses
on the use of pharmacological agents on the cardiovascular endpoints
affected by PM exposure.

5.1. Cardiovascular mortality and morbidity

While a detailed discussion of large cohort epidemiological studies
looking at the effects of air pollution are beyond the scope of this review,
it is worth mentioning selected studies that have explored the effect of
antioxidant-rich diets or supplements on gross cardiovascular end-
points such as mortality rates, or morbidity via hospital admissions
and acute cardiovascular events (see also Barthelemy et al., 2020).

A US cohort of over 500,000 adults (ages 50–71) found that long-
term exposure (>10 years) to the air pollutants NO2 and PM2.5 was
associated with an increased mortality from cardiovascular causes
(e.g. ischaemic heart disease, cerebrovascular disease and cardiac
arrest) (Lim et al., 2019). Using participant diaries an “alternative
Mediterranean diet” score was formulated with higher scores (e.g.
from fruit and vegetable intake, oil-rich fish) representing those with
higher antioxidant intake. Participants with greater adherence to the
Mediterranean diet were shown to have lower rates of pollutant-
attributed cardiovascular mortality. In ~350,000 European subjects,
Beelen et al. found associations between long-term exposure to PM2.5

and mortality from cerebrovascular causes, but not other cardiovascular
causes of mortality (although air pollution levels in this study were
generally low and medication use was not fully addressed) (Beelen
et al., 2014). Adjustment for dietary factors (fruit and vegetable intake)
did not influence the association between PM2.5 and cerebrovascular
mortality. A previous study from the same group found that ‘natural-
cause’ mortality was higher with exposure to black smoke (a surrogate
for combustion-derived PM) (Beelen et al., 2008). This effect was greater
in thosewith low fruit consumption, although the effect did not reach sta-
tistical significance.

In regards to cardiovascular morbidity, PM2.5 has been associated
with an increased risk in the incidence of coronary atherosclerosis and
myocardial infarction in Ohio, USA (Hartiala et al., 2016). These associ-
ations were not affected by adjustment for statin therapy. In a US
study of nurses, the risk of myocardial infarction was found to be in-
versely associated with distance of residential address from a major
road (Hart, Rimm, Rexrode, & Laden, 2013). While the association was
not changed by adjustment with an index of healthy diet (albeit dietary
information was only available on a 4-year basis), there was a slight at-
tenuation in associations with myocardial infarction when restricting
analysis to categories that were closest and furthest away from the
roads.

5.2. Cardiac effects

5.2.1. Heart rate variability
Exposure to air pollution is associated with changes to the rhythm

and contractility of the heart. Many epidemiological studies have
made use of the Holter monitoring of electrocardiogram (ECG) record-
ings as a non-invasivemeans of assessing the cardiac effects of air pollu-
tion (Buteau & Goldberg, 2016). Heart rate variability (HRV) is a set of
parameters derived from detailed analysis of the regularity of the ECG.
Theseparameters are indicative of themodulation of the electrical activity
of the heart, in particular its regulation by the autonomic nervous system.
For most HRV parameters, a reduction would confer a greater risk of de-
veloping cardiovascular conditions (at a population level), with reduced
5

HRV linked to increased mortality from sudden death and ventricular ar-
rhythmia in both healthy and diseased individuals (Kleiger, Miller, Bigger
Jr., &Moss, 1987; Lahiri, Kannankeril, & Goldberger, 2008). While there is
a great deal of inconsistency between parameters and individual studies,
both gases and PM in air pollution reduce heart rate variability in a man-
ner that is indicative of increased sympathetic drive and decreased para-
sympathetic input (Buteau & Goldberg, 2016).

5.2.1.1. Antioxidants. A number of studies have considered whether
antioxidant-rich diets can ameliorate the effects of air pollution on
HRV. Romieu and colleagues provided participants (>60 years old)
with either a fish oil or soy oil (control) supplement for 6-months
(Holguin et al., 2005; Romieu et al., 2005). PM2.5 exposure was
associated with detrimental reduction in selected HRV parameters.
These effects were significantly decreased (i.e. ‘improvement’ in HRV)
in those taking the fish oil supplements, whereas soy oil supplements
had lesser or no benefits. PM2.5 was associated with detrimental
changes in HRV in elderly men with genetic deficiencies in methionine
pathways, the effects of which were lessened in those with higher in-
takes of methionine or vitamins B6 or B12 (Baccarelli et al., 2008).
Chamber studies, where volunteers are asked to inhale specific pollut-
ants under controlled conditions for short periods (usually 1–2 h),
have also been used to investigate if antioxidant supplements prevent
the effects of pollution on HRV (Tong et al., 2012). Four weeks of oral
omega-3 fatty acid supplements attenuated CAPs-induced reductions
in high to low frequency ratio metrics and elevations in normalized
low-frequency HRV; a benefit that was not evident in the control
group (olive oil supplements). Additionally, this study also found that
the fish-oil supplements improved lipid profiles in these volunteers. An-
imal studies also demonstrate beneficial effects of antioxidants on the
cardiac parameters following PM exposure. For example, HRV changes
in response to pulmonary administration of urban PM to rats were
prevented by the antioxidant N-acetylcysteine (NAC) (Rhoden,
Wellenius, Ghelfi, Lawrence, & Gonzalez-Flecha, 2005). Additionally,
the cardiac oxidative stress induced by the PM was inhibited by beta-
blockers. These results highlight the difficulty epidemiological studies
face in establishing the cardiac effects of PM in patients that are often
taking on multiple medications.

5.2.1.2. Beta-blockers. HRV is principally derived from regulation of the
heart via the autonomic nervous system and, accordingly, beta-
blockers can prevent the changes in HRV associated with air pollution.
Using a combination of personal (measured on individuals using a por-
table device) and ambient (use of stationary monitoring networks) air
pollution, outdoor PM2.5 (particularly that associated with traffic) was
linked to detrimental effects on HRV parameters, but only in patients
that were not taking beta-blockers (de Hartog et al., 2009). The same
group measured S-T segment depression (a region of the ECG that can
indicate ischaemic stress in coronary arteries) in patients with stable
coronary artery disease while exercising in the city of Helsinki, Finland
(Pekkanen et al., 2002). Carbon monoxide, NO2, PM2.5, particle
number (used as a surrogate for ultrafine PM), but not the larger
coarse PM, was associated with an increased prevalence of S-T segment
depression. The associations were stronger in those not taking beta-
blockers, indicating that these effects may be reflective of autonomic
regulation of the heart.

5.2.1.3. Statins. Statins are now a ubiquitous medicine used to lower
blood cholesterol, although their pleotropic actions (e.g. anti-oxidant,
anti-inflammatory) are well recognised. Inmiddle-agedwomen, statins
were found to eliminate associations between PM2.5 and blood levels of
C-reactive protein (a marker of inflammation/acute phase response)
(Ostro et al., 2014). In relation to cardiac parameters, statins were
shown to completely prevent the effects of PM2.5 on high-frequency
HRV parameters in individuals that were null for the glutathione-S-
transferase M1 (GSTM1) allele (making these individuals more
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susceptible to the effects of oxidative stress) (Schwartz et al., 2005). The
investigators propose that reductions in oxidative stress were partially
to account for the beneficial effects.

5.2.1.4. Angiotensin antagonists. Long-term exposure to traffic-related
PM10 was associated with HRV in middle-aged to elderly subjects in
those taking angiotensin converting enzyme (ACE) inhibitor medica-
tion, but not those who were not (Adam et al., 2012). This reason for
this is not presently clear, and deserves further investigation.

5.2.2. Arrhythmia
Air pollution has also been shown to induce distinct periods of ar-

rhythmia in epidemiological studies and animal models of drug-
induced arrhythmia (Carll et al., 2010; Carll et al., 2013; Carll et al.,
2015). A number of laboratory studies have addressed the role of oxida-
tive stress in arrhythmia using antioxidant compounds. Direct addition
of DEP to cultured cardiomyocytes reduced contractile function, an ef-
fect that could be partially prevented by free radical scavengers (NAC
or tiron) or inhibitors of cellular sources of free radicals (oxypurinol to
inhibit xanthine oxidase; apocyanin to inhibit NAD(P)H oxidase)
(Gorr et al., 2015). The direct cytotoxicity or apoptotic actions of various
PM on cardiomyocytes can be inhibited byNAC or diemethylthiourea (a
scavenger of hydroxyl radicals and hydrogen peroxide) (Kim et al.,
2012; Knuckles et al., 2013). Pulmonary exposure of rats to DEP
prolonged the cardiac action potential and induced premature ventric-
ular contractions (Kim et al., 2012). These effects could be prevented
by pre-treatmentwithNAC. Robertson et al. used pulmonary instillation
of DEP in a ratmodel of cardiac ischaemia induced by coronary artery li-
gation (Robertson et al., 2014). Ligation was accompanied by long-
lasting cardiac arrhythmias, which were associated with high levels of
mortality. These effects were reduced by co-administration of a β1

receptor antagonist (metoprolol) or blockade of the alveolar sensory
receptors with a vanilloid receptor (transient receptor potential cation
channel V1; TRPV1) antagonist.

5.2.3. Myocardial infarction and heart failure (animal models)
Long-term exposure to air pollution has been associated with an in-

creased incidence of heart failure (Shah et al., 2013), with loss of the
contractility of ventricular cardiomyocytes and the development of
compensatory hypertrophy (Wold et al., 2012). Coronary artery ligation
in rats has been used to induce myocardial infarction (Robertson et al.,
2014). After a 45 min period of ischaemia, blood flow was restored,
and various staining methods were used to detect viable, ischaemic
and necrotic areas of the cardiac wall. Pulmonary instillation of DEP
prior to injury caused a 3-fold increase in the extent of myocardial in-
farction. These effects were reduced by co-administration of a β1recep-
tor antagonist or blockade of alveolar TRPV1 receptors. These findings
nicely demonstrated that DEP can precondition the heart to increase
susceptibility to ischaemic damage through sensory afferents via auto-
nomic innervation. A separate group demonstrated a beneficial effect
of combined β1-antagonist and β2-agonist therapy on preventing the
cardiac dysfunction caused by PM2.5 exposure in a rat model of acute
myocardial infarction (Gao et al., 2014). A similar model was used to
demonstrate that urban PM10 decreased endothelial nitric oxide
synthase (eNOS) and antioxidant enzyme expression in cardiac tissue,
togetherwith increased expression of pro-inflammatory inducible nitric
oxide synthase (iNOS) (Dianat, Radmanesh, Badavi, Mard, & Goudarzi,
2016). The antioxidant vanillic acid reduced the effects of PM10 on
cardiac antioxidant levels, and partially improved mitochondrial
disturbances and cardiac performance. Repeated exposure to PM2.5

also promoted cardiac oxidative stress and inflammation in otherwise
healthy rats (Zeng et al., 2018). Supplementation with selenium-rich
yeast dose-dependently inhibited these effects. Finally, nootkatone (an
anti-inflammatory and anti-oxidative compound found in grapefruit
extract) inhibited oxidative stress in the hearts of mice exposed to
DEP (Nemmar, Al-Salam, Beegam, Yuvaraju, & Ali, 2018).
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In light of evidence linking air pollution to heart failure, an intricate
study by Rajagopalan's group explored the effects of PM on cardiac re-
modelling (Ying et al., 2009). Remodelling in rats was induced by a
14-day infusion of angiotensin II, following a 12-week inhalation of
CAPs or filtered air. CAPs increased cardiac remodelling and collagen de-
position, an effect that could be prevented by co-infusion of fasudil (a
Rho kinase inhibitor). Together with detailed molecular exploration of
guanine exchange factors, their findings indicated that RhoA/Rho kinase
pathways were key to the cardiac remodelling.

5.3. Vascular system

5.3.1. Endothelial function
Inhalation of air pollutants promotes contractility of both the pulmo-

nary circulation and systemic vascular beds (Moller et al., 2011). Nu-
merous studies, both epidemiological (Brook et al., 2010; Newby et al.,
2015) and controlled exposure to pollutants (Brook et al., 2002; Mills
et al., 2009), have shown that inhaled PM leads to a change in vascular
tone to promote vasoconstriction and decrease vasodilator responses.
Endothelial dysfunction is a key characteristic by which vasodilator ca-
pacity is lost, with oxidative stress in particular being a prominent
mechanism (Miller, 2020; Miller et al., 2012). The use of pharmacolog-
ical agents to induce vasodilation through different mechanisms (Fig. 3)
has been used to show that PM exposure impairs vasodilators acting
through the NO pathway (both endothelial-dependent dilators and
endothelial-independent NO-donor drugs) which is suggestive of scav-
enging of this essential cardiovascular messenger by superoxide (Mills
et al., 2009).

5.3.1.1. Antioxidant agents. Similar to the HRV studies, the ability of
antioxidant-rich oil supplements to ameliorate the effects of air pollu-
tion have been considered using flow-mediated (endothelium-depen-
dent) dilatation of the brachial artery. In middle-aged volunteers,
controlled exposure of CAPs led to a decrease in flow-mediated dilata-
tion (Tong et al., 2015). Counter-intuitively, the fish-oil supplements
did not have a beneficial effect on this response, whereas an olive oil
supplement (used as control compound in previous studies by the in-
vestigators) did. The authors speculate that the anti-inflammatory
and anti-oxidative actions of oleic acid in the olive oil could account
for these beneficial effects, although it is not immediately clear why
these results should differ from those by the same authors which
show other cardiovascular benefits of fish oil but not olive oil. Another
controlled exposure study, this time to diesel exhaust, found that an
antioxidant regime (Vitamin C combinedwith NAC) increased the vaso-
constriction caused by diesel exhaust, rather than preventing it (Sack
et al., 2016). While the authors discuss a number of possible explana-
tions for the unexpected findings, they conclude that further work
would be needed to reach a satisfactory explanation.

Organ bathmyography techniques have been used to show that seg-
ments of rat coronary arteries exhibited impaired endothelium-
dependent relaxation after inhalation of diesel exhaust (Cherng et al.,
2011). Addition of superoxide dismutase (SOD) to the arteries reversed
the effects of DEP, suggesting an on-going production of superoxide in
these arteries leading to loss of NO bioavailability. Direct application of
isolated rodent arteries with DEP has been used to explore mechanistic
pathways of nanoparticles that could potentially translocate from the
lung into the circulation. The results parallel those of in vivo exposures,
in that both endothelium-dependent and NO-dependent vasodilators
are inhibited by diesel exhaust particle exposure (Ikeda et al., 1995;
Labranche et al., 2012;Miller et al., 2009). In these studies, SODpartially
prevented the vascular impairment, again demonstrating a role for
superoxide free radical. Aortic rings taken from the PM2.5 exposed
mice exhibited a greater contraction to phenylephrine and reduced
dilatation to acetylcholine, as well as potentiation of the response to a
Rho-kinase inhibitor (Sun et al., 2008; Ying et al., 2009). Apocyanin or
nitric oxide synthase (NOS; the enzymatic source of NO) inhibition



Fig. 3. Pharmacological approaches to assessing the mechanisms of the impaired vasodilator responses following exposure to pollutants. A combination of different stimuli and drug
infusions can be used to explore the mechanisms by which vasodilatation is impaired (see example scenarios). Changes in blood flow and infusion of drugs such as acetylcholine
(ACh) and bradykinin (BK) stimulate endothelial cells to synthesise nitric oxide (NO). NO diffuses to the smooth muscle to activate guanylate cyclase (GC) which ultimately induces
relaxation of the vascular smooth muscle and dilatation of the blood vessel. Drugs such as nitroglycerin (NTG or glyceryl trinitrate) and sodium nitroprusside (SNP) act independently
of the endothelium to generate NO from their molecular structure. Drugs such as verapamil (and isoprenaline in rodent models) activate receptors on vascular smooth muscle cells to
induce vasodilatation independently of NO. Exposure to PM tends to inhibit pathways involving NO, but not NO-independent pathways. This pattern suggests that oxidative stress is a
prominent mechanism of action, due to the scavenging of NO by superoxide free radicals (O2

-.). Other abbreviations: AC = adenylate cyclase, Ca2+L = L-type calcium channel, NOS =
nitric oxide synthase. Reproduced from (Miller, 2020).
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partially prevented the effect of PM2.5, indicating a likely role for
superoxide generation from NAD(P)H-oxidase and NOS uncoupling, re-
spectively (Sun et al., 2008). NAC inhibited the effects of ultrafine parti-
cles in PM2.5 after direct addition to isolated arteries. NAC and other SOD
mimetics have been shown to attenuate the effects of various sources of
PM in endothelial cells, e.g. inflammation, down-regulation of NOS,
tight-junction degradation (Du et al., 2013; Rui, Guan, Zhang, Zhang, &
Ding, 2016; Sharma et al., 2019; Tseng et al., 2015; Tseng, Wang,
Chang, Chang, & Chao, 2015). Additionally, inhibitors of inflammatory
pathways, myosin light chain kinase and calcium channel (Ca2+L )
blockers can also reverse the effects of PM on cultured endothelial
cells (Rui et al., 2016; Tzeng, Yang, Ueng, Lin-Shiau, & Liu, 2003).

Urban PM can generate superoxide through a number of different
pathways to induce a combined insult to endothelial function (Miller,
2014; Miller et al., 2012). These include redox reactions and superoxide
formation from the particle surface and from interaction with inflam-
matory cells, but also from stimulation of cellular enzymes in other
cell types. A role for superoxide generation from NAD(P)H oxidase has
been implicated in the vascular dysfunction in rats after inhalation of
urban PM2.5 (Kampfrath et al., 2011) or DEP (Labranche et al., 2012). Ac-
cordingly, the NAD(P)H oxidase inhibitor, apocyanin, restored NO gen-
eration from endothelial cells treated with ultrafine particles (Du et al.,
2013; Sun et al., 2008).

De-regulation of eNOS is another potential mechanism of endothe-
lial dysfunction. Two weeks exposure of rats to PM2.5 impaired
pulmonary artery vasodilation and decreased eNOS expression (Davel
et al., 2012). Sub-chronic exposure to PM2.5 leads to depletion of the
co-factors needed for the NO-generation from eNOS (Sun et al., 2008).
Furthermore, the use of NOS inhibitors or additional of NOS co-factors
can prevent the impairment induced by PM (Sun et al., 2008). The
7

antioxidant Tempol has also been shown to prevent the vascular insulin
resistance induced by CAPs via alterations in eNOS phosphorylation
(Haberzettl, O'Toole, Bhatnagar, & Conklin, 2016). These findings dem-
onstrate that NOS uncoupling, causing counter-production of superox-
ide from NOS instead of NO, is an important mechanism by which PM
causes vascular impairment.

5.3.1.2. Angiotensin and endothelin pathways. In addition to loss of vaso-
dilator pathways, exposure to PM can upregulate vasoconstrictor medi-
ators. Angiotensin II is a potent endocrine vasoconstrictor molecule.
Losartan (an angiotensin II type-1 receptor antagonist) could reverse ef-
fects of PM2.5 on senescence in cultured endothelial cells and the
impaired endothelial dilatation in isolated coronary arteries (Sharma
et al., 2019). Similarly, in isolated pulmonary arteries, the pro-
constrictor effect of urban PM could be prevented by losartan (Li,
Carter, Dailey, & Huang, 2005). Endothelin-1 (ET-1) is another potent
vasoconstrictor mediator, known for paracrine and endocrine actions
on endothelial and vascular smooth muscle cells, as well as the ability
to exacerbate inflammation and oxidative stress in the vasculature.
Two studies have shown that antioxidant-rich fish oil supplements
have been shown to reduce the levels of circulating vasoconstrictor
ET-1 that are associated with ambient PM2.5 exposure (Lin et al.,
2019) or controlled exposure to CAPs (Tong et al., 2015).

The role of endothelin pathways was also explored in-depth in
healthy volunteers after controlled exposure to diesel exhaust
(Langrish et al., 2009). Forearm plethsymography was used to show
that diesel exhaust decreased endothelial- and NO-dependent vasodila-
tion. Diesel exhaust itself did not increase levels of ET-1 in the blood,
however, infusion of ET-1 led to a disproportionately large vasoconstric-
tor response following diesel exhaust inhalation. Through infusion of
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combinations of ETA and ETB receptor antagonists, it was determined
that the pro-constrictor effect of DE was not necessarily due to up-
regulation of ET-1 receptor levels, but more likely to be due to an exag-
gerated response to vasoconstriction due to the loss of the countering
dilatation of NO. In support of this finding, a rat study using NOS and
endothelin receptor inhibitors suggested that the pro-constrictor effect
of ET-1 in diesel exhaust-exposed animals was due to a combination of
both loss of NOS and inhibition of endothelial ETB receptors (Cherng
et al., 2011).

5.3.2. Blood pressure
Exposure to air pollution affects not only on the pulmonary blood

vessels, but also conductance and resistance arteries in the systemic cir-
culation. The pro-constrictor/anti-vasodilator effects of air pollution in
resistance arteries can be accompanied by elevations in blood pressure
(“hypertension”) (Brook & Rajagopalan, 2009; Yang et al., 2018).
While these increases are often small (e.g. 1–5 mmHg per interquartile
increase in pollutant), high blood pressure is a major risk factor for car-
diovascular disease, and even small elevations in blood pressure across
a population would be expected to be associated with substantial car-
diovascular morbidity.

Several studies have addressed the ability to antioxidants to limit the
hypertensive effects of air pollution. Brook et al. found that a 2-h expo-
sure of PM2.5 and ozone in healthy volunteers led to an increase in blood
pressure (2.5–4 mmHg), without changing brachial artery diameter (a
conductance vessel) (Brook et al., 2009). The endothelin antagonist,
bosentan, caused a marginal blunting of the hypertensive response,
whereas responses in the vitamin C group were not significantly differ-
ent from the placebo. Recently, cardiovascular performance was
assessed in fit individuals carrying out a strenuous exercise test in pol-
luted versus non-polluted regions of the city of Tunisia (Boussetta,
Abedelmalek, Khouloud, Ben Anes, & Souissi, 2019). Exercising in pollu-
tion was associated with higher heart rate and systolic blood pressure.
Interestingly, consuming a half litre of red-orange juice (containing
high levels of flavanones and vitamin C) prior to the exercise blunted
the cardiovascular effects of pollution.

In a detailed mechanistic study, Sun et al. performed a 10-week ex-
posure to PM2.5 in a rat model of hypertension induced by infusion of
angiotensin-II (Sun et al., 2008). There was substantially greater blood
pressure (up to 30 mmHg) between the PM2.5 versus filtered air
groups. In a spontaneously hypertensive ratmodel, while in vivo PM ex-
posure did not affect blood pressure itself, isolated blood vessels from
exposed rats exhibited an attenuated ex vivo relaxation to endothelial
dependent vasodilators via a mechanism that involved NAD(P)H oxi-
dase (Labranche et al., 2012). Finally, thymoquinone, a compound
from Nigella seeds with anti-inflammatory and antioxidant activity,
inhibited the increased systolic blood pressure induced by acute expo-
sure to DEP in mice (Nemmar et al., 2011).

5.3.3. Atherosclerosis
Loss of endothelial function is a hallmark of the early stages of ath-

erosclerosis, leading to accumulation of inflammatory cells and lipids
in the vascular wall of arteries. In particular, low density lipoprotein
(LDL) in the blood can become oxidised (oxLDL) and preferentially
taken-up by macrophages leading to the growth of lipid-rich plaques
that characterise atherosclerosis. The erosion or rupture of advanced
plaquesmay induce thrombosiswhich can occlude the artery triggering
a cardiovascular event such as a heart attack or stroke. Air pollution has
been associated with all these different stages of atherothrombotic dis-
ease, including loss of endothelial function, pro-inflammatory changes
in endothelial cells, oxidation of circulating lipoproteins, growth of ath-
erosclerotic lesions, indicators of plaque vulnerability and increased
thrombogenicity of the blood (see Miller et al., 2012; Moller et al.,
2011). These mechanistic findings underpin epidemiological observa-
tions that air pollution is associated with an increased incidence of ath-
erosclerosis, myocardial infarction and stroke (Brook et al., 2010).
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Because the development of atherosclerosis occurs over many de-
cades in humans, there are limited clinical studies on the effects of pol-
lution on atherosclerosis. However, blood lipid profiling has been used
to consider one facet of the pro-atherosclerotic effects of air pollution.
For example, 4 weeks prior to inhalation of CAPs in middle-aged volun-
teers led to increases in blood triglycerides and very low-density lipo-
protein, and a trend towards increased total cholesterol (Tong
et al., 2012). These changes were evident in volunteers taking
olive oil supplements, but not those fish oil supplements, suggest-
ing that the anti-oxidant properties of the fish oil supplements
could off-set the effects of PM exposure on lipids. Neither of the
supplements had particularly striking effects on blood lipids prior
to CAPs exposure. Adhesion molecules play a role in tethering in-
flammatory cells to the vascular wall in the early stages of athero-
genesis. Alexeeff and colleagues found associations between black
carbon exposure (a constituent of PM often used as a surrogate for
traffic-derived PM or other combustion sources) and blood levels
of the adhesion molecule intercellular adhesion molecule-1
(ICAM-1) (and a trend for vascular cell adhesion molecule-1
(VCAM-1)) in elderly men (Alexeeff et al., 2011). Associations
were greater in those who were diabetic, whereas the associations
were not observed in individuals taking statins. Separate studies
in elderly (Alexeeff et al., 2011) or diabetic individuals (O'Neill
et al., 2007) also found stronger associations between PM2.5 and
BC exposure and levels of ICAM-1, VCAM-1 and von Willibrand fac-
tor (vWF) in those not taking statins, compared to those that were.

Cell culture studies have also addressed some of the early stages of
atherosclerosis. Despite the pro-oxidative nature of DEP, addition of
DEP directly to cultured endothelial cells in vitro had limited effects
on cell phenotype unless very high concentrations were used (Shaw
et al., 2011). However, if DEP was first incubated with monocyte-
derived macrophages, followed by treatment of the endothelial cells
with themediators released from themacrophages, therewas amarked
activation of endothelial cells in terms of expression of pro-
inflammatory adhesion molecules and release of cytokines. These ef-
fects could be partially inhibited with the tumour necrosis factor alpha
(TNF-α) binding agent, etanercept, suggesting that TNF-α released
from DEP-stimulated macrophages is an important regulator of DEP-in-
duced endothelial dysfunction.

Transgenic mice, such as apolipoprotein-E (ApoE) knockout mice,
have been used to elaborate on the mechanisms underlying the
development of atherosclerosis. These mice cannot clear cholesterol
from the blood effectively, leading them to develop high levels of
plasma cholesterol and rapid formation of atherosclerotic plaques
within 5–10 weeks of high fat feeding. There is a large body of research
using these murine models to demonstrate that air pollution promotes
both the growth and development of atherosclerotic plaques, and po-
tentially their vulnerability to rupture (Moller et al., 2011). There are
surprisingly few studies using pharmacological agents to prevent the
pro-atherosclerotic effects of air pollution in atherosclerosis-prone
mice, possibly in part due to the complex multifaceted nature of under-
lying pathways. For example, a four-month CAPs inhalation study in fat-
fed ApoE knockout mice led to increased lipid andmacrophage content
of atherosclerotic plaques, as well as an increase in NAD(P)H oxidase
expression (Ying et al., 2009). Vascular dysfunction was also observed,
including an attenuated contractile response to phenylephrine which
could be restored by a soluble guanylate cyclase (sGC) inhibitor. The in-
vestigators speculate that sGC may have been upregulated in vascular
smooth muscle cells to compensate for loss of NO bioavailability. Lastly,
while free radical scavenging compounds have not been tested in
pollutant-treated atherosclerotic mice, selenium supplementation,
was found to reduce both oxidative stress and VCAM-1 levels in healthy
rats, which could ameliorate the early stages of atherosclerosis (Zeng
et al., 2018). Together these studies support the theory that oxidative
stress is a key pathway in the pro-atherosclerotic effects of PM exposure
(Miller et al., 2012; Miller et al., 2013).
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5.4. Haemostasis

5.4.1. Biomarkers of thrombogenicity
Exposure to air pollution has been shown alter a number of different

biomarkers that are associated with increased thrombogenecity of the
blood. These include fibrinogen, tissue factor, vWF, P-selectin, as well
as decreases in the activity of fibrinolytic mediators that mediate clot
breakdown (Delfino et al., 2009; Franchini, Guida, Tufano, & Coppola,
2012; Robertson & Miller, 2018). Despite the involvement of multiple
targetable mechanisms, there is a paucity of studies that have used
pharmacological approaches to prevent the pro-thrombotic effects of
air pollution. Associations between markers of combustion-derived
PM and circulating P-selectin were weaker in elderly subjects taking
the anti-platelet agent clopidogrel compared to those that were not
(Delfino et al., 2009). A few panel studies have investigated fish-oil sup-
plements. Healthy college students in Shanghai, China, given five
months of fish oil supplements during the polluted winter season,
showed reduced blood fibrinogen and vWF levels compared to the pla-
cebo group (sunflower oil), in parallel to improving markers of blood
anti-oxidant status and endothelial function (Lin et al., 2019). Endothe-
lial cells release the fibrinolytic molecule tissue plasminogen activator
(t-PA) that mediates the breakdown of blood clots. Unexpectedly, con-
trolled exposure to CAPs increased t-PA levels in elderly individuals,
possibly as a compensatory mechanism to counter pro-thrombotic
pathways (Tong et al., 2015). t-PA release was greater in participants
taking olive oil supplements compared to those who were not taking
supplements. This suggests that the antioxidant effects of the oil im-
proved endothelial function, although the lack of a similar effect in
those takingfish oil supplementswas surprising. The study also showed
some indications that ACE inhibitors or statins influenced the action of
CAPs on D-dimer levels, although the study was not powered to suffi-
ciently address this point. Other studies have also showed that associa-
tions between exposure to combustion-derived PM and circulating vWF
(as well as markers of inflammation and oxidative stress) are weaker in
individuals taking statins compared to those who are not (Delfino et al.,
2009; O'Neill et al., 2007).

5.4.2. Thrombosis models
Laboratory studies have the advantage of being able to address the

functional process of thrombosis itself rather than biomarkers in isola-
tion. Both urban PM and oil-fly ash PM decreased the time required
for blood to clot in vitro (Metassan, Charlton, Routledge, Scott, &
Ariens, 2010; Sangani, Soukup, & Ghio, 2010). This effect could be
inhibited by complexing iron with deferoxamine or the hydroxyl-
radical scavenger mannitol, suggesting that iron in the PM catalysed
the production of hydroxyl free radicals leading to increased blood
coagulability. In another in vitro assay, Nemmar and colleagues
demonstrated that the antioxidant/anti-inflammatory agent, emodin,
prevented the increased platelet activation and thrombosis caused by
DEP (Nemmar et al., 2015). Furthermore, treatment of cultured endo-
thelial cells with ultrafine PM promoted the ability of these cells to
generate active thrombin from its substrate (Snow, Cheng, Wolberg,
& Carraway, 2014). This effect was attributed to free radical generation
as the thrombin generation could be reversed by SOD and catalase
(which breakdown superoxide and hydrogen peroxide, respectively).
The effects were also reversed using diphenyleneiodonium (an
NAD(P)H-oxidase inhibitor) but not rotenone (an inhibitor of
mitochondrial-derived free radicals) or allopurinol (a xanthine oxidase
inhibitor), identifyingNAD(P)H oxidase as the cellular source of the free
radicals.

Molecular interactions between the vessel wall and blood cells are
important physiological determinants of blood clotting. Accordingly,
vascular injury models can be used to study thrombosis at the site
of injury to better model atherothrombosis in response to endothelial
degradation or endothelial damage after surgical injury (e.g. after angio-
plasty). DEP instillation increased thrombosis after photochemical
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injury of cerebral arterioles (Nemmar et al., 2015; Nemmar, Al-Salam,
Dhanasekaran, Sudhadevi, & Ali, 2009; Nemmar, Subramaniyan, & Ali,
2012). This effect could be inhibited by compounds with antioxidant
and anti-inflammatory properties, such as a cysteine pro-drug
(Nemmar et al., 2009), dexamethasone (Nemmar, Hoet, Vermylen,
Nemery, & Hoylaerts, 2004), curcumin (Nemmar et al., 2012),
nootkatone (Nemmar et al., 2018), thymoquinone (Nemmar et al.,
2011) or emodin (Nemmar et al., 2015). The same group also used his-
tamine receptor antagonists to implicate mast cells in the pro-
thrombotic effects of DEP (Nemmar, Nemery, Hoet, Vermylen, &
Hoylaerts, 2003). Finally, β2-adrenoreceptor agonists were shown to in-
hibit the pro-thrombotic effects of PM in mice (Chiarella et al., 2014).
The authors postulated that PM stimulates the release of prothrombotic
interleukin-6 from macrophages via β2 receptors.

6. Conclusions

It is nowwidely recognised that air pollution is associated with con-
siderable cardiovascular morbidity and mortality. Over the last two de-
cades, a wealth of scientific research has elucidated the underlying
mechanisms for these associations. While complex, a number of com-
pelling pathways have been formulated that support the associations
derived from epidemiological studies, and support a case for causality
between air pollution exposure and cardiovascular disease. Nonethe-
less, further researchwill be vital in identifying additional key pathways
and elucidating the finer details of pathways that are already
established. Pharmacological approaches will be a useful tool in achiev-
ing these aims.

The current review provides an overview of studies that have used
pharmacological agents to prevent, reverse and, in a few cases, augment
the cardiovascular effect of air pollution (Table 1).While this review at-
tests to substantial body of high-quality research in this area, the use of
pharmacological approaches is still limited in many regards. For exam-
ple, there are many different constituents of air pollution associated
with detrimental health effects, yet almost all of the studies described
in this review focus on a select number of pollutants; largely particulate
matter (with an urban focus) or controlled exposures to vehicle ex-
haust, principally diesel exhaust. While this is an observation that can
be levelled at the field of air pollution and health in general, it is partic-
ularly noticeable here. Secondly, additional studies are needed in
human subjects.While antioxidant supplements have been investigated
in relation to air pollution to a moderate extent (see below), there is a
distinct lack of human studies investigating other therapies. Large co-
hort databases have been used to determine associations between
health parameters and pollutant exposure, and occasionally medication
has been considered as a confounding variable. The brief review of the
epidemiological studies of this type in the present review reveals a
mixed picture. In many cases, stronger associations between air pollut-
ants and cardiovascular parameters are found in patients not taking
medication compared to those that are. However, contrary to this, asso-
ciations derived from larger samples of broader population (i.e. healthy
individuals and prescribed patients) often find associations between
PM2.5 and cardiovascular morbidity that remains after adjustment for
medication. A detailed sub-analysis of the effects of individual patient
medication, followed by meta-analyses of different cohorts, could
yield valuable insight into which medicines interact with the effects of
pollution.

This summation of the evidence derived from pharmacological ap-
proaches to prevent the cardiovascular effects of air pollution highlights
the rather limited range of pathways explored. Given the convincing ev-
idence for a role of oxidative stress in many of the pathophysiological
actions of air pollution, it is unsurprising that antioxidant agents are
the basis of most of the studies described in this review. Studies
in humans (both epidemiological and controlled exposures) have
made good use antioxidant-rich oil supplements (especially omega-
polyunsaturated fish oils) to demonstrate that these supplements



Table 1
Overview of the number of studies providing evidence for an effect of a pharmacological agent on cardiovascular parameters linked to air pollution exposure.
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have beneficial actions on a range of cardiovascular endpoints in ex-
posed individuals (Barthelemy et al., 2020). In several cases, some clar-
ity is lost by the use of other oils that also contain antioxidant
compounds (e.g. olive oil) for the control group, and future studies
would benefit from additional trial arms with alternative placebos. An-
imal studies have also readily employed antioxidant compounds to pre-
vent or reverse the effects of specific pollutants. These studies have been
valuable for investigating specific endpoints that cannot be easily ad-
dressed in human studies. In most cases, antioxidants were extremely
effective in preventing the effects of air pollution exposure. Even with
publication bias, the efficacy of antioxidants in preventing the cardio-
vascular effects of pollutant exposure in both animals and human stud-
ies confirms the key role of oxidative stress in these actions. Other
agents that have been explored include a range of natural compounds
in with anti-inflammatory properties, beta-blockers and statins. Some
of these agents (e.g. beta blockers) are likely to have clear actions on
specific cardiovascular parameters (e.g. cardiac), whereas others (e.g.
statins) may have actions on different facets of the cardiovascular sys-
tem (e.g. circulating vascular adhesion molecules). Beneficial effects of
other medications that could ameliorate some of the cardiovascular ef-
fects of air pollution may have been overlooked as cardiovascular pa-
rameters were not the principal focus of the research study. For
example, corticosteroids and leukotriene inhibitors have been shown
to prevent some the pulmonary effects of PM exposure (Delfino et al.,
2006). It has not been established if inhibition of pulmonary
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inflammation could also lead to an amelioration of some cardiovascular
parameters that are mediated by transmission of pollution-induced in-
flammation into the systemic circulation (see Fig. 2). In conclusion, fur-
ther studies are now needed to confirm the findings of the modest
numbers of studies showing beneficial actions of pharmacological
agents and, ideally, extend the range of cardiovascular parameters in-
vestigated. If possible, further efforts should be made to ascertain if
the compounds are specifically targeting the direct actions of pollutants
or having a more general cardiovascular benefit independent of pollut-
ant exposure.

While the aim of this review is to consider pharmacologicalmethods
as a means to explore biological mechanisms, these studies inevitably
ask the question as to whether medication should be used as a means
to protect individual against the actions of air pollution. Medicines
should not replace efforts to remove the sources of air pollution. How-
ever, implementation of air pollution reduction measures, policy
changes and lifestyle changes inevitably require time. Subsequently,
there could be a place formedicinal interventions that can lessen the bi-
ological effects of air pollution in the intervening period. This is espe-
cially the case for those that may be at greater risk (e.g. the young, the
elderly, those with pre-existing cardiorespiratory disease, pregnant
mothers) and/or those who have an unavoidable high exposure to pol-
lutants. Reduction of risk factors and healthy living will benefit those
living in clean air as well as polluted air. Nonetheless, adopting an
antioxidant-rich diet may be especially beneficial for those who are
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particularly risk of the effects of pollution. Additionally, antioxidant sup-
plements are readily-available, low cost and largely innocuous (atmod-
erate doses at least), and the evidence described in this review suggest
that is certainly some potential for these supplements to lessen the car-
diovascular effects of air pollution. The use of other types of medication
to protect against air pollution will require further research. For those
who have diagnosed cardiovascular conditions, medication such as
beta-blockers or statins may indeed have additional benefits in those
exposed to high air pollution. However, at present, there is insufficient
evidence (and indeed it would be negligent) to recommend the use of
these medicines to counter the effects of air pollution in those with
mild conditions that would otherwise not be treated. Additionally,
while several medicines appear to have beneficial effects, the evidence
is not strong enough formedicines to be viewed as being ‘protective’, es-
pecially against cardiovascular events. Interventions, such as facemasks,
vehicle cabin filters or indoor air purifiers, may have a role here given
emerging evidence suggesting that these can be effective at ameliorat-
ing the cardiovascular effects of air pollution to some degree (Chen
et al., 2015; Guan et al., 2018; Langrish et al., 2012; Langrish et al.,
2009; Liu et al., 2018; Pettit et al., 2015; Yang et al., 2018), although fur-
ther research is needed to establish the level of ‘protection’ they pro-
vide. This nuance of ‘protection’ versus ‘benefit’ requires careful
messaging to prevent a false-sense-of-security that could lead to behav-
ioural changes where an individual inadvertently places themselves at
greater risk (e.g. greater exposure to air pollution). Additionally, if
new research does indeed suggest that certain medicines could be
used as therapeutic interventions in susceptible individuals, careful con-
sideration would be needed to address which facets of cardiovascular
health are targeted (e.g. decelerating the disease process, or minimising
risk of a cardiovascular event) and the strategy by which the therapy
would need to be taken (e.g. patient criteria, long-term prophylactic
use versus pre-emptive ad-hoc use before a particular activity/expo-
sure).

Overall, this review highlights that there is now a growing body of
evidence demonstrating that antioxidants, and potentially other thera-
pies, can ameliorate the actions of air pollution exposure throughout
the cardiovascular system. A complex network of interacting mecha-
nisms accounts for the multiple actions of particulate air pollution on
the cardiovascular system. Pharmacological studies have been a valu-
able complementary tool in dissecting these mechanisms. An improved
understanding of these mechanisms will offer insight for a number of
pertinent questions such as which pollutants are predominantly re-
sponsible for driving health effects, and who is especially susceptible?
Pharmacological tools will be a vital addition to the scientific arsenal
to address these matters and build on the strong foundations of scien-
tific understanding that will ultimately support strategies to reduce
the substantial burden on health from air pollution.
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