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Alpha-calcitonin gene-related peptide (α-CGRP) is a vasodilator neuropeptide of the
calcitonin gene family. Pharmacological and gene knock-out studies have established
a significant role of α-CGRP in normal and pathophysiological states, particularly in
cardiovascular disease and migraines. α-CGRP knock-out mice with transverse aortic
constriction (TAC)-induced pressure-overload heart failure have higher mortality rates
and exhibit higher levels of cardiac fibrosis, inflammation, oxidative stress, and cell death
compared to the wild-type TAC-mice. However, administration of α-CGRP, either in its
native- or modified-form, improves cardiac function at the pathophysiological level, and
significantly protects the heart from the adverse effects of heart failure and hypertension.
Similar cardioprotective effects of the peptide were demonstrated in pressure-overload
heart failure mice when α-CGRP was delivered using an alginate microcapsules-based
drug delivery system. In contrast to cardiovascular disease, an elevated level of α-CGRP
causes migraine-related headaches, thus the use of α-CGRP antagonists that block
the interaction of the peptide to its receptor are beneficial in reducing chronic and
episodic migraine headaches. Currently, several α-CGRP antagonists are being used as
migraine treatments or in clinical trials for migraine pain management. Overall, agonists
and antagonists of α-CGRP are clinically relevant to treat and prevent cardiovascular
disease and migraine pain, respectively. This review focuses on the pharmacological
and therapeutic significance of α-CGRP-agonists and -antagonists in various diseases,
particularly in cardiac diseases and migraine pain.

Keywords: alpha-calcitonin gene-related peptide (α-CGRP), cardiovascular diseases, CGRP-agonist, CGRP-
antagonist, heart failure, hypertension, migraine, neuropeptide

Abbreviations: Ang-II, Angiotensin-II, α-CGRP, Alpha-calcitonin gene-related peptide, DRG, Dorsal root ganglia, I/R
injury, Ischemia/reperfusion injury, KO, Knock-out, NO, Nitric oxide, NOS, Nitric oxide synthase, RAAS, Renin angiotensin
aldosterone system, RAMP, Receptor activity modifying protein, ROS, Reactive oxygen species, SP, Substance P, TAC,
Transverse aortic constriction, WT, Wild-type.

Frontiers in Physiology | www.frontiersin.org 1 February 2022 | Volume 13 | Article 826122

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.826122
http://creativecommons.org/licenses/by/4.0/
mailto:jay.potts@uscmed.sc.edu
https://doi.org/10.3389/fphys.2022.826122
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.826122&domain=pdf&date_stamp=2022-02-11
https://www.frontiersin.org/articles/10.3389/fphys.2022.826122/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-826122 February 7, 2022 Time: 15:27 # 2

Kumar et al. New Therapeutic Strategies for α-CGRP

INTRODUCTION

Alpha-calcitonin gene-related peptide (α-CGRP) is a regulatory
neuropeptide, a potent vasodilator, and belongs to calcitonin
gene family (Brain et al., 1985; Russell et al., 2014). It is
predominantly produced in the central and peripheral nervous
systems, specifically in the dorsal root ganglia (DRG) of Aδ and
C sensory neurons. Another form of CGRP also exists, named
β-CGRP, which is primarily synthesized in the enteric nervous
system, pituitary gland, and immune cells (Steenbergh et al., 1985;
Mulderry et al., 1988). On chromosome 11, α-CGRP is produced
from the CALC-I gene while β-CGRP is produced from the
CALC-II gene. Although, α- and β-CGRP are 94% homologous,
α-CGRP is predominantly involved in hemodynamic actions,
while β-CGRPs exert gastric effects in humans (Steenbergh
et al., 1986). The present review is mainly focused on the
pathophysiological function of α-CGRP in normal and disease
conditions, particularly cardiovascular disease and migraine, and
recent advances in developing CGRP-agonists and -antagonists.

ALPHA-CALCITONIN GENE RELATED
PEPTIDE AND ITS RECEPTOR

α-CGRP is a peptide of 37 amino acids that contains a disulfide
bond at amino acids 2 and 7, and a phenylalanine amide group
at the carboxy-terminal end (Kumar et al., 2019a; Figure 1). The
first seven amino acids at the N-terminus end form a ring-like
structure (Maggi et al., 1990; Breeze et al., 1991). Deletion of
disulfide bond at amino acids 2 and 7 prevents α-CGRP from
exerting its physiological actions. A CGRP fragment devoid of
first seven amino acids, a.k.a. CGRP8−37, can bind to the CGRP
receptor, although its binding affinity for the receptor is 10-
fold less than α-CGRP, and does not stimulate any physiologic
response. CGRP8−37 acts as a competitive antagonist of the
CGRP receptor (Chiba et al., 1989). Thus, the first seven amino
acids play an essential role in α-CGRP’s high affinity binding
for the CGRP receptor and are responsible for activating this
receptor. Amino acid residues from 8 to 18 form an α-helix, while
amino acids spanning from 19 to 27 form a β- or γ-twist (Rovero
et al., 1992; Howitt et al., 2003). The C-terminal end of α-CGRP
containing amino acids 28–37 interacts with N-terminus region
of the CGRP receptor (Carpenter et al., 2001; Banerjee et al.,
2006). Several biological and mutational studies have established
that the N-terminal region of α-CGRP from amino acids 1–7 is
responsible for receptor activation, while amino acids 8–37 are
needed for binding affinity to the CGRP receptor (Watkins et al.,
2013; Figure 1).

The CGRP receptor is a heterotrimer of three protein
subunits: (1)- Calcitonin receptor-like receptor (CLR), (2)-
receptor activity modifying protein 1 (RAMP1), and (3)- receptor
component protein (RCP) (Walker et al., 2010; Figure 2).
All three protein components are essential to exhibit cellular
functions of CGRP receptor. CLR is a member of the class
B “secretin-like” family of the G-protein-coupled receptors
(GPCR), which also contains the receptors for calcitonin,
parathyroid hormone, vasoactive intestinal polypeptide, and

pituitary adenylate cyclase activating polypeptide. The ligand-
binding CLR is a 461 amino acid protein that contains seven
transmembrane-spanning domains, an extracellular N-terminus,
and a cytosolic C-terminus (Aiyar et al., 1996). To initiate the
signaling cascade, α-CGRP binds to the extracellular N-terminus
of CLR. RAMP1 is a member of the RAMP protein family,
which also includes RAMP2 and RAMP3 (Hay and Pioszak,
2016; Serafin et al., 2020). The RAMP family shares a similar
structural motif even though their amino acid sequences
are <30% homologous with one another. RAMP1 is specific
to the CGRP receptor, while RAMP2 and RAMP3 are part of
the adrenomedullin (AM) receptors (McLatchie et al., 1998;
Figure 2). RAMP1 consists of one transmembrane-spanning
domain with a long extracellular N-terminal domain (∼100
amino acids) and a short intracellular C-terminus (∼10 amino
acids) (Steiner et al., 2002; Udawela et al., 2006; Qi and Hay,
2010). In order for CLR to be transported from the endoplasmic
reticulum to the plasma membrane, it must be heterodimerized
with RAMP1 as a mature glycoprotein (Hilairet et al., 2001).
The heterodimeric complex of CLR and RAMP1 is stabilized via
non-covalent interactions between the two proteins. Production
of RAMP1 in the absence of CLR inhibits RAMP1 transport to
the plasma membrane, resulting in RAMP1 accumulation in the
Golgi apparatus as a disulfide-linked homodimer. In RAMP1-
KO mice, an increase in BP (but no change in heart rate) was
observed suggesting that deletion of RAMP1 disrupted CGRP-
mediated cellular signaling (Tsujikawa et al., 2007). Receptor
component protein (RCP) is a small (∼17 kDa) cytosolic
protein that ionically binds to CLR and is required for G
protein coupling (Evans et al., 2000; Egea and Dickerson, 2012).
Experiments using RCP-depleted NIH3T3 cells concluded that
although loss of RCP levels had no effect between the binding
affinity of α-CGRP and CLR, these cells were unable to initiate
the CGRP signaling cascade to create a physiologic response
due to decreased intracellular cyclic adenosine monophosphate
(cAMP) levels (Evans et al., 2000). Therefore, RCP serves as
the connection between CLR and the intracellular G protein-
mediated signaling pathway, which triggers production of cAMP
(Routledge et al., 2020).

The expression of CGRP receptor is widely reported within
the central and peripheral nervous system, and cardiovascular
system. Molecular methods like radioligand binding assay,
immunohistochemistry, and Northern blot analysis were
employed to determine the localization of CGRP receptor in
different tissues and organs. Using radiolabelled 125I-CGRP
in radioligand binding assays, the specific binding site for the
CGRP ligand has been shown in the rat cardiovascular system,
human and rat brain, central and peripheral tissues including
bronchial and pulmonary blood vessels of human and guinea
pig, and the smooth muscle layer of arteries and arterioles of the
human urinary bladder (Inagaki et al., 1986; Sexton et al., 1986;
Mak and Barnes, 1988; Wimalawansa and MacIntyre, 1988; van
Rossum et al., 1997; Burcher et al., 2000). In the cardiovascular
system and visceral organs, CGRP-binding sites were detected in
the right atrium, and within the intima and media layers of blood
vessels, such as the mesenteric artery, aorta, carotid arteries,
renal arteries, pulmonary arteries and veins, spleen, lung, and
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FIGURE 1 | Peptide sequence of human and rodent α-CGRP. Rodent α-CGRP differs at four amino acids (*marked) with human α-CGRP. Amino acids 1–7 at
N-terminal end of the peptide forms receptor activation domain, while amino acid region 8–37 consists of receptor binding domain.

liver (Nakamuta et al., 1986; Wimalawansa and MacIntyre,
1988; McCormack et al., 1989). The mRNA transcripts of CLR
(by RT-PCR assay) and RAMP1 (by Northern blot analysis)
were detected in myocyte and non-myocyte cells prepared from
cardiac ventricles of 1-day-old rat pups (Tomoda et al., 2001).
In addition, using immunohistochemistry the expression of
CGRP receptor components (CLR and RAMP1) in arterial
blood vessels and nerve fibers present in the rodent cranial
dura mater, human trigeminal ganglion, myelinated A-fiber
axons, and rat cerebellar Purkinje cells were detected (Lennerz
et al., 2008; Eftekhari et al., 2010, 2013; Edvinsson et al., 2011).
In the rat brain, the immunoreactivity for CLR1 and RAMP1
was detected in the neuronal processes of the cerebral cortex,
hippocampus, cerebellum, thalamic and hypothalamic nuclei,
and brainstem nuclei (Warfvinge and Edvinsson, 2019). Using
human subcutaneous arteries, Edvinsson et al. (2014), detected
the immunoreactivity of CLR and RAMP1 in the endothelial
and smooth muscle cells, and to a minor extent in the vascular
adventitia (Edvinsson et al., 2014). Eftekhari and Edvinsson
(2011) performed immunohistochemistry for CGRP, CLR and
RAMP1 and compared their expression in the human and rat
spinal trigeminal nucleus (STN) and the C1 region of the spinal
cord (Eftekhari and Edvinsson, 2011). Immunohistochemistry
data demonstrated that CLR and RAMP1 positive fibers were
present in the human spinal trigeminal tract region. CLR and
RAMP1 were co-localized in this region, but no co-localization
of CGRP and CLR or CGRP and RAMP1 was observed. In
rat STN, CLR and RAMP1 (but not CGRP and CLR or CGRP
and RAMP1) were co-localized in the spinal trigeminal tract
region, in both fiber bundles and fibers spanning from the spinal
trigeminal tract. In human C1, CLR and RAMP1 signals were
detected within laminae I and II, but no co-localization of these
receptor components was observed. However, in rat C1, CLR
and RAMP1 were co-localized in the laminae I and II region,
but no co-localization of CGRP and CLR or CGRP and RAMP1
was observed. In contrast to Eftekhari and Edvinsson (2011)
study, one study reported partial co-localization of CGRP and
its receptor component CLR and RAMP1 in the rat superficial
laminae (Lennerz et al., 2008). The discrepancy in the detection
of CGRP, CLR, and RAMP1 in both studies might be due the
difference in the recognition sites of the antibodies used and

change in methods of the tissue processing. Miller et al. (2016),
raised antibodies against a fusion protein of the extracellular
domains of RAMP1 and CLR that comprise the CGRP binding
site of the CGRP receptor. Using these antibodies, researchers
performed immunohistochemistry and confirmed the expression
of CGRP receptor in human vascular smooth muscle cells of
dural meningeal arteries and neurons in the trigeminal ganglion
(Miller et al., 2016). Immunohistology method further confirmed
expression of CLR and RAMP1 in human cerebral vasculature
particularly in middle meningeal, middle cerebral, superficial
temporal, and pial vessels (Oliver et al., 2002). These studies
suggested that although immunohistochemistry is a powerful
tool to detect regional distribution of proteins in tissue, it
has several limitations as well. A variety of antibodies raised
against CGRP and CGRP receptor components are commercially
available, however, considerations such as consistency in
tissue processing, use of validated antibodies specific for the
histochemistry, and species specificity of these antibodies are
needed while performing immunohistochemistry to detect
CGRP and its receptor in the tissue.

SYNTHESIS AND RELEASE OF
ALPHA-CALCITONIN GENE RELATED
PEPTIDE

The α-CGRP peptide is created via tissue-specific alternative
splicing of the pre-mRNA transcript of the calcitonin gene
CALC-I on chromosome 11 (Amara et al., 1982). Thyroid C cells
produce calcitonin by splicing out exons 5 and 6 from the CALC-I
gene transcript, while sensory neurons form α-CGRP via removal
of exon 4 from the CALC-I gene pre-mRNA product (Figure 3).
To produce mature α-CGRP, it is first translated as a 121 amino
acid pro-hormone and then cleaved into a final 37 amino acid
polypeptide (Rosenfeld et al., 1983). α-CGRP is primarily stored
and released from Aδ- and C-fiber sensory neurons of the afferent
nervous system, though it is also distributed in smooth muscle
of blood vessels and in regions of the central nervous system
(Gibson et al., 1984; Uddman et al., 1986; Kee et al., 2018).
α-CGRP synthesis occurs almost exclusively in the dorsal root
ganglia (DRG) of sensory neurons, however, endothelial cells

Frontiers in Physiology | www.frontiersin.org 3 February 2022 | Volume 13 | Article 826122

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-826122 February 7, 2022 Time: 15:27 # 4

Kumar et al. New Therapeutic Strategies for α-CGRP

FIGURE 2 | α-CGRP receptor structure. Cell-membrane bound α-CGRP
receptor is a heterotrimer of three protein subunits: Calcitonin-like receptor
(CLR), RAMP1, and RCP. Coupling of RAMP2 or RAMP3 with CLR and RCP
subunits form adrenomedullin receptor.

and certain immune cells, such as lymphocytes and monocytes,
also have the ability to produce the peptide (Doi et al., 2001;
Bracci-Laudiero et al., 2002; Wang et al., 2002; Linscheid et al.,
2004). Additionally, the trigeminal ganglion releases α-CGRP
to regulate cerebral vascular tone, which contributes to the
pathology of certain migraines (McCulloch et al., 1986). Aδ-
and C-fiber sensory neurons release α-CGRP when stimulated
by mechanical, thermal, and chemical stimuli, but because of
their efferent function, they can also excrete α-CGRP without
any stimulation. It is hypothesized that the efferent release of
α-CGRP from these neurons plays an important role in blood
flow regulation, as circulating α-CGRP levels are attributable
to leakage of the peptide from the synaptic cleft after its
release. Once α-CGRP is generated, it is stored in neuronal
vesicles with substance P (SP) in the axon terminals until
axonal depolarization and calcium-dependent exocytosis trigger
its release (Gibbins et al., 1985; Matteoli et al., 1988; Figure 4). In
motor neurons, α-CGRP is stored and released with acetylcholine
(Ach), which led some to hypothesize that α-CGRP plays a role
in Ach receptor synthesis (New and Mudge, 1986; Csillik et al.,
1993).

α-CGRP is released in response to high levels of angiotensin-
II (Ang-II) and norepinephrine to combat the potent
vasoconstrictive actions of these compounds, which is why
α-CGRP agonists are likely beneficial in hypertensive patients
(Supowit et al., 1995b). Capsaicin, nerve growth factor (NGF),
brain-derived neurotropic factor (BDNF), low pH, bradykinins,
prostaglandins, tissue inflammation, and the renin angiotensin
aldosterone system (RAAS) also promote α-CGRP excretion
from DRG sensory neurons (Lindsay et al., 1989; Donnerer and
Stein, 1992; Andreeva and Rang, 1993; Strecker et al., 2006; Salio
et al., 2007; Supowit et al., 2011). Additionally, α-CGRP synthesis
increases in the presence of neuronal damage (Donnerer et al.,
1992). It is thought that macrophages and keratinocytes excrete
NGF in a paracrine-like manner when exposed to inflammation
in order to stimulate nearby sensory neurons to release α-CGRP.
One study demonstrated that addition of NGF to adult DRG
neurons promotes α-CGRP expression through activation of

the Ras/Raf/MEK-1/p42/p44 MAPK pathway (Freeland et al.,
2000). Another study illustrated that NGF intraperitoneal
injections in spontaneously hypertensive rats (SHRs) induced
α-CGRP production and release in DRG sensory neurons
(Supowit et al., 2001). Stimulation of the transient receptor
potential vanilloid 1 (TRPV1) receptor, a type of non-selective
cation channel in the TRP family found on sensory nerve axon
terminals, prompts α-CGRP release when exposed to noxious
heat, capsaicin, and acidic environments (Kichko and Reeh,
2009; Meng et al., 2009; Dux et al., 2020). It has been observed
that phenotypically TRPV1-KO mice are not hypertensive,
however, these KO mice, after undergoing TAC procedure,
exhibit increased LV hypertrophy and fibrosis compared to
their wild-type counterparts (Marshall et al., 2013; Zhong et al.,
2018). Transient receptor potential ankyrin 1 (TRPA1), another
member of the TRP family, induces α-CGRP excretion when
exposed to noxious cold, reactive oxygen species (ROS), and
cellular stress (Pozsgai et al., 2012; Wang et al., 2019; Gebhardt
et al., 2020).

A CGRP-KO mouse strain, where both CGRP and calcitonin
genes were deleted, showed an increase in basal BP (Gangula
et al., 2000), while no difference in heart rate and BP was
observed in another CGRP-KO mouse strain (Lu et al., 1999).
Moreover, compared with their WT-counterparts, α-CGRP mice
exhibit a higher extent of cardiac fibrosis and inflammation when
undergoing TAC-induced pressure overload, and their renal and
cardiovascular systems are more susceptible to hypertension-
induced end-organ damage (Supowit et al., 2005; Li et al., 2013).

THERAPEUTIC BENEFITS OF
ALPHA-CALCITONIN GENE RELATED
PEPTIDE AND ITS ANALOGS IN
CARDIOVASCULAR DISEASE

The effects of α-CGRP on the cardiovascular system are well-
documented: it induces positive chronotropic, ionotropic, and
hypertrophic effects on the heart, it mediates blood flow, and
it is the most potent vasodilator known to date (Fisher et al.,
1983; Brain et al., 1985; Franco-Cereceda and Lundberg, 1985;
Struthers et al., 1986; Gennari et al., 1990; Bell et al., 1995; Al-
Rubaiee et al., 2013). The positive ionotropic and chronotropic
actions of α-CGRP are attributed to reflexive sympathetic activity
and direct stimulation of α-CGRP on cardiomyocytes to oppose
the hypotensive effects from vasodilation. Specifically, α-CGRP
stimulation of cardiomyocytes triggers positive ionotropic
effects via the cAMP/PKA or the PKC intracellular messenger
pathways. An in vitro study of guinea pig atria found that
exposure to capsaicin, a TRPV1 agonist, triggered α-CGRP
release and produced positive ionotropic and chronotropic
effects in the cardiac cells, but these results were diminished
when hearts were infused with capsaicin to desensitize the
nerves and induce tachyphylaxis (Lundberg et al., 1984). The
vasodilatory capabilities of α-CGRP are ∼1,000 times more
potent than acetylcholine, substance P, and 5-hydroxytriptamine,
and 10 times more potent than the most powerful vasodilatory
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FIGURE 3 | Synthesis of peptide α-CGRP. After tissue-specific alternative splicing of calcitonin gene CALC1, α-CGRP is synthesized in the neuronal cells while
calcitonin is formed in the thyroid cells.

prostaglandins (Brain et al., 1985). Additionally, α-CGRP-
induced vasodilation persists longer than other vasodilators.
Injection of 15 pmol of α-CGRP intradermally in humans
augments local blood flow and causes erythema formation of the
skin that lasts 5–6 h (Brain et al., 1985). One study carried out
by DiPette et al. (1989) demonstrated that a bolus intravenous
injection of α-CGRP at doses of 22, 65, 220, and 2,200 pmol
in conscious rats reduced mean blood pressure in a dose
dependent manner (DiPette et al., 1989). Because of its potency
and sustainability, α-CGRP stimulates vasodilation of various
vascular beds, including the coronary, cerebral, and renal vessels,
and systemic infusion reduces blood pressure in normotensive
and hypertensive species (DiPette et al., 1989; Dubois-Rande
et al., 1992; Gulbenkian et al., 1993). The vasodilatory actions
of α-CGRP are most prominent in small peripheral arteries, as
opposed to large vessels, respectively. It has been shown in the
rat isolated mesenteric resistance arteries that α-CGRP is used to
combat the vasoconstrictive effects of endothelin via interaction
with the CGRP receptor and a Gβγ -coupled protein (Meens et al.,
2011, 2012).

α-CGRP can stimulate vasodilation of peripheral arteries
using either the nitric oxide (NO)-/endothelium-independent
pathway or the NO-/endothelium-dependent pathway. However,
in most blood vessels, vasodilatation occurs via the NO-
/endothelium-independent route (Russell et al., 2014; Kumar
et al., 2019b). To initiate the NO-/endothelium-independent
pathway, α-CGRP first binds to the CGRP receptor on a
vascular smooth muscle cell, which stimulates Gαs to activate
adenylate cyclase. Once adenylate cyclase is stimulated, it will
synthesize cAMP followed by activation of protein kinase
A (PKA). The activated PKA subsequentially induces K+-
ATP channels to open, causing smooth muscle relaxation
and vasodilation. Administration of glibenclamide, a K+-ATP
channel inhibitor, blocks α-CGRP-induced hyperpolarization,

and therefore vasodilation, of vascular smooth muscle cells
(Edvinsson et al., 1985; Nelson et al., 1990).

There are several reports showing that vasodilation of the rat
aorta and pulmonary arteries, and human internal mammary
arteries are regulated via the NO-/endothelium-dependent
pathway. One study found that delivery of NO synthase
(NOS) inhibitors in the rat aorta weakened the vasodilatory
capability of α-CGRP (Gray and Marshall, 1992b). Another study
demonstrated that treatment of rat aortas with human α-CGRP
augmented intracellular cAMP and cGMP concentrations, and
induced vasodilation. This occurred only when the endothelium
was intact, further supporting the idea that these vessels are
NO-/endothelium-dependent (Gray and Marshall, 1992a).

Several studies have highlighted the importance of α-CGRP
as a cardioprotective molecule. Specifically, α-CGRP prevents
pathologies such as hypertension, myocardial infarctions, heart
failure, and ischemia from damaging cardiac cells through
vasodilation and inhibition of oxidative stress, inflammation, and
apoptosis. The role of α-CGRP in normal and pathophysiological
states of these diseases is disused below.

Hypertension
Plasma levels of α-CGRP are elevated in hypertensive patients
with primary aldosteronism or on a high-salt diet, but are
decreased in patients with secondary hypertension who have
undergone an adrenalectomy, suggesting that α-CGRP might
act as a compensatory mechanism: first the peptide is released
to oppose the effects of high blood pressure, but later CGRP
synthesis and/or release may become inhibited as the disorder
advances (Masuda et al., 1992). Several models of hypertension
have revealed that expression of α-CGRP and its receptor
increased in these pathological states (Kawasaki et al., 1990;
Supowit et al., 1995a; Li and Wang, 2005). In a number of
experimental hypertension models such as deoxycorticosterone
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FIGURE 4 | Release and mode of action of α-CGRP. After synthesis, α-CGRP remains stored in vehicles at the terminal ends of the nerves. As nerve depolarize,
α-CGRP is released form the nerve terminals through the exocytosis process and interacts to its receptor and elicits its cellular effects mainly via the generation of
intracellular cAMP. In the circulation, endopeptidases (insulin degrading enzyme, IDE, and endothelin converting enzyme-1, ECE-1) degrades α-CGRP.
CGRP-agonists with increased self-life and bioactivity prolong the cellular activity of α-CGRP and might be beneficial to use as therapeutic agents in cardiac diseases.
Several CGRP-antagonists that block interaction of α-CGRP to its receptor and, thus, inhibit downstream signaling pathways are employed to treat migraine pain.

(DOC)-salt, subtotal nephrectomy (SN)-salt, the two-kidney one-
clip (2K1C), N-nitro-L-arginine methyl ester (L-NAME)-induced
hypertension during pregnancy, and chronic hypoxic pulmonary
hypertension, α-CGRP blunts blood pressure elevations as a
compensatory mechanism (Tjen et al., 1992; Gangula et al.,
1997; Supowit et al., 1997, 1998). Depending on the model
of hypertension, neuronal levels of α-CGRP are regulated
differently. For example, in hypertensive rats induced by either
the DOC-salt or the 2K1C model, levels of immunoreactive
CGRP in the spinal cord and α-CGRP mRNA in DRG were
elevated in order to stimulate vasodilation and combat the
developing hypertension (Supowit et al., 1995a, 1997, 1998).
Administration of capsaicin or the CGRP receptor antagonist,
CGRP8−37, in these rats increased the mean arterial pressure
(MAP), further supporting the idea that the high α-CGRP levels

attenuated the hypertension. Delivery of CGRP8−37 in SN-
induced hypertensive rats and L-NAME-induced hypertension
during pregnancy also augmented the hypertensive levels
(Gangula et al., 1997). In contrast to the DOC-salt model,
immunoreactive CGRP concentrations in laminae I and II of the
spinal cord and α-CGRP mRNA levels in the DRG were reduced
in spontaneously hypertensive rats (SHRs) (Supowit et al., 1993).
Further, pre-treatment administration of capsaicin or CGRP8−37
had no effect on blood pressure, indicating that the lack of
α-CGRP contributes to the development of high blood pressure
due to loss of vasodilatory control.

One study demonstrated that Ang-II-induced hypertensive
mice displayed higher amounts of ROS, inflammation, and
apoptotic cell death in their hearts and kidneys. Additionally,
they showed reduced cardiac function due to Ang-II upregulation
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of oxidative stress response proteins and downregulation of the
anti-oxidative enzyme glutathione peroxidase-1, resulting
in disruption of endothelial cell function and vascular
hypertrophy (Aubdool et al., 2017). Furthermore, Ang-II
induces RAMP1 expression in the cardiovascular system.
Delivery of acylated α-CGRP, an α-CGRP agonist, in mice
significantly reduced the adverse effects created by Ang-II.
A similar study using α-CGRP KO mice with hypertension via
Ang-II administration, led to aortic hypertrophy and reduced
eNOS expression (Smillie et al., 2014). Therefore, α-CGRP
appears to delay the onset and development of hypertension
through cardioprotective mechanisms.

A study comparing α-CGRP KO mice to WT mice in a
DOC-salt model revealed that the KO mice developed
greater amounts of cellular damage and oxidative stress
in the cardiovascular and renal systems and had elevated
concentrations of pro-inflammatory cytokines and chemokines
than the DOC-salt WT mice (Supowit et al., 2005). Baseline
blood pressure of α-CGRP KO mice was significantly elevated
compared to WT counterparts, indicating that α-CGRP plays
a role in preventing hypertension. Therefore, lack of α-CGRP
increases the likelihood of hypertension-induced damage to
the heart and kidneys. Another basis for α-CGRP KO mice to
develop high blood pressure is that they have greater activity
of the RAAS, which is a well-known mechanism involved in
the development of hypertension (Li et al., 2004). α-CGRP
opposes the hypertensive effects of RAAS through vasodilation
and by inhibiting Ang-II induced aldosterone secretion. Electric
field stimulation of the mesenteric arteries in SHRs triggers
a vasoconstrictive response, but the vasodilatory response
to α-CGRP was augmented by aldosterone, suggesting that
α-CGRP controls blood pressure homeostasis by interacting
with the RAAS (Balfagon et al., 2004). Delivery of sub-depressor
doses of α-CGRP for 6 days in hypertensive rats induced by
Ang-II or norepinephrine decreased blood pressure significantly
(Fujioka et al., 1991). Much like α-CGRP KO mice, RAMP1
KO mice develop high blood pressure (Tsujikawa et al., 2007).
However, even with exogenous α-CGRP administration, RAMP1
KO mice are hypertensive because α-CGRP is unable to activate
its signaling cascade and therefore, vasodilation is unachievable.
On the other hand, upregulation of RAMP1 in Ang-II-induced
hypertensive mice enhanced the ability of α-CGRP to reduce
blood pressure (Sabharwal et al., 2010). Additionally, because the
baroreflex sensitivity of RAMP1 transgenic mice was augmented,
resulting in a lower blood pressure, suggesting that α-CGRP
modulates the baroreflex response to help reduce blood pressure.

α-CGRP is also protective against pulmonary hypertension,
likely as the result of the high expression in the lungs and
dilatation of pulmonary arteries (Bivalacqua et al., 2002).
α-CGRP specifically acts to blunt the effects of hypoxia-induced
tissue remodeling that occurs in pulmonary hypertension. Rats
affected by pulmonary hypertension have reduced plasma levels
of α-CGRP, and these effects are exacerbated by CGRP8−37
infusion (Tjen et al., 1992). Administration of α-CGRP to these
rats attenuated the effects of pulmonary hypertension. One
study carried out using left-to-right shunt-induced pulmonary
hypertensive rats demonstrated that intravenous injection of

endothelial progenitor cells modified to secrete α-CGRP reduced
the severity of the disease and prevented adverse vascular
remodeling (Zhao et al., 2007). These studies demonstrated that
α-CGRP is a potent vasopressor and is a potential therapeutic
peptide to treat patients suffering from high blood pressure.

Ischemia/Reperfusion Injury
The protective function of α-CGRP against ischemia/reperfusion
(I/R) injury has been reported in human and a numerous animal
models. α-CGRP KO mice subjected to 30-min ischemic episodes
followed by reperfusion to stimulate I/R injury experienced
significant deterioration in cardiac function compared to WT
mice who underwent the same procedure (Huang et al., 2008).
Sensory Aδ- and C-fibers excrete α-CGRP as a cardioprotective
mechanism after a cardiac I/R injury. For example, levels of
circulating α-CGRP increase in humans following an acute
myocardial infarction and isolated hearts of guinea pigs
and rats release more α-CGRP after experiencing myocardial
ischemia (Franco-Cereceda, 1988; Mair et al., 1990; Lechleitner
et al., 1992). During these pathological events, stimuli such
as bradykinin, prostaglandins, and low pH activate TRPV1
receptors to induce α-CGRP release. An increased CGRP-
immunoreactivity has been reported in principal ganglionic
neurons and perineuronal nets in the human stellate ganglia
following acute myocardial infarction (Roudenok et al., 2001).
Other investigations have revealed that α-CGRP also plays a
role in cardiac and remote preconditioning, in which CGRP
infusion reduces the cardiac damage caused by an ischemic event
in a rat model of I/R injury (Wolfrum et al., 2005). When
Langendorff-perfused rat hearts were administered exogenous
α-CGRP, the peptide imitated the beneficial preconditioning
effects induced by transient ischemia and resulted in increased
endogenous α-CGRP release (Wu et al., 2001). Conversely,
infusion of the CGRP receptor antagonist BIBN4096BS inhibited
all cardioprotective effects of α-CGRP and preconditioning,
suggesting that α-CGRP is involved in the physiologic response
to cardiac I/R injuries. BIBN4096BS or olcegepant (developed
by Boehringer Ingelheim Pharmaceuticals) is a small molecule
non-peptide antagonist that exhibits greater antagonism to
the human CGRP receptor when compared to rodent CGRP-
receptor, and does not show affinity for adrenomedullin receptors
(AM1 or AM2 receptor) (Doods et al., 2000; Hay et al.,
2003; Arulmani et al., 2004). In addition to the CGRP-
receptor, BIBN4096BS is reported to block the binding of
CGRP to another distinct CGRP-responsive receptor, the amylin
subtype 1 receptor known as the AMY1 receptor, however,
BIBN4096BS has higher binding affinity to the CGRP receptor
than to the AMY1 receptor and it is a relatively selective
antagonist to the CGRP receptor (Hay et al., 2006; Walker
et al., 2018). A series of in vitro receptor assays carried out in
Cos7 cells transfected with CGRP receptor or AMY1 receptor
and in cultured rat trigeminal ganglia neurons demonstrated
that BIBN4096BS treatment significantly inhibited α-CGRP-
stimulated phosphorylation of cAMP response element-binding
protein (CREB) and the accumulation of cAMP in these cells
(Walker et al., 2018). A comparison study in the transfected
Cos7 cells showed that BIBN4096BS was ∼132-fold more potent

Frontiers in Physiology | www.frontiersin.org 7 February 2022 | Volume 13 | Article 826122

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-826122 February 7, 2022 Time: 15:27 # 8

Kumar et al. New Therapeutic Strategies for α-CGRP

at the CGRP receptor than the AMY1 receptor in blocking
α-CGRP-stimulated cAMP accumulation and ∼26-fold more
potent at the CGRP receptor than the AMY1 receptor in
blocking α-CGRP-stimulated CREB phosphorylation (Walker
et al., 2018). Moreover, the antagonist selectivity of this molecule
has been shown to be pathway-dependent as BIBN4096BS
inhibited α-CGRP-stimulated CREB phosphorylation to a greater
extent compared to cAMP accumulation in rat trigeminal ganglia
neurons and AMY1 receptor transfected Cos7 cells (but not
in the CGRP receptor transfected Cos7 cells) (Walker et al.,
2018). The AMY1 receptor is a complex of the calcitonin
receptor (CTR) and RAMP1 subunit (CTR-RAMP1), and it is
responsive to both CGRP and amylin peptides (Muff et al.,
1999; Walker et al., 2015; Hay and Walker, 2017). As RAMP1
is a common component in the CGRP receptor and AMY1
receptor, it is thought that binding of BIBN4096BS to RAMP1
might be involved in the antagonism of BIBN4096BS (Mallee
et al., 2002). Due to poor oral bioavailability, BIBN4096BS is
not considered a viable choice as a therapeutic molecule where
inhibition of CGRP-receptor activation is needed, e.g., migraine
headache. Adenoviral transfection of cardiac tissue with α-CGRP,
in diabetic rodents, increased the ischemic preconditioning
response, which is typically reduced in these models (Zheng et al.,
2012). Zheng et al. (2012) showed that streptozotocin-induced
diabetic mice who underwent ischemia (30 min) and reperfusion
(24 h) had increased myocardial infarct size and higher plasma
level of lactate dehydrogenase (LDH) compared to their non-
diabetic counterparts. However, intramyocardial injection of
adenovirus encoding the CGRP gene reduced myocardial infarct
size and plasma LDH level in both non-diabetic and diabetic
mice (Zheng et al., 2012). α-CGRP has been shown to prevent
I/R damage in other tissues such as the intestines, kidneys, and
brain (Song et al., 2009; Liu et al., 2011; Lu et al., 2017). When
central organs, like the heart and liver, are exposed to ischemia,
α-CGRP release may serve to both prevent damage to these
organs and protect other organ systems, such as the intestines,
from subsequent injury via reflexive neuronal release. In one
study, Luo et al. (2016) demonstrated that following the intestinal
ischemia or intestinal reperfusion phase in rats, the level of
caspase-3 protein (an apoptotic cell death marker) increased.
CGRP pretreatment reduced iNOS and caspase-3 levels, and
protected against intestinal I/R injury (Luo et al., 2016).

Finally, administration of α-CGRP following a myocardial
I/R injury can significantly reverse the developing cardiac
dysfunction. In patients with stable angina pectoris, exogenous
α-CGRP postponed the onset of myocardial ischemia (Mair et al.,
1990). In total, these findings demonstrate that depletion of
α-CGRP increases the risk of developing an I/R injury, augments
cardiac damage, and delays the recovery process following
myocardial ischemia. These results demonstrated that α-CGRP
is protective against ischemia-reperfusion injury.

Heart Failure
α-CGRP-producing sensory nerves are found in the perivascular
layer of coronary vessels, in the cardiac conduction system,
and in myocardium of the ventricles (Gulbenkian et al.,
1993). When blood pressure rises or there is a potential of

damage to the heart, such as ischemia or oxidative stress,
these neurons release α-CGRP to maintain cardiovascular
homeostasis. Exogenous administration of α-CGRP enhances
cardiac function in humans by stimulating catecholamine release
to induce positive ionotropic effects and by increasing stroke
volume through reducing afterload via vasodilation (Tortorella
et al., 2001). Additionally, α-CGRP infusion in patients with
heart disease has been shown to enhance blood flow through
vasodilation (Gennari et al., 1990; Shekhar et al., 1991). For these
reasons, α-CGRP protects the heart against adverse myocardial
remodeling and dysfunction from hypertension and heart failure.

Although patients with heart failure have higher circulating
levels of α-CGRP during the initial and middle stages, these levels
rapidly fall during the later stages of heart failure as functionality
declines (Dubois-Rande et al., 1992). Rats induced with pressure-
overload heart failure via constriction of their ascending aorta
expressed higher levels of RAMP1 mRNA and its subsequent
protein in the cardiomyocytes of their atria and ventricles,
indicating that more CGRP receptors were available (Cueille
et al., 2002). Another study using rats with isoprenaline-induced
heart failure found that delivery of rutaecarpine, a TRPV1 agonist
that stimulates α-CGRP release, attenuated cardiac hypertrophy
and apoptosis of cardiomyocytes (Li et al., 2010). Pre-treatment
capsaicin infusion to these rats diminished the results, further
indicating that α-CGRP is cardioprotective against heart failure.
Our laboratory previously demonstrated that when α-CGRP
KO mice underwent transverse aortic constriction (TAC) to
develop pressure-overload heart failure, their survival rates were
drastically decreased compared to the TAC-WT mice (Li et al.,
2013). Additionally, the TAC-KO mice displayed a greater
extent of dysfunctional cardiac remodeling and left ventricular
hypertrophy, and they had reduced cardiac functions compared
to the TAC-WT mice. Further, cardiomyocytes of the TAC-KO
mice exhibited greater amounts of fibrosis, inflammation, and
apoptosis, and had lower rates of angiogenesis as opposed to
the TAC-WT mice. Our lab also showed that when we deliver
native α-CGRP through osmotic mini-pumps for 28 days to
the TAC-WT mice, CGRP administration is cardio-protective
against pressure-overload induced heart failure (Kumar et al.,
2019b). Our data showed that α-CGRP delivery preserved cardiac
functions and inhibited left ventricular apoptosis, fibrosis, and
cardiac hypertrophy in the TAC mice, and thus protecting hearts
from pressure-induced heart failure. Based on our observations
in this study, we proposed that TAC-induced pressure overload
increased the nuclear level of sirt1 via the direct and/or indirect
activation of AMPK and thus impaired mitochondrial function.
As a result of mitochondrial dysfunction, there was a significantly
higher number of apoptotic cells in the TAC-hearts due to larger
amount of ROS produced. Administration of α-CGRP attenuated
TAC-induced increased activation of sirt1 and AMPK, and
inhibited oxidative stress and apoptotic cell death in TAC mice
who received α-CGRP. Together, these events inhibited cardiac
hypertrophy and protected hearts at the pathophysiological
levels. These results suggest that α-CGRP might be a therapeutic
agent to treat and prevent cardiac diseases. However, non-
applicability of osmotic mini-pumps in humans and short half-
life of α-CGRP in circulation (∼5.5 min in human plasma)
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FIGURE 5 | Alginate-α-CGRP microcapsules as a peptide delivery system in heart failure mice. Laboratory set up (Ai) and schematic presentation (Aii) showing
encapsulation of α-CGRP in alginate microcapsules using an electrospray method. (B) Schematic picture showing α-CGRP encapsulated alginate microcapsule (Bi).
Using an electrospray method, alginate-α-CGRP microcapsules were prepared and imaged (Bii). (C) Schematic representation of cardio-protective effect of
alginate-α-CGRP microcapsules against heart failure in mice. Transverse aortic constriction (TAC) procedure was performed in wild-type mice. TAC-induced pressure
overload stimulated excessive reactive oxygen species generation and induced apoptotic cell death and fibrosis in mice left ventricles (LV). As a result, hearts got
enlarged and cardiac functions impaired in the TAC-mice (Ci). Subcutaneous administration of alginate-α-CGRP microcapsules in TAC-mice attenuated increased
levels of TAC-induced LV oxidative stress, apoptosis, and fibrosis that, in turn, inhibited cardiac hypertrophy and improved cardiac functions in the TAC-mice (Cii).

limits the use of peptide (as the case with other peptides) in
long-term treatment regime. To increase the bioavailability of
peptide, we utilized an FDA approved alginate biomaterial as a
drug carrier and developed an α-CGRP delivery system (Kumar
et al., 2020). Alginate is an immunologically inactive natural
biopolymer isolated from the seaweeds and has been used as a
delivery vehicle for a number of biological materials, including
cells, DNA, proteins, and peptides (Zhang et al., 2011; Moore
et al., 2014; Annamalai et al., 2018; Gheorghita Puscaselu et al.,
2020). α-CGRP was encapsulated into alginate polymer using
an electrospray method and alginate-α-CGRP microcapsules
of 200 µm diameter were prepared by passing a mixture of
alginate and α-CGRP through a positively charged 30-G blunt
end syringe needle at a constant flow rate (60 mm/h) under
high voltage current (6 KV) into the 150 mM CaCl2 gelling
solution. The distance between syringe needle and bathing soln
was kept 7 mm (Kumar et al., 2020; Figure 5). α-CGRP-filled
alginate microcapsules released peptide, most likely through
diffusion, for an extended period (up to 6 days) where higher

concentration was released in first few hours known as a “burst”
and then constant but lower concentration for up to 6 days.
Alginate-α-CGRP microcapsules were non-toxic to cardiac cells
tested (rat H9C2 cardiac myoblast cell line and mouse HL-
1 cardiac muscle cell line) in in vitro assays. The efficacy of
these microcapsules was tested in the TAC-pressure overload
mice. Alginate-α-CGRP microcapsules administered on day-2 or
day-15 post-TAC attenuated cardiac hypertrophy and improved
cardiac functions in the TAC-mice. Delivery of alginate-α-CGRP
microcapsules lowered TAC-pressure induced LV apoptotic
cell death, oxidative stress, and fibrosis in the TAC-alginate-
CGRP group of mice. Alginate-α-CGRP microcapsules can be
dehydrated and reconstituted in an buffered saline solution of
distilled water. These capsules can be put in pluronic gels or
collagen gels or injected as we have done either IP or sub
cutaneious. Although α-CGRP release profile was performed
in in vitro assays, the pharmacology and pharmacokinetics
of released peptide in different organs and tissues under
in vivo conditions are being investigated. The use of alginate is
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further enhanced due to it being an immunologically inactive
polymer hence does not exhibit adverse effects in vivo. The
cardioprotective effects of CGRP have been demonstrated in
TAC-mice after administering CGRP encapsulated microcapsules
via subcutaneous route. However, the oral route is a preferred
method for delivery of most therapeutic agents, therefore
the cardioprotective effects of alginate-α-CGRP microcapsules
delivered through the oral route is of keen interest the lab.
Furthermore, numerous additional benefits for using alginate
microcapsules are: these microcapsules can be freeze-thawed
without losing structural integrity; they can be stored at very low
temperature, and they can be lyophilized. These studies indicate
that our alginate-based delivery system is a potential approach
to increase the bioavailability of CGRP in circulation and this
therapeutic modality can be translated to treat cardiac diseases
during long term treatment.

Several efforts are also being made in search of more
stable bioactive α-CGRP-agonists to address peptide’s low
bioavailability in human plasma (Nilsson et al., 2016). Aubdool
et al., 2017, tested an acylated form of α-CGRP (half-life∼7 h) in
rodent models of Ang-II-induced hypertension and abdominal
aortic constriction (AAC)-induced heart failure (Aubdool
et al., 2017). Researchers demonstrated that subcutaneous
administration of acylated-α-CGRP significantly reduced
cardiac hypertrophy, fibrosis, and inflammation, and improved
cardiac function in these disease rodent models. Recently, the
cardioprotective effect of a metabolically stable CGRP analog,
SAX, has been tested in a constant left anterior descending
(LAD) occlusion rat model of acute myocardial infarction
(Bentsen et al., 2021). Researchers reported that intraperitoneal
administration of SAX (100 nmole/kg bwt per rat) improved
myocardial recovery after myocardial infarction. These studies
collectively suggest that utilization of α-CGRP (native or its
analogs) and their delivery systems can be a potential strategy in
preventing harmful cardiac remodeling and dysfunction present
in cardiac diseases. As α-CGRP is a potent vasodilator and its
higher level in plasma induces migraine, monitoring of blood
pressure and migraine-like headache in humans is recommended
while administering high doses of the peptide.

THERAPEUTIC VALUE OF
ALPHA-CALCITONIN GENE RELATED
PEPTIDE-ANTAGONISTS IN MIGRAINE
PAIN

Migraine is a chronic neurological disorder. Patients suffering
from migraines show an increased level of CGRP in their
saliva and plasma suggesting that CGRP plays an important
role in the pathophysiology of migraine headache (Gallai
et al., 1995; Cady et al., 2009; Hansen et al., 2010; Al-
Hassany and Van Den Brink, 2020; Wattiez et al., 2020). It has
been shown that the trigeminovascular system (containing the
trigeminal ganglion and trigeminal nerves) becomes activated
during a migraine episode that leads to the release of CGRP
in the external jugular vein resulting in a migraine-like

headache (Goadsby et al., 1988, 1990; Edvinsson, 2017). Recently
developed CGRP-antagonists, which consist of humanized
monoclonal antibodies that either bind to CGRP or its receptor,
have been used to relieve the pain in migraine patients (Urits
et al., 2019). These well tolerated and FDA-approved antibodies
are erenumab, fremanezumab, galcanezumab, and eptinezumab,
and are discussed below (Table 1).

Erenumab (Aimovig)
Erenumab (commercial name Aimovig) is an FDA-approved
fully monoclonal IgG2 antibody that selectively blocks the CGRP
receptor, and subsequently downstream molecular signaling, to
prevent the onset of migraines (Shi et al., 2016; Markham, 2018).
It is administered once per month in patients to prevent the onset
of migraines. Erenumab’s ability to attenuate migraine symptoms
is primarily attributable to its ability to block CGRP receptors
on the trigeminal ganglion and its branches. It is also thought
that erenumab’s inhibitory actions on cerebral and meningeal
blood vessel vasodilation plays a role in migraine treatment and
prevention. Additionally, erenumab may block satellite cells from
releasing inflammatory modulators and nitric oxide (NO) in
response to α-CGRP exposure (Edvinsson et al., 2018).

A randomized, double-blind, and placebo-controlled phase II
clinical trial showed that administration of 70 or 140 mg doses
of erenumab to 667 chronic migraine patients reduced migraine
days per month (Tepper et al., 2017). In a 6 month, randomized,
double-blind, placebo-controlled phase III clinical trial (STRIVE
trial), erenumab was injected subcutaneously monthly in doses
of either 70 mg or 140 mg in 955 patients with episodic migraines
to assess its safety and efficacy (Goadsby et al., 2017). Erenumab
reduced the average number of migraine days per month by
43.3% (3.2 days) in patients given 70 mg doses and 50% (3.7 days)
in patients injected with 140 mg doses, compared to a 26.6%
reduction (1.8 days) in the placebo group.

An open-label, 5-year treatment phase followed 383 episodic
migraine patients who had enrolled in a 12-week, double-blind,
placebo-controlled clinical trial of erenumab (Ashina et al., 2021).
These patients began the clinical trial receiving 70 mg doses of
erenumab, but 250 patients were later switched to 140 mg doses.
This open-label study tested the long-term safety and efficacy
of erenumab by investigating changes in baseline monthly
migraine days, monthly acute migraine-specific medication days,
and health-related quality of life. By year 5 of erenumab use,
these patients experienced an average reduction of 62.3% of
monthly migraine days (–5.3 days per month), a –4.4 days
reduction in acute migraine-specific days per month. This study
also found that long-term erenumab use is not associated
with increased frequency of adverse side effects. Therefore, the
study concluded that erenumab is a safe and effective drug for
migraine prevention.

Fremanezumab (Ajovy)
Fremanezumab (TEV-48125) is a fully monoclonal IgG2
antibody that blocks CGRP signaling by binding to α- and
β-forms of CGRP to inhibit these ligands from interacting with
the CGRP receptor (Hoy, 2018). Approved by the FDA and
developed by Teva Pharmaceuticals, fremanezumab (commercial
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TABLE 1 | FDA approved anti-CGRP and anti-CGRP receptor antibodies for the treatment of migraine.

CGRP-
antagonists

Manufacturer Mode of action Dose regime Response in migraine patients Potential side effects

Erenumab
(Aimovig)

Amgen/ Novartis Blocks CGRP
receptor

s.c., once monthly Reduced monthly migraine days in
patients with chronic and episodic
migraines

Pain and redness at
injection site, and
constipation

Fremanezumab
(Ajovy)

Teva
Pharmaceuticals

Binds to α- and β-
forms of CGRP

s.c., once
monthly/quarterly

Reduced migraine days by an average
of 5 days a month in patients with
chronic migraine and reduced migraine
days by an average of 3.5 days a
month in patients with episodic
migraine

Injection site reactions. May
cause allergic reactions,
such as itching, rash, and
hives

Galcanezumab
(Emgality)

Eli Lilly Binds to α- and β-
forms of CGRP

s.c., once monthly Cut the number of monthly migraine
days by 50% or more for some people

Injection site reactions. May
cause allergic reactions,
such as itching, rash, hives,
and trouble breathing

Eptinezumab
(Vyepti)

Lundbeck Seattle
BioPharmaceuticals

Binds to α- and β-
forms of CGRP

lntravenously (i.v.),
once quarterly

Reduced monthly migraine days in
patients with chronic and episodic
migraines

Nasopharyngitis and
hypersensitivity

name Ajovy) is administered monthly or quarterly via a
subcutaneous injection to prevent migraine attacks (Friedman
and Cohen, 2020). In vitro studies found that fremanezumab
inhibits CGRP-induced vasodilation of intracranial and
abdominal arteries. Fremanezumab is given in doses of 225, 675,
or 900 mg, and its maximum concentration in plasma is apparent
5–7 days after administration, which indicates that it is absorbed
slowly into the circulation. Fremanezumab has a plasma half-life
of∼31 days (Fiedler-Kelly et al., 2019).

A randomized, double-blind, placebo-controlled, parallel-
group clinical trial tested the effectiveness of fremanezumab by
administering 225 mg monthly or 675 mg quarterly to episodic
migraine patients (Dodick et al., 2018). Patients in the 225 mg
group experienced a reduction in mean migraine days per month
from 8.9 to 4.9 days. The number of mean migraine days
per month in subjects injected with 675 mg of fremanezumab
quarterly dropped from 9.2 to 5.3 days, while those in the
placebo group reported a reduction of 9.1 migraine days per
month to 6.5 days.

Another randomized, double-blind, placebo-controlled,
parallel-group study administered fremanezumab monthly or
quarterly in chronic migraine patients (Silberstein et al., 2017).
Patients who received fremanezumab monthly experienced a
4.6 days reduction of mean number of headache days per month,
while those in the quarterly group reported a 4.3 days reduction.
Both groups compared to the placebo were significant, as the
reduction in number of headache days per month in the placebo
group was 2.5 days. Additionally, 41% of patients in the monthly
fremanezumab group and 38% in the quarterly group reported
a reduction of ≥50% of headache days per month compared to
18% in the placebo group.

A 12-week, phase III clinical trial determined the efficacy
of fremanezumab in patients with difficult-to-treat chronic
or episodic migraines (Ferrari et al., 2019). Patients with
difficult-to-treat migraines were defined by failure to respond
to 2–4 of the following migraine preventative medications:
beta-blockers, anticonvulsants, tricyclic antidepressants, calcium

channel blockers, angiotensin II receptor antagonists, or
onabotulinumtoxin A. In this randomized, double-blind,
parallel-group study, patients received monthly or quarterly
subcutaneous injections of either fremanezumab or a placebo.
At the end of the 12 weeks, the study found that patients in both
fremanezumab groups experienced a significant reduction in
migraine days per month compared to the placebo. The monthly
fremanezumab group reported an average of 4.1 fewer migraine
days per month, while the quarterly fremanezumab patients
experienced a 3.7-day reduction. Fremanezumab also reduced
the frequency of monthly headache days of at least moderate
severity in both groups (–4.2 days in monthly group; –3.9 days in
quarterly group; –0.6 days in placebo group).

The HALO long-term study (LTS), a double-blind,
randomized, parallel-group, 12-month, phase III clinical
trial, investigated the long-term efficacy of fremanezumab in
1,890 patients with chronic or episodic migraines (Goadsby
et al., 2020). At the end of the study, over 50% of patients with
chronic migraine and ∼66% of patients with episodic migraine
reported a ≥50% reduction in migraine days per month from
their baseline levels. This investigation also found that as the
study progressed, more patients reported reductions in monthly
migraine days, indicating that fremanezumab became more
effective with longer treatment duration.

Galcanezumab (Emgality)
Developed by Eli Lilly & Co., galcanezumab (commercial name
Emgality) is an FDA-approved humanized monoclonal antibody
used for migraine and cluster headache prevention (Lamb, 2018).
Galcanezumab has an apparent half-life of ∼27 days in serum
and binds to the CGRP ligand to prevent interaction with
the CGRP receptor, thus abolishing the biological activity of
α-CGRP (Dodick et al., 2014b). Healthy volunteers injected
with a single dose of 75–600 mg of galcanezumab experienced
significantly more inhibition of capsaicin-induced dermal blood
flow compared to a placebo group at all post-dose time
intervals (days 3, 14, 28, and 42). Galcanezumab is administered
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monthly via subcutaneous injection, and it is slowly absorbed
into circulation, as it reaches maximum plasma concentration
∼5 days post-injection.

In a clinical trial (EVOLVE), the safety and efficacy of
galcanezumab was evaluated in episodic migraine patients treated
with 120 mg or 240 mg galcanezumab or a placebo group
(Stauffer et al., 2018). By the end of the 6-month period,
galcanezumab reduced the number of monthly migraine days
by 4.7 and 4.6 days at doses 120 and 240 mg, respectively.
Similarly, 65% of patients taking galcanezumab reported a> 50%
reduction of mean headache days per month compared to 42% in
the placebo group.

A randomized, double-blind, placebo-controlled phase III
clinical trial (REGAIN) investigated the efficacy of galcanezumab
by injecting monthly doses of 120 mg (with an initial 240 mg
loading dose) or 240 mg of galcanezumab or a placebo in
chronic migraine patients (Detke et al., 2018). Patients in the
120 mg galcanezumab group experienced a mean reduction in
number of headache days per month of –4.8 days. Similarly, the
240 mg galcanezumab group reported a –4.6 day reduction, while
patients in the placebo group experienced a –2.7 day reduction in
number of headache days per month.

In addition, an 8-week, randomized, double-blind, placebo-
controlled phase III clinical trial injected 300 mg doses of
galcanezumab once per month in 106 adults with episodic
cluster headaches (Goadsby et al., 2019). During weeks 1–3,
galcanezumab decreased the number of weekly cluster headaches
by 8.7, as opposed to 5.2 in the placebo group. Additionally, by
week 3, 71% of patients receiving galcanezumab reported a≥50%
decrease in the incidence of weekly cluster headaches, compared
to 53% in the placebo group.

Eptinezumab (Vyepti)
Eptinezumab is a humanized monoclonal antibody that is used to
prevent the onset of migraine attacks (Dodick et al., 2014a; Baker
et al., 2020). Developed by Lundbeck Seattle BioPharmaceuticals
under the commercial name Vyepti, eptinezumab binds to α-
and β-forms of CGRP to prevent ligand-receptor interaction, and
therefore blocks CGRP signaling. Eptinezumab has a half-life
of ∼27 days, and it achieves steady state serum concentrations
following its initial administration and subsequentially after each
infusion once every 3 months.

PROMISE-1, a randomized, double-blind, multicenter,
placebo-controlled phase III clinical trial assessed the efficacy
and tolerability of eptinezumab by intravenously administering
30, 100, or 300 mg doses of eptinezumab or a placebo every
3 months for 12 months in 888 adults with episodic migraines
(Ashina et al., 2020; Smith et al., 2020). Patients who received
100 mg doses of eptinezumab reported a 3.9 day reduction
in monthly migraine days during weeks 1–12, compared to
3.2 days in the placebo group. Similarly, patients who were
given 300 mg of eptinezumab experienced a 4.3 day decrease
in monthly migraine days during weeks 1–12. Because the
30 mg dose of eptinezumab failed to be statistically significant
on the primary efficacy end point, this dosing regimen was
not approved by the FDA. Throughout weeks 1–4, the 100 mg
and 300 mg eptinezumab groups had significantly higher

rates of ≥75% reductions in monthly migraine days from
baseline compared to the placebo (31% in 100 mg group, 32%
in 300 mg group, and 20% in placebo). During weeks 1–12,
significantly more patients who received 300 mg doses of
eptinezumab reported ≥50% decrease in monthly migraine
days vs. placebo (56 vs. 37%). Additionally, 30% of 300 mg
eptinezumab patients reported a ≥75% reduction in monthly
migraine days during weeks 1–12, compared to 16% in the
placebo group. All eptinezumab dosing regimens decreased the
frequency of monthly migraine days compared to the placebo
through week 48, and the beneficial effects of eptinezumab
persisted throughout the entire study. The number of patients
who experienced a ≥50% or a ≥75% reduction in monthly
migraine days were significantly higher in those who received
100 or 300 mg doses of eptinezumab compared to the placebo
from weeks 1 to 48. By week 48, the average reduction in monthly
migraine days was –4.5 and –5.3 days in the 100 mg and 300 mg
eptinezumab groups, compared to –4.0 days in the placebo
group. Of all the patients treated with eptinezumab, ∼70%
experienced a ≥50% migraine response during at least 6 months
of the study and>20% reported≥50% migraine response during
all 12 months of the study.

Moreover, a large randomized, placebo-controlled, double-
blind, multicenter, phase III clinical trial (PROMISE-2)
investigated the safety and efficacy of eptinezumab in 1,072
patients with chronic migraines (Lipton et al., 2020). Patients
were randomized to an eptinezumab or a placebo group and
received either 100 or 300 mg intravenous doses every 3 months
for 6 months. The effects of eptinezumab were apparent after
the first day of dosing, as 28.6% of patients who received
100 mg of eptinezumab and 27.8% of patients administered
300 mg of eptinezumab reported having a migraine after the
first day of dosing compared to 42.3% of patients in the placebo
group. Eptinezumab significantly reduced the frequency of
monthly migraine days during weeks 1–12 in both the 100 mg
(–7.7 days) and 300 mg (–8.2 days) groups compared to the
placebo (–5.6 days). During weeks 1–12, 26.7% of patients who
received 100 mg doses of eptinezumab and 33.1% of the 300 mg
eptinezumab group reported ≥75% reduction rates in monthly
migraine days, compared to 15% in the placebo group. The most
common side effect of eptinezumab use was nasopharyngitis,
which occurred in 9.4% of patients who received 300 mg of
eptinezumab, compared to 6.0% of patients in the placebo group.
Less than 1% of patients (7 from eptinezumab group and 3
from placebo group) experienced a serious treatment emergent
adverse effect (TEAE), including nervous system disorders,
injury, poisoning, and procedural complications. Based on these
results, eptinezumab was determined to be a well-tolerated and
effective medication for migraine prevention.

CONCLUSION

Numerous biological, pharmacological, and genetic studies
carried out in a variety of animal models have established
the role of α-CGRP in normal and disease states, particularly
in cardiovascular disease and migraine pain. In recent years
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the development of CGRP-antagonists and their successful
use in humans to treat/prevent migraine-like headache is
remarkable. Growing evidence suggest that, in addition to
classical CGRP-receptor, CGRP can interact with other CGRP-
responsive receptors (such as AMY1 receptor) present on
the cell surface, hence studying the pharmacological effects
of developing CGRP-agonists/-antagonists on these receptor
subtypes might be valuable for the successful development
of CGRP-based therapy for diseases. Moreover, the ongoing
efforts to enhance the bioactivity of CGRP in circulation via
CGRP-analogs and delivery systems are promising therapeutic
agents to treat patients suffering from cardiovascular diseases.
The alginate-based delivery system for α-CGRP is showing
promising results to increase the bioavailability of the peptide and
protect against pressure-induced heart failure. Further testing
of this delivery system is needed in other rodent models
of cardiovascular diseases, including hypertension, myocardial
infarction, ischemia-reperfusion injury, and also other modes
of alginate-CGRP microcapsules delivery is needed to verify in
these cardiac diseases. These endeavors are a hopeful avenue
for CGRP-based cardiovascular therapeutics in the coming
years. Another aspect that is needed to consider in CGRP
biology is the accurate measurement of peptide in the biological
samples. α-CGRP is a very short-lived peptide making it
difficult to measure accurately in samples. Although radio-
immunoassay and enzyme-immunoassay are employed, more
sensitive detection methods such as high-performance liquid
chromatography (HPLC) and mass spectroscopy should be
considered to include in the CGRP measurement assays. It is
also worthy to mention here that as α-CGRP has an important
role in regulating regional organ blood flow in normal and

pathophysiological conditions, it might be possible that migraine
patients treated with CGRP-antagonists, that block CGRP-
signaling, develop adverse side effects on heart and blood
vessels. Hence long-term follow-up of these patients in terms of
cardiovascular safety is advisable.
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