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Abstract 

Background:  Prior to this project, only a handful of online visualizations existed for exploring the published literature 
on molecular markers of antimalarial drug resistance, and none specifically for the markers associated with Plasmo-
dium falciparum resistance to the partner drugs in artemisinin-based combination therapy (ACT). Molecular infor-
mation is collected in studies with different designs, using a variety of molecular methodologies and data analysis 
strategies, making it difficult to compare across studies. The purpose of this project was to develop a free online tool, 
which visualizes the widely published data on molecular markers of antimalarial drug resistance, starting with the two 
genes pfcrt and pfmdr-1, associated with resistance to the three most common partner drugs; amodiaquine, lumefan-
trine and mefloquine.

Methods:  A literature review was conducted, and a standardized method was used to extract data from publications, 
and critical decisions on visualization were made. A global geospatial database was developed of specific pfmdr1 and 
pfcrt single nucleotide polymorphisms and pfmdr1 copy number variation. An informatics framework was developed 
that allowed flexibility in development of the tool over time and efficient adaptation to different source data.

Results:  The database discussed in this paper has pfmdr1 and pfcrt marker prevalence information, from 579 geo-
graphic sites in 76 different countries, including results from over 86,000 samples from 456 articles published January 
2001–May 2017. The ACT Partner Drugs Molecular Surveyor was launched by the WorldWide Antimalarial Resistance 
Network (WWARN) in March 2015 and it has attracted over 3000 unique visitors since then. Presented here is a dem-
onstration of how the Surveyor database can be explored to monitor local, temporal changes in the prevalence of 
molecular markers. Here publications up to May 2017 were included, however the online ACT partner drug Molecular 
Surveyor is continuously updated with new data and relevant markers.

Conclusions:  The WWARN ACT Partner Drugs Molecular Surveyor summarizes data on resistance markers in the 
pfmdr1 and pfcrt genes. The database is fully accessible, providing users with a rich resource to explore and analyze, 
and thus utilize a centralized, standardized database for different purposes. This open-source software framework can 
be adapted to other data, as demonstrated by the subsequent launch of the Artemisinin Molecular Surveyor and the 
Vivax Surveyor.
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Background
Malaria remains a major cause of morbidity and mortal-
ity with a concerning trend of increase in cases reported 
in the 2017 World Malaria Report (216 million cases of 
malaria in 2016, up 5 million from 2015) [1]. Africa still 
bears most of the burden with 90% of all malaria cases 
and deaths occurring in this region [1].

The continuing devastating impact of this disease is 
partly due to the emergence and spread of resistance to 
anti-malarials. Mutations in Plasmodium falciparum 
genes have long been established as markers of anti-
malarial resistance [2–5], and the level of clinical treat-
ment failure has been associated with the presence of 
these resistance mutations [6, 7]. Identification of both 
copy number variation (CNV) and single nucleotide 
polymorphisms (SNPs) in the P. falciparum genes allows 
monitoring of the emergence and spread of declining 
drug susceptibility in parasite populations [8].

With respect to the partner drugs used in currently 
recommended artemisinin-based combination therapy 
(ACT), resistance to amodiaquine has been associated 
with SNPs in both the P. falciparum chloroquine-resist-
ance transporter (pfcrt) MAL7P1.27 and P. falciparum 
multidrug resistance gene 1 (pfmdr1) MAL5P1.230 [6, 
7, 9] (Table  1). Increased risk of treatment failure after 
lumefantrine treatment [7] and decreased susceptibility 
to lumefantrine in vitro are associated with several spe-
cific alleles of pfmdr1 [10–12]. Resistance to mefloquine 
has been associated with amplification of the pfmdr1 
gene [13].

Molecular surveillance can be used to estimate the 
impact of parasite resistance on preventative measures 
such as intermittent preventive therapy in pregnancy 
(IPTp) and seasonal malaria chemoprevention (SMC), as 
well as to assess the appropriateness of current recom-
mended drug treatment policies [14–16]. One example of 
drug policy change having an impact on the prevalence of 
particular markers of resistance was observed in Tanza-
nia, within 4 years from the introduction of artemether–
lumefantrine (AL) as the first-line treatment in 2006, the 
prevalence of the pfmdr1 N86 and 184F alleles increased 

dramatically from 10% to 46% and < 10% to 40%, respec-
tively [17]. Such evolution has direct consequences for 
patient treatment since the prevalence of a particular 
genotype in the parasite population is one factor consid-
ered in predicting an overall probability of treatment suc-
cess [8].

It is presently still uncommon that treatment poli-
cies have been changed based on molecular studies 
alone, but two examples, from Mali and Tanzania, have 
demonstrated the use of local marker prevalences in 
evaluating drug policies [8, 18]. On a global level, muta-
tions in P. falciparum dihydrofolate reductase (pfdhfr), 
PF3D7_0417200, and P. falciparum dihydropteroate 
synthase (pfdhps), PF3D7_0810800, markers of sulf-
adoxine-pyrimethamine (SP) resistance, played a role 
in the World Health Organization (WHO) decision to 
change IPTp policy recommendations from a 2-dose 
regimen of SP to SP administration at each scheduled 
antenatal care visit [19, 20].

The Millennium Development Goals Report 2015 
highlights the importance of data collection and its 
use in evidence-based policymaking, recommend-
ing tailored local strategies and “opening up data… 
to provide free visualization and analysis tools” [21]. 
However, very few interactive maps that provide a sum-
mary of the anti-malarial drug resistance picture exist 
online, and none that allow the user to explore tempo-
ral trends. The London School of Hygiene and Tropical 
Medicine Africa map displays prevalence of mutations 
in the pfdhfr and pfdhps genes associated with SP resist-
ance (http://www.drugr​esist​ancem​aps.org). Another 
example is the Center for Global Development drug 
resistance maps which display the number of cases of 
CQ or SP resistance at the country level (http://www.
cgdev​.org/page/looki​ng-drug-resis​tance​). The more 
recently launched WHO Malaria Threats Map [22] pre-
sents information on resistance markers in the Pfkelch 
13, pfcrt, pfmdr-1,  and pfplasmepsin 2-3 genes (http://
www.who.int/malar​ia/maps/threa​ts). There are other 
examples of informative maps on malaria but these do 
not present drug resistance data (CDC interactive map 

Table 1  SNPs and copy number variations associated with resistance to ACT partner drugs

Lumefantrine Amodiaquine Chloroquine Mefloquine

pfmdr1 N86Y N86 86Y 86Y

pfmdr1 Y184F 184F Y184

pfmdr1 D1246Y D1246 1246Y

pfmdr1 copy no. ↑ Increased CN

pfcrt K76T K76 76T 76T

pfcrt 72–76 CxxxK SVMNT CVIET

http://www.drugresistancemaps.org
http://www.cgdev.org/page/looking-drug-resistance
http://www.cgdev.org/page/looking-drug-resistance
http://www.who.int/malaria/maps/threats
http://www.who.int/malaria/maps/threats
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(http://www.cdc.gov/malar​ia/map/index​.html), and the 
Malaria Atlas Project (http://www.map.ox.ac.uk).

There is evidence of heterogeneity in marker preva-
lences between populations sampled from neighbour-
ing regions within a country [23] which challenges the 
degree of spatial generalizability one can draw from a 
particular sample site. This highlights the need to make 
the most of all the data that do exist and supports the 
development of a single comprehensive source of all the 
evidence collected to summarize the data and to high-
light gaps. This allows targeting of control programme 
resources to the areas of highest concern.

The WorldWide Antimalarial Resistance Network 
(WWARN) recognizes that data often need transform-
ing into formats that are useful for a wide audience [24]. 
WWARN created an interactive map for point mutations 
in the pfdhfr and pfdhps genes (http://www.wwarn​.org/
dhfr-dhps-surve​yor/). The next step was to summarize 
the published evidence on mutations in the pfcrt and 
pfmdr1 genes which have been associated with resistance 
to chloroquine (CQ) and the main ACT partner drugs, 
namely amodiaquine (AQ), lumefantrine (LUM), and 
mefloquine (MQ).

Collating the current evidence in a standardized 
approach is a key first step to facilitate the consideration 
of molecular marker prevalence evidence in informed 
treatment policies. The aim of this current effort was 
to conduct a periodic review of the published litera-
ture and create a useful, interactive visualization tool 
to summarize the information both spatially and tem-
porally. WWARN’s intention is to present data without 
extrapolation or interpretation, using a clear, transparent 
methodology.

Methods
Data search and inclusion and exclusion criteria 
for publications
Studies have been identified every 6  months since 2015 
through a PubMed literature review using the search 
terms ‘malaria AND (pfcrt OR pfmdr1 OR “molecular 
marker” OR “molecular markers”)’. The ACT partner 
drug Surveyor is regularly updated with newly published 
or unpublished data (minimum every 6 months). Articles 
published from 2001 onwards are included. Abstracts 
and text are scanned to determine which publications 
are relevant using the following inclusion criteria; report-
ing of at least one pfcrt or pfmdr1 genotype or haplotype 
from field isolates, i.e. not cultured strains (see Table  2 
for a complete list of markers) and clear information on 
sample size, and location information (at least on country 
level). If malaria patient samples are assessed, only results 
from pre-treatment samples are considered. Details 

of the inclusion and exclusion criteria can be found in 
the Additional file 1. In this publication, data from arti-
cles published between January 2001 and May 2017 are 
presented. A full list of the publications captured in the 
search can be found in the Additional file 2. Future litera-
ture searches will also include prevalence data on plas-
mepsin2 CNV, related to piperaquine resistance [25, 26]. 
The ACT Partner Drug Molecular Surveyor is continu-
ously updated with data from publications.

Data extraction and entry in the database
Data extracted from the publications includes marker 
genotype and haplotype prevalence (number of sam-
ples tested, number of samples with the pure and/or 
mixed genotype identified) and gene copy number as 
well as PubMedID and publication information, study 
year and geographic position (country, site, latitude and 
longitude). Data on multiple loci in pfmdr1 and pfcrt 
are extracted to determine the prevalence of genotypes 
and haplotypes (Table  2). If latitude/longitude were not 
reported in the article, geocoding was performed using 
online tools (http://www.gpsvi​suali​zer.com/geoco​der/ or 
http://www.googl​e.com/maps).

An online web application has been developed to 
increase consistency in data entry and to support entry 
concurrently by multiple staff based anywhere in the 
world. Each user connects to the application through 
secure controlled access and each interaction with the 
application is audited. The main WWARN SQL data-
base is a fault-tolerant database, which replicates data 
in different data centres to achieve high availability and 
durability. Daily back-ups are also applied in order to 
minimize data loss.

The following rules guide the process of data extraction 
and entry:

Table 2  SNPs, haplotypes displayed by  codon number 
and  CNV displayed in  the  ACT Partner Drug Molecular 
Surveyor

pfmdr1

N86Y

Y184F

D1246Y

N86Y/Y184F/D1246Y

N86Y/Y184F/S1034C/N1042D/D1246Y

copy number

pfcrt

K76T

S72C/M74I/N75E/K76T

http://www.cdc.gov/malaria/map/index.html
http://www.map.ox.ac.uk
http://www.wwarn.org/dhfr-dhps-surveyor/
http://www.wwarn.org/dhfr-dhps-surveyor/
http://www.gpsvisualizer.com/geocoder/
http://www.google.com/maps
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•	 Data are extracted and entered per site per year, if 
this information is available.

•	 Sample size must be specified per site and marker.
•	 Articles are scanned particularly to identify reports 

of polyclonal infections. If polyclonal infections are 
present in the data set, they can be entered sepa-
rately, or included in either the mutant and wild type 
categories or both, depending on the information 
given in the publication.

•	 If no sample collection date is reported, the year of 
sample collection is estimated to 3 years prior to the 
publication year.

•	 If the prevalence of only one allele (e.g. pfcrt 76T) is 
presented in the publication, the prevalence of the 
other allele (pfcrt K76) is calculated from the pre-
sented prevalence and extracted, if the mixed infec-
tions (pfcrt 76 K/T) were clearly accounted for.

•	 If the marker prevalence is only presented in a graph 
in the article, the prevalence for each genotype is 
estimated based on the graph.

•	 If only the prevalence of haplotypes (e.g. pfcrt 72–76) 
is presented in the publication, the prevalence of the 
single locus (pfcrt 76) is calculated from the hap-
lotype prevalence, if all identified haplotypes were 
accounted for in the publication.

The online visualization tool
The Surveyor tool was built using the Google Web 
Toolkit, Bootstrap, a responsive front-end library and 
the WWARN maps surveyor open source framework 
(https​://githu​b.com/World​wideA​ntima​laria​lResi​stanc​
eNetw​ork/WWARN​-Maps-Surve​yor). This framework 
is a mapping platform for visualizing data to support 
research synthesis and reporting in global health settings 
and health research. The tool displays the prevalence of 
a molecular marker including mixed infections for both 
wild-type and mutant alleles, by location. Data can be fil-
tered to view results on a particular ACT-partner drug, 
molecular marker, country, sample size, and sample col-
lection year. Pin icons display the location of samples col-
lected as reported in the publications and are coloured 
according to the prevalence of the marker being viewed. 
Pop-up boxes provide specific details about samples from 
a particular site. These boxes include a direct citation link 
to PubMed. If samples from more than 1 year have been 
reported from that site, a drop down menu allows each 
year to be viewed separately. The prevalence of molecular 
markers in two geographic sites or the same geographic 
site from different years can be compared with a tool 
below the map by selecting country, site and year from 
the drop-down menus. The full dataset can be down-
loaded as a single comma-separated value (csv) file which 

can be input for analysis in excel or other statistical soft-
ware. The dataset that the user downloads can be cus-
tomized to reflect the filter choices applied by the user.

Rules for data visualization:

•	 For a study with multiple geographic sites, where the 
data cannot be separated by site, the data are dis-
played as all geographic sites together with the pin 
pointing at one of the sites.

•	 If only the country of origin, but not the study site is 
specified, the data are displayed with a pin pointing 
at the capital of the country.

•	 If a study collected samples over several years, the 
study is displayed with one pin coloured according to 
the data from the most recent year.

•	 Inclusion or exclusion of mixed infections in the 
prevalence of a single genotype or haplotype is speci-
fied in the pop-up box.

Although there are 29 different loci (17 in pfcrt, and 12 
in pfmdr1) captured in the database, the majority of the 
data concentrate on a few key loci; pfmdr1 codons 86, 
184, 1246, and CNV; and pfcrt codons 72–76. To sim-
plify visualization of the data on the Surveyor, only these 
key positions are listed in the marker list as they repre-
sent both the majority of the data, and the loci with the 
clearest evidence for a role in drug resistance. In addi-
tion to single nucleotide polymorphisms, haplotypes are 
also presented. The prevalence of particular single SNPs 
from data on haplotypes has been included in the single 
SNP prevalence. For example, if the user chooses ‘pfcrt 
72–76 CXXXT’, where X represents any amino acid, then 
all publications that reported any haplotype will be dis-
played. In addition the prevalence of pfcrt 76T will be cal-
culated based on all haplotypes presented in the article 
and displayed when the user chooses pfcrt 76T.

Analysis of the surveyor database
The Surveyor data set, openly available to download, can 
be used to provide visualization of spatial and temporal 
changes in marker prevalence over time. In the exam-
ple presented in the paper, the data set was analysed 
to show the number of publications by year and region 
(Figs. 2, 3) as well two examples of temporal and spatial 
changes of marker prevalence. Firstly, temporal changes 
in the prevalence of pfcrt K76 and pfmdr1 N86 in a spe-
cific site, Tororo, Uganda, were addressed. The preva-
lence by year of the SNPs was calculated by dividing the 
sum of samples positive for a genotype (including mixed 
infections) for all studies in Tororo by the sum of tested 
samples (Fig. 5). Secondly, spatial and temporal changes 
of pfmdr1 N86 prevalence in six selected sub-Saharan 
countries were visualized (Fig.  6). The SNP prevalence 

https://github.com/WorldwideAntimalarialResistanceNetwork/WWARN-Maps-Surveyor
https://github.com/WorldwideAntimalarialResistanceNetwork/WWARN-Maps-Surveyor
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from each of 42 studies was plotted by year and geo-
graphical site and colored by country. A line marked the 
mean prevalence of all study sites in a country by year. 
The mean was calculated by dividing the sum of sam-
ples positive for pfmdr1 N86 (including 86  N + Y) for 
all studies divided by the sum of tested samples by year, 
and presented based on the current first-line ACT in the 
country, according to WHO [2]. Selected sub-Saharan 
countries with data from > 50 samples in each site con-
ducted between 2000 and 2015 were included. If studies 
were conducted over a range of years, the mean year was 
used. Countries were selected for analysis based on num-
ber of data points and spread over time. Data from Zan-
zibar were presented separately from Tanzania mainland 
since different first-line treatments were adopted in these 
areas. Fisher’s exact two-tailed test was used to compare 
the prevalence of the binned year groups 2003–2006 and 
2009–2012. A full reference list of the original source 
publications used to create Fig. 6 can be found in Addi-
tional file  3. Graphs were created in Excel and Tableau 
version 10.5.

Results
The database
The database presented here included data from arti-
cles published between January 2001 and May 2017. 

The literature search identified 903 papers of which 
450 (50%) were excluded (Fig. 1). Excluded studies fell 
into two groups; inappropriate study type and miss-
ing information. Within the study type category, most 
studies did not collect data of baseline prevalence in 
pfcrt and pfmdr1 markers (n = 249, 55%). This was 
expected as wide search terms were deliberately chosen 
to capture the majority of publications containing rel-
evant data. Within the missing information category, 16 
(4%) publications had unclear sample location details 
and six publications had an unspecified total number of 
samples analysed. Among the included studies 46 (10%) 
did not contain information on the year of sample col-
lection. The sample collection year was then set to 
3 years prior to publication. A total of 453 articles were 
included. In addition, one article was identified by per-
sonal communication and two articles in the PubMed 
literature search for the “SP Molecular Surveyor” since 
they included data on the ACT partner drug markers. 
Data have thus been extracted from 456 publications, 
which contained results from over 86,000 samples. A 
full list of the publications captured in the search can 
be found in the Additional file 2.

A range of 12 to 42 publications were included from 
each year between 2001 and May 2017 (Fig.  2). Sam-
ples had been collected between 1956 and 2017 and the 

Literature review of pfcrt/pfmdr1 papers 
in PubMed 900 ar�cles (published Jan 2001-May 2017)

453 ar�cles suitable for data extrac�on

Molecular Surveyor database: 
data extracted from 456 ar�cles

(76 countries, sample years 1956-2017)

Exclusion by study type:
249 no pfcrt/pfmdr1 genotype data
55 review ar�cle
24 experimental study
19 biased sample selec�on
16 genotype data previously published
12 P. vivax infec�on
10 cultured isolates
2   methodology ar�cles
2   mosquito infec�on
1   severe malaria infec�on
1   chimpanzee infec�on
1   placental infec�on
Exclusion by missing informa�on:
22 no access to ar�cle
16 not sufficient loca�on info
7   prevalence not interpretable
6   no denominator
4   ar�cle in Chinese

Personal 
communica�on 

1 ar�cle

SP Molecular 
Surveyor literature 

search 2 ar�cles

Fig. 1  Flow diagram outlining study selection
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median time between final sample collection and publi-
cation was 3 years, with a range of 0–50 years.

Studies were conducted in 76 different countries, cov-
ering a total of 579 geographic sites. Just over half of the 
studies reported data from at least one site in Africa (55% 
of publications) and 32% had at least one site in Asia (see 
Fig.  3). The vast majority of the publications (389, 86%) 
reported results for pfcrt with 141 reporting haplotypes 
for pfcrt72–76. A total of 330 papers (73%) reported any 
alleles in pfmdr1 and 87% of those (287) reported the 
pfmdr1 86 allele. Only 47 studies reported haplotypes for 
at least the three most commonly genotyped pfmdr1 loci 
(86/184/1246). Pfmdr1 copy number was reported in 84 
(19%) publications.

The extracted data from all 456 publications are now 
presented as an online tool [27] entitled the WWARN 
ACT Partner Drugs Molecular Surveyor (Fig.  4). This 
interactive map allows users to explore the data visually 
using filters to select data by drug, marker, country, year 
of sampling, and sample size. Direct comparison between 
geographic sites, and at a single site between different 
years, can be undertaken in a special section below the 
main map.

Temporal and spatial trends of molecular markers
The Molecular Surveyor can be used to see changes over 
time in specific geographic sites or to visualize spatial 
and temporal trends of molecular marker prevalence on 

a local, national or global level. To illustrate the kinds of 
secondary studies that can be easily undertaken with the 
data freely available in the surveyor database, a detailed 
description of the data from Tororo, Uganda was pre-
pared. Tororo was chosen, as it was the site in the data-
base with the richest data set over time. Changes in the 
prevalence of markers pfmdr1 N86 and pfcrt K76 (both 
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associated with resistance/tolerance to lumefantrine) 
were visualized, using samples spanning 2002 to 2015 
(Fig.  5). These data demonstrate the power of bringing 
multiple datasets together as information is pooled from 
eight different publications including results from 3405 
samples [28–35]. To investigate national trends, temporal 
pfmdr1 N86 prevalences were visualized in six sub-Saha-
ran countries between 2000 and 2015 (Fig. 6). ACT was 
adopted as first-line therapy for uncomplicated malaria 
between 2003 and 2006 in sub-Saharan countries [36], 
which are presented by first-line treatment. The preva-
lence between binned years 2003–2006 and 2009–2012 
were compared using Fisher’s exact test. The results sug-
gest that pfmdr1 N86 prevalence increased significantly 
in all countries studied.

Discussion
The aim is for the ACT Partner Drug Molecular Surveyor 
to be a dynamic tool updated with newly published data 
and new markers that will engage researchers. Additional 
information may need to be requested  from investiga-
tors in order for the data set to be included in the Sur-
veyor. The goal is that the surveyor can be a tool that will 
be useful to a broad range of users and data providers. 
This group could then work collaboratively to produce 
an increasingly integrated/coordinated surveyor sys-
tem. Further development work may involve providing 

an even more detailed provision of information for local 
adjustment of optimal drug policies within a country.

Due to the large heterogeneity in reporting of molec-
ular marker results, WWARN developed clear rules 
for extraction, including how to handle missing infor-
mation, to complete the data extraction process. This 

Fig. 4  Screen shot of Surveyor, displaying data on the pfmdr1 86Y mutation allele

Fig. 5  Temporal changes in prevalence of pfmdr1 N86 and pfcrt K76 
Tororo, Uganda



Page 8 of 10Otienoburu et al. Malar J           (2019) 18:12 

standardized approach means that the resulting data-
set is consistent and allow comparison between studies, 
although it also requires that some published data cannot 
be included due to the lack of reported details. Report-
ing of a minimum set of variables including sample size, 
study site, year of collection and how mixed infections 
are handled, would enable inclusion of more data in the 
future. Investigators are encouraged to include these data 
in each new manuscript, even if they have been specified 
in a previous publication.

Analysis of the Surveyor database can provide valu-
able insight in marker prevalence dynamics. As an exam-
ple, and interestingly, molecular marker pfmdr1 N86 
increased in six countries in sub-Saharan Africa between 
2000 and 2016, independent of the adopted first-line 
treatment (Fig. 6). Overall, the data suggest there are fac-
tors other than/in addition to first-line treatment that 
govern prevalences and distributions of alleles. National, 
local and temporal policy variations of ACT deploy-
ment/use could occur. In the studied countries ACT use 
differed as much as from below 10% to above 80% [36]. 
The Surveyor data provides an opportunity for users to 
conduct their own analysis and link the data to ongoing 
research, as demonstrated by a 2018 paper from Okell 
et al. [37].

Conclusions
The Surveyor tool provides a unique resource for the 
research and policy communities, allowing the user to 
access summary information of thousands of samples 
from hundreds of geographic sites across the world, 
whilst still maintaining the depth of detail for those users 
who wish to investigate further a particular location. A 
key resource is the full data set that supports the tool 
and this can be freely downloaded. The dataset can be 

explored for local and national prevalence of resistance 
markers, and the rich resource of information it contains 
has been highlighted here. To date, the Surveyor has had 
over 3000 unique viewers.

Through developing this application, the WWARN 
software engineering team built a flexible open-source 
framework of over 200,000 lines of code that can be 
adapted for many different types of geospatial data. This 
learning was subsequently employed to launch two other 
surveyors. In April 2015, the Artemisinin Molecular Sur-
veyor was launched, displaying data on the artemisinin 
resistance markers in the pfkelch 13 gene [38]. In 2016, 
the Vivax Surveyor was launched which summarizes 
the prevalence of chloroquine resistance in Plasmodium 
vivax [39].

One limitation of extracting data from the published 
literature is the inevitable delay between sample collec-
tion and publication date, making it hard to provide a 
really up-to-date combined picture of the evidence for 
resistance. Some of the benefits of developing this tool 
have been the clear identification of knowledge gaps, 
both geographically and temporally which could direct 
scarce resources to the regions of highest concern with 
respect to drug resistance surveillance and inform deci-
sions on the use of drugs in preventive interventions.

Additional files

Additional file 1. Inclusion and exclusion criteria for the literature review.

Additional file 2. All studies in the Surveyor Jan 2001–May 2017.

Additional file 3. All source publications for the data presented in Fig. 6.

Abbreviations
ACT​: artemisinin based combination therapy; Pfcrt: P. falciparum chloroquine 
resistance transporter; Pfmdr1: P. falciparum multidrug resistance transporter 

Fig. 6  Prevalence of pfmdr1 N86 in sub-Saharan countries by study and year. Each point depicts one study, sized according to the number of tested 
samples. The line represents the annual mean of all studies in a country. Mixed infections 86 N + Y were included together with N86 in the analysis. 
The countries either have a AL as first-line treatment, b ASAQ as first-line treatment or c multiple first line treatments. This data was extracted from 
42 source publications, details of which can be found in Additional file 3
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1; Pfpm: P. falciparum plasmepsin; Pfdhfr: dihydrofolate reductase; Pfdhps: 
dihydropteroate synthase; CNV: copy number variation; AL: artemether–lume-
fantrine; ASAQ: artesunate–amodiaquine; CQ: chloroquine; MQ: mefloquine.
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