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Abstract: Aberrant activity of oncogenic rat sarcoma virus (RAS) protein promotes tumor growth and
progression. RAS-driven cancers comprise more than 30% of all human cancers and are refractory
to frontline treatment strategies. Since direct targeting of RAS has proven challenging, efforts have
been centered on the exploration of inhibitors for RAS downstream effector kinases. Two major RAS
downstream signaling pathways, including the Raf/MEK/Erk cascade and the phosphatidylinositol-
3-kinase (PI3K) pathway, have become compelling targets for RAS-driven cancer therapy. However,
the main drawback in the blockade of a single RAS effector is the multiple levels of crosstalk and
compensatory mechanisms between these two pathways that contribute to drug resistance against
monotherapies. A growing body of evidence reveals that the sequential or synergistic inhibition
of multiple RAS effectors is a more convenient route for the efficacy of cancer therapy. Herein, we
revisit the recent developments and discuss the most promising modalities targeting canonical RAS
downstream effectors for the treatment of RAS-driven cancers.
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1. Introduction

Rat sarcoma virus (RAS) is involved in distinct cellular processes, including cell
division, proliferation, migration and cellular differentiation. RAS is tethered to the plasma
membrane and acts as a nexus to relay mitogenic stimuli from receptor tyrosine kinases
(RTKs), thereby activating a plethora of downstream signaling pathways. RAS proto-
oncogenes encode four members of evolutionary conserved, membrane-associated small
GTP-binding proteins (HRAS, NRAS, KRAS4A, KRAS4B). The activity of RAS is tightly
regulated by a molecular switch between GTP-bound active and GDP-bound inactive
conformation. Two classes of regulatory proteins maintain the GTPase activity of RAS
proteins: guanine exchange factors (GEFs) catalyze the exchange of GDP for GTP, and
GTPase activating proteins (GAPs) dictate the spatial regulation of RAS by accelerating the
hydrolysis of bound GTP to GDP and inorganic phosphate [1].

RAS hyperactivation is frequently observed in a large spectrum of cancer types,
including pancreatic ductal adenocarcinomas (PDACs), colorectal myelomas, lung adeno-
carcinomas and endometrial carcinomas. RAS-activating mutations and epidermal growth
factor (EGF) hyper-signaling, which potentiates cell proliferation, are common in cancer.
RAS proteins are overactive in nearly 30% of all cancers and are associated with resistance
to frontline monotherapies [2]. Among RAS isoforms, KRAS mutations are most frequently
found in pancreatic, colorectal and lung adenocarcinomas, while NRAS and HRAS are
generally mutated in some melanomas, leukemias and thyroid cancers [3]. Mostly, RAS
genes harbor oncogenic mutations which abrogate intrinsic GTPase activity of RAS protein
and drive tumorigenesis. In all three RAS isoforms, G12, G13 and Q61 sites are the three
mutational hotspots, which consist of 98% of all known RAS mutations. Mutations on
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these sites lead to the expression of constitutively active RAS proteins that induce cellular
transformation and tumorigenesis [4,5]. Except for these mutations, abnormal activity of
RAS can also arise from GDP-GTP deregulation, loss of GAPs or RTK-mediated activity
of GEFs.

In the last three decades, tremendous efforts have been expended on targeting RAS-
driven tumors. In an effort to inhibit mutant RAS function, RAS can be directly targeted
by molecules disrupting its interaction with SOS1 (SOS Ras/Rac Guanine Nucleotide Ex-
change Factor 1) or with its effectors such as Raf and PI3K (phosphatidylinositol-3-kinase).
However, RAS proteins are often termed “undruggable” due to the consecutive failures
in the development of direct RAS inhibitors. Various alternative ways to battle against
this perception have been implemented [6–8]. Thus far, only the KRASG12C mutant has
been tractable in blocking the oncogenic signal [9–12]. In 2013, Ostrem et al. demonstrated
that mutant RAS can be selectively targeted through a new allosteric regulatory site de-
fined on RAS. The researchers identified a covalent compound that could bind to the
mutant cysteine on KRASG12C via a disulfide bond and inhibit SOS1-catalyzed nucleotide
exchange [13]. In the search for an inhibitor with a better binding and pharmacologic prop-
erty, ARS-1620 has been developed as a RAS inhibitor [12] and revealed variable responses
in a panel of KRASG12C mutant cell lines, which can be enhanced by concomitant inhibition
of the PI3K cascade [14,15]. Further, newer molecules sotorasib (AMG-510) and adagrasib
(MRTX849), which are structural derivatives of ARS-1620 with enhanced sensitivity, have
been developed and entered the clinic [9]. However, given the variability of response in
tumor models, direct KRASG12C inhibitors will not likely confer a benefit to a significant
number of patients.

Oncogenic RAS signaling can be blocked indirectly by targeting the attachment of
RAS to the inner plasma membrane or inhibiting RAS-dependent metabolic processes such
as autophagy and macropinocytosis [16]. A variety of post-translational modifications of
cytosolic precursor RAS protein regulate its membrane association and activation. These
modifications include prenylation, post-prenylation, palmitoylation, ubiquitination, phos-
phorylation, SUMOylation, acetylation, nitrosylation, etc. Among them, the processes of
prenylation and post-prenylation that mediate membrane localization are major potential
therapeutic targets [17]. In particular, molecules targeting farnesylation of RAS via CAAX
mimetic polypeptides or farnesyl pyrophosphate analogs have been clinically evaluated for
the treatment of RAS-mutant advanced solid cancer [18,19]. However, the effectiveness of
these inhibitors for RAS-driven solid cancer has been less than favorable in single-agent set-
tings. Similarly, a number of studies show that the inhibition of one particular modification
remains insufficient to prevent tumorigenesis [20,21].

Targeting RAS effector signaling cascades or synthetic lethal interactors of mutant
RAS are other indirect strategies being pursued to conquer RAS-mutant cancers [22]. The
former is one of the most dynamic arms in the development of RAS-inhibitory molecules.
However, RAS downstream effector signaling is far from consisting of linear unidirectional
cascades. Conversely, it can adapt and rewire in response to the blockage of specific nodes.
Therefore, cancer cells develop dependencies upon inhibition of only RAS or a single RAS
effector, which contribute to acquired drug resistance in single-agent therapies. For the
efficacy of cancer therapy, synergistic inhibition of specific targets is increasingly adopted
to block compensatory mechanisms between these two pathways. Despite the advances in
targeted therapies in the treatment of cancer, acquisition of drug resistance still remains
a major drawback. In this review, we revisit the recent strategies and discuss the most
promising approaches targeting canonical RAS downstream effectors for the treatment of
RAS-induced cancers.

2. Overview of the Downstream Signaling Pathways of RAS

RAS engages with two major downstream effector signaling pathways, including
Raf/MEK/Erk (MAPK) and phosphatidylinositol-3-kinase (PI3K) cascades. These path-
ways are associated with specific cancer-related phenotypes, including transcriptional
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reprogramming, promoted cell survival and proliferation, suppressed apoptosis and en-
hanced invasiveness of the cells [23]. Mitogenic signals from upstream growth factor
receptors are transmitted into cells by RAS proteins. RAS proteins attach to the plasma
membrane with a process facilitated by several post-translational modifications. A farnesyl
isoprenoid moiety is added to RAS by farnesyltransferase (FTs) to increase its hydropho-
bicity and enable its association with the plasma membrane [24]. Membrane-anchored
RAS is activated by GTP loading and serves as an activator for effector kinases by re-
cruiting them to the cell membrane, where further phosphorylation events enable their
subsequent activation [25]. GTP-loaded RAS proteins can activate both PI3K/Akt/mTOR
and Raf/MEK/Erk signaling cascades, which are compelling therapeutic targets as major
mediators of RAS-induced oncogenic signal transduction (Figure 1).

Molecules 2021, 26, x FOR PEER REVIEW 3 of 26 
 

 

2. Overview of the Downstream Signaling Pathways of RAS 
RAS engages with two major downstream effector signaling pathways, including 

Raf/MEK/Erk (MAPK) and phosphatidylinositol-3-kinase (PI3K) cascades. These path-
ways are associated with specific cancer-related phenotypes, including transcriptional re-
programming, promoted cell survival and proliferation, suppressed apoptosis and en-
hanced invasiveness of the cells [23]. Mitogenic signals from upstream growth factor re-
ceptors are transmitted into cells by RAS proteins. RAS proteins attach to the plasma 
membrane with a process facilitated by several post-translational modifications. A farne-
syl isoprenoid moiety is added to RAS by farnesyltransferase (FTs) to increase its hydro-
phobicity and enable its association with the plasma membrane [24]. Membrane-anchored 
RAS is activated by GTP loading and serves as an activator for effector kinases by recruit-
ing them to the cell membrane, where further phosphorylation events enable their subse-
quent activation [25]. GTP-loaded RAS proteins can activate both PI3K/Akt/mTOR and 
Raf/MEK/Erk signaling cascades, which are compelling therapeutic targets as major me-
diators of RAS-induced oncogenic signal transduction (Figure 1). 

 
Figure 1. Ras/Raf/MEK/Erk and PI3K/mTOR signaling pathways. 

The RAS-Erk signaling network, which is the central regulator for cell cycle progres-
sion and proliferation, is a prominent mediator of RAS-dependent cancer growth. RAS 
stimulates cell proliferation by increasing the concentration of Raf kinases to the plasma 
membrane, where effector kinases are activated [26]. Here, active RAS drives Raf dimeri-
zation by promoting conformational changes, which further trigger dephosphorylation of 
the inhibitory sites and phosphorylation of activatory sites [27]. Active Raf in turn acti-
vates MEK through phosphorylation, which results in the final activation of Erk. Follow-
ing activation, Erk translocates to the nucleus, where it activates several transcription fac-
tors and cell cycle regulatory proteins. The cascade is modulated by a large number of 
factors [28,29]. Particularly, Erk does not only activate its downstream substrates, but also 

Figure 1. Ras/Raf/MEK/Erk and PI3K/mTOR signaling pathways.

The RAS-Erk signaling network, which is the central regulator for cell cycle progres-
sion and proliferation, is a prominent mediator of RAS-dependent cancer growth. RAS
stimulates cell proliferation by increasing the concentration of Raf kinases to the plasma
membrane, where effector kinases are activated [26]. Here, active RAS drives Raf dimeriza-
tion by promoting conformational changes, which further trigger dephosphorylation of the
inhibitory sites and phosphorylation of activatory sites [27]. Active Raf in turn activates
MEK through phosphorylation, which results in the final activation of Erk. Following
activation, Erk translocates to the nucleus, where it activates several transcription factors
and cell cycle regulatory proteins. The cascade is modulated by a large number of fac-
tors [28,29]. Particularly, Erk does not only activate its downstream substrates, but also
inhibits the upstream kinases in the MAPK pathway through phosphorylation. Thus, it
can modulate the pathway both negatively and positively through feedback inhibition.
Among the three MAP kinases, Raf kinases are the most critical effectors in KRAS-driven
cancers. B-Raf is one of the most mutated Raf isoforms in cancerous cells. The well-known
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driver mutation in B-Raf occurs at the position of V600. In this mutant form, B-Raf is
constitutively active, independent of upstream cues [30,31].

The other well-described downstream pathway of RAS is the PI3K-mTOR signaling
cascade, which controls a number of cellular events including cell cycle progression, protein
synthesis, metabolism and survival [32]. PI3K signaling can be activated by RAS, receptor
tyrosine kinases (RTKs) or G protein-coupled receptors (GPCRs). Phosphatidylinositol
kinases (PI3K) are intracellular lipid kinases that phosphorylate phosphoinositides and
generate biologically active phosphatidylinositol 3,4,5-triphosphate (PIP3). PIP3 recruits
PDK1 and Akt to the plasma membrane, where they are subsequently activated. Active
Akt propagates signals to several substrates, including mammalian target of rapamycin
(mTOR), forkhead box O (FOXO) or nuclear factor (NF)-κB, which induce the protein
synthesis, cell growth and glucose and lipid metabolism. The pathway is negatively regu-
lated by lipid phosphatase PTEN, which dephosphorylates PIP3 and thereby reduces the
level of phosphorylated Akt. Once Akt is deactivated by protein phosphatases PHLPP1/2
and PP2A, the signaling events are terminated [33,34]. Both RAS effector pathways are
modulated by a series of protein kinases, phosphatases and multiple exchange proteins,
and they influence each other in both negative and positive ways. Therefore, in the case
of chemical inhibition of one pathway, the effect of the inhibitor is compensated in the
cell by the activation of the other pathway [35–38]. Single-agent therapies generally fail
to produce durable responses due to the incomplete apoptosis and development of resis-
tance to the targeted agent by compensatory mechanisms [39,40]. The crosstalk between
these two pathways forms a basis for combinatorial therapies in cancer progression [36].
Therefore, delineating the intricate underlying molecular mechanisms of the extensive
crosstalk between these signaling cascades is of great importance for effective targeted
therapeutic strategies.

2.1. Raf Inhibitors

So far, three B-Raf kinase inhibitors, including vemurafenib [41,42], dabrafenib [43,44]
and encorafenib [45], have been clinically approved by the US Food and Drug Administra-
tion (FDA) for selective inhibition of kinase activity in B-RafV600 mutant-driven melanoma.
These inhibitors hinder catalytically active B-RafV600 mutant monomers with specificity
for the ATP-binding site, but not non-V600 mutants [46–48]. However, monotherapy with
these inhibitors has been shown to promote paradoxical activation of Erk by inducing
wild-type Raf dimerization in non-tumorous cells and also RAS-induced tumors which
signal through Raf dimers [49]. When Raf proteins are dimerized, the inhibitor-bound
Raf protomer allosterically transactivates the other Raf component of the dimer, thereby
resulting in the final activation of Erk.

In the presence of oncogenic RAS, B-Raf inhibition has been shown to lead to the
formation of RAS-dependent B-Raf/C-Raf heterodimers and drive tumorigenesis through
C-Raf activation [50]. A significant number of patients on B-Raf-inhibitor therapy de-
veloped secondary malignancies, most commonly cutaneous squamous-cell carcinomas
(cuSCC), due to the intrinsic or acquired drug resistance at tolerable doses [51]. Thus, B-Raf
inhibitors alone have not been used effectively for the therapy of RAS-addicted cancers.
Instead, combining B-Raf inhibitors with MEK inhibitors has been shown to be useful not
only to provide a better survival outcome, but also to reduce the incidence of cuSCC [52,53].

In an effort to suppress B-Raf activity without stimulating cancer growth, second-
generation Raf inhibitors including type II pan-Raf inhibitors and paradox-breakers were
developed to hinder dimerization-driven transactivation. These inhibitors possess min-
imal paradoxical activation compared to approved B-RafV600 inhibitors through distinct
mechanisms [54]. Of note, the major concern for the clinical use of pan-Raf inhibitors is
their lack of selectivity for mutant B-Raf, which might cause toxicity resulting from the
blockade of MAPK signaling in normal tissue. Pan-Raf inhibitors bind to both protomers
in Raf dimers and lock them in an α-helix-in, DFG-out conformation [55,56]. Examples
of pan-Raf inhibitors include sorafenib, belvarafenib, AZ-628, CCT196969, CCT241161,
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LY3009120, LXH254 and TAK-580. Apart from these, CCT3833 works as a dual pan-Raf
inhibitor by inhibiting both Raf and upstream kinases of RAS, thereby preventing RAS
activation by the relief of negative feedback loops [57,58]. Several pan-Raf inhibitors
showed promising results in preclinical models of cancers bearing RAS mutations, includ-
ing melanoma [54], acute myeloid leukemia (AML) [59], colorectal cancer [60], multiple
myeloma [61,62], pancreatic cancer [63] and thyroid cancer [64], and are currently under
clinical evaluation. Dual pan-Raf inhibitors, CCT196969 and CCT241161, that also target
SRC (SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase) as one of major MAPKs reg-
ulatory protein tyrosine kinases, inhibited the growth of NRAS-mutant melanoma cells
and achieved tumor regression in patient-derived xenografts that are resistant to B-Raf
inhibitors. These findings suggested that they could provide clinical benefit in melanoma
patients with NRAS mutations as a first-line therapy and in relapsed patients as a second-
line therapy [65]. However, it is important to take into account that benefits in preclinical
studies have not always translated into clinical success. For example, LY3009120 has been
shown to be effective in numerous in vitro studies and preclinical models [60,63,66], but
exhibited unexpectedly limited pharmacodynamic effects at its maximum tolerated dose in
patients with B-Raf or KRAS mutations (NCT02014116) [67]. Unlike LY3009120, CCT3833
significantly prolonged the survival of a patient with KRASG12V mutant spindle cell sar-
coma which was refractory to multi-kinase inhibitor treatment in a phase I clinical trial
(NCT02437227) [68]. Similarly, another pan-Raf inhibitor, lifirafenib (BGB-283), elicited an
acceptable safety profile and clinical efficacy in patients with KRAS-mutated NSCLC and
endometrial cancer (NCT02610361) [69]. These results have encouraged a phase I/II trial of
lifirafenib in combination with the MEK inhibitor mirdametinib (PD-0325901) in patients
with B-Raf- and RAS-mutant tumors (NCT03905148). In addition, LXH254, a novel type II
pan-Raf inhibitor developed by Novartis, has been shown to be potent, selective, efficient
and well-tolerated in RAS-mutant xenograft models [70]. Moreover, LXH254 inhibited
long-term cell viability in NRAS-mutant NSCLC cells when combined with volasertib, a
polo-like kinase inhibitor [71]. LXH254 is being further investigated in combination with
a MEK inhibitor (trametinib), an Erk inhibitor (LTT462) or a CDK inhibitor (ribociclib) in
patients with NRAS mutant melanoma (NCT02974725, NCT04417621). Another pan-Raf
inhibitor, Belvarafenib, demonstrated anti-tumor activity as a single agent and has been
found to be well-tolerated in patients with Raf or RAS mutations (NCT03118817) [72].
Clinical studies utilizing pan-Raf inhibitors in combination with other therapeutic agents to
improve the response rate within patients with RAS mutations are ongoing (NCT02607813,
NCT04835805, NCT04059224, NCT03284502).

The efficacy of pan-Raf inhibitors is promising, but nevertheless not striking for anti-
RAS cancer therapy, which requires excellent drug combination for a robust response
from dozens of alternatives. In this regard, Rukhlenko et al. built a system biology-based
dynamic model to analyze the synergy of Raf inhibitor combinations in an oncogenic
RAS and/or B-RafV600E background, taking into account the thermodynamics and ki-
netics of inhibitor–protein interactions, post-translational modifications and structural
determinants [73]. They found that two distinct conformation-specific kinase inhibitors
targeting the same kinase but in different conformations could block the paradoxical acti-
vation. The synergy of structurally different Raf inhibitors was validated in mutant NRAS,
HRAS and BRafV600E cells [73]. The data demonstrated that the combination of an α-C
helix in/DFG loop-out inhibitor (e.g., sorafenib, LY3009120) and an α-C helix-out/DFG
loop-in inhibitor (e.g., vemurafenib or dabrafenib) has effectively targeted cells with both
B-RafV600E and RAS mutations [73], thus providing a potential to target tumors with such
genetic backgrounds.

Another class of B-Raf inhibitors, paradox breakers, have been developed utilizing the struc-
ture of vemurafenib as a skeleton, with various chemical modifications (Table 1 and Table S1).
Candidate compounds were screened for hindering B-RafV600E and evaluating pathway
reactivation in RAS-mutant cell lines. These inhibitors dock on Raf proteins to impair Raf
dimerization [74–76] and prevent the formation of B-Raf/C-Raf heterodimers observed in
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RAS-mutant tumors treated with first-generation Raf inhibitors [56]. The paradox breakers,
PLX7904 and PLX8394, have been reported to possess a more durable efficacy in cuSCC
mouse cells with a HRASQ61L mutation, compared to vemurafenib [76]. In a later study,
it has been shown that PLX8394 is able to selectively disrupt B-Raf homodimers and B-
Raf/C-Raf heterodimers, but C-Raf homodimers are unresponsive to PLX8394 due to its
inability to selectively bind C-Raf [77]. Given that C-Raf fusions can activate both the
MAPK and PI3K/mTOR signaling cascades, the efficacy of these drugs most likely will not
be sufficient in a single-agent setting for the treatment of tumors driven by RAS mutations
due to the possible induction of C-Raf fusion formation.

Table 1. Representative inhibitors targeting rat sarcoma virus (RAS) downstream effectors.

Name Potency Target Structure

Dabrafenib/
GSK2118436

IC50: 0.6 nM (B-RafV600E)
IC50: 5 nM (C-Raf)

Raf
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Table 1. Cont.

Name Potency Target Structure

Copanlisib/
BAY80

IC50: 0.5 nM (PI3Kα)
IC50: 0.7 nM (PI3Kδ)
IC50: 3.7 nM (PI3Kβ)
IC50: 6.4 nM (PI3Kγ)

Pan-PI3K
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tomers in both normal cells and non-B-RafV600 tumor cells [78]. To circumvent the transac-
tivation of Raf dimers elicited by current Raf inhibitors, the dimer interface can be targeted
by allosteric B-Raf inhibitors, thereby eliminating overactive MAPK signaling induced by
oncogenic B-Raf or RAS. The dimer interface of B-Raf protomers exists in the kinase domain
of B-Raf at the C-terminal end of the αC helix. R509 residue plays the central role to provide
dimer integrity. Mutations in R509/L515/M517 residues have been shown to completely
block the activity of wild-type B-Raf [79]. To target B-Raf dimers, Beneker et al. have devel-
oped type IV inhibitors and designed a dimeric disrupter peptide to allosterically inhibit
Raf kinase activity. This strategy enabled the blockade of paradoxical activation induced
by vemurafenib [80]. Similarly, Gunderwala et al. have shown that in silico designed
B-Raf dimer-breaking peptides induce proteasome-mediated degradation of B-Raf and
inhibit kinase activity in KRAS mutant tumor cells. Additionally, a combination of these
peptides with ATP-competitive inhibitors provided a by-pass of the cellular compensatory
mechanisms caused by ATP-competitive Raf inhibitors [81]. In a subsequent study, Raf
dimer breaker has been shown to be active against oncogenic B-RafD594G:C-Raf dimers [82],
thus providing further evidence that allosteric type IV inhibitors targeting the Raf dimer
interface have potential to be developed as an anticancer drug.

Among Raf isoforms, B-Raf has taken the center stage in targeted cancer therapy due
to its high incidence of mutations in various types of cancer. Remarkably, another member
of the Raf family, C-Raf (also known as Raf1), has been shown to have an essential role
to relay upstream signals to MEK and Erk in K-RASG12V-addicted non-small-cell lung
cancer (NSCLC) in mice. While the ablation of C-Raf from these cells inhibited tumor
development, B-Raf did not show the same effect, indicating that the loss of C-Raf cannot be
compensated by other Raf isoforms in K-RASG12V-addicted NSCLCs [83]. In line with this
finding, systemic ablation of C-Raf and EGFR has been shown to induce tumor regression
in pancreatic ductal adenocarcinoma models with KRAS/Trp53 mutations [84]. The loss of
C-Raf expression did not affect MAPK signaling and possessed limited toxicity in mice [85].
Disappointingly, Morgan et al. have recently reported that selective inhibition of C-Raf
elicited transactivation in engineered HCT116 KRASG13D-mutant cells [86]. Therefore, as
McCornick pointed out, targeting the stability of C-Raf and triggering its degradation
might be an alternative strategy to avoid promoted paradoxical activation [87]. On the
other side, Nolan et al. have recently reviewed the kinase-independent functions of C-Raf
and explored targeting its effectors, in particular proapoptotic proteins ASK1 and MST2,
and suggested that disruption of these protein–protein interactions or design of kinase
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activators in the context of ASK1 or MST2 activation might be a new avenue for anti-RAS
cancer therapy [88].

2.2. MEK Inhibitors

Since attempts to target Raf kinases have suffered from acquired drug resistance that
limits the effectiveness of inhibitors, the attention turned to the inhibition of MEK kinase.
Many kinase inhibitors have been developed to compete for ATP by directly binding to this
conserved site, which limits the selectivity of the molecule. Therefore, a number of allosteric
MEK inhibitors have been developed for enhanced selectivity. These MEK inhibitors bind to
a unique site close to the ATP-binding pocket of MEK, not competitively to the ATP-binding
site. Thus, allosteric MEK inhibitors only bind to MEK selectively and inhibit the function
of the kinase by inducing a conformational change that locks the enzyme in a catalytically
inactive state [89]. High selectivity yields lower toxicity, and improved physicochemical
properties. Three allosteric MEK inhibitors, trametinib, cobimetinib and binimetinib,
are approved for treatment of patients with B-RafV600E/K melanoma. However, tumor
responses to MEK inhibitors have been generally transient due to the rapid emergence
of resistance in RAS-addicted cancers. Furthermore, in a subset of cancers in which MEK
inhibitors have shown a notable clinical activity, patients have suffered from off-target
effects, including dermatological and gastrointestinal toxicities [90]. Inhibition of MEK has
been reported to lead to some resistance mechanisms, including the feedback activation
of the PI3K pathway [91] and reactivation of the MAPK pathway [92,93]. The former has
been shown to be stronger in RAS-mutant cancers. The difference in the sensitivity to
MEK inhibitors between RAS- and B-Raf-mutant cancers might arise from the level of
dependency on Erk-mediated mTORC1 activation in tumors bearing RAS mutations [94].
For example, trametinib has failed to confer a superior clinical benefit against KRAS-
mutant NSCLC over docetaxel alone (NCT01362296) [95]. Similarly, selumetinib, which
is an oral, potent MEK inhibitor, has not shown a significant efficacy in the treatment of
NSCLC with KRAS mutations (NCT01229150, NCT01933932) [96,97]. In NRAS-mutant
melanoma patients, Binimetinib treatment also did not provide any measurable benefit
as monotherapy (NCT01763164) [98]. However, KRASG12C tumors have been shown as
more sensitive to selumetinib compared to KRASG12D in lung cancer mouse models. This
finding underscores the heterogeneity of tumors harboring different KRAS mutations [99].

Due to the limited efficacy of MEK inhibitors in mono-agent settings, efforts have
focused on the development of combinatorial strategies. MEK inhibitors have been used
in combination with other treatment modalities in RAS-mutant cancers, such as conven-
tional chemotherapeutic agents [100], systemic immunotherapies [101,102] and Raf in-
hibitors [103,104] to sustain a prolonged clinical benefit. Combined treatment of trametinib
and immunomodulatory antibodies has shown preclinical efficacy in KRAS/p53-mutant
lung cancer, suggesting a potential therapeutic approach using MEK inhibitors and im-
munotherapies [105]. The inactivation of zeste homolog 2 enhancer (EZH2), which is a
histone methyltransferase regulating the expression of a variety of genes, has been linked
to RAS signaling [106]. Owing to this, Lorenz Berg et al. have shown that RAS-mutant
myeloid leukemia cells were sensitized to MEK inhibitors upon EZH2 inactivation. Thus,
co-inhibiting EZH2 and MEK might provide a novel therapeutic route for RAS-driven
cancers [107]. BI-3406, a novel SOS1-KRAS interaction inhibitor designed to target the
catalytic domain of SOS1, has been combined with trametinib and sensitized KRAS-driven
cancers to MEK inhibition in mouse models. MEK-induced drug resistance was attenuated
in both G12 and G13 variants, which account for 80% of all KRAS-dependent cancers [108].
Similarly, co-targeting MEK and SHP2, which is required for RAS activation, has provided
clinical utility and impaired cancer cell growth in both in vitro and in vivo settings of
KRAS-mutant pancreatic cancer and NSCLC [109] and gastroesophageal cancer [110].

A unique Raf/MEK inhibitor, VS-6766/CH5126766, has shown activity in xenograft
models of RAS-mutated cancers [111,112]. In parallel, combined treatment with VS-
6766/CH5126766 and AXL inhibitor (bemcentinib) has provided a stronger blockage
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of tumor growth in KRAS-mutant ovarian cancer cells with overexpressed AXL [113].
This allosteric inhibitor prevents the release of MEK from Raf, and thus blocks the sub-
sequent phosphorylation of both MEK and Erk [114]. VS-6766/CH5126766 has recently
gone to clinical trials in patients with KRAS-addicted lung and gynecological cancers.
Initial results from the phase 1 dose-escalation and basket dose-expansion study have been
encouraging due to the tolerability and clinical activity of VS-6766/CH5126766 in patients
(NCT02407509) [115]. From the same trial, it has been recently reported that VS-6766 is
effective in halting cancers with non-G12C-KRAS mutations when administered in an
intermittent schedule [116]. The intermittent regimen has been previously shown to im-
prove the pharmacokinetic/pharmacodynamic profile of VS-6766 compared to continuous
dosing schedules [117]. Since the therapeutic index of single-agent inhibitors is narrow in
particularly RAS-driven cancers, these findings are among the most promising, reported
as single-agent therapy in cancers with RAS mutations. On the basis of these findings,
multiple strategies using VS-6766/CH5126766 alone (NCT03681483) or with other agents
such as defactinib (NCT03875820, NCT04625270, NCT04620330) are currently under clinical
investigation in cancers with KRAS mutations. Furthermore, a great majority of ongoing
clinical trials are testing MEK inhibitors with or without other agents in the treatment
of RAS-mutant cancers (Table 2). Among them, the CDK4/6 inhibitor palbociclib is of
particular interest in RAS-mutant NSCLC due to its sensitizing role to MEK inhibitors [118].
Given that cyclin-dependent kinases (CDKs) are frequently altered in most human cancers,
patients may benefit from the therapeutic use of CDK inhibitors in combination with
MEK inhibitors [119].

Table 2. Active or recruiting clinical trials for the treatment of RAS mutant cancers.

Clinical Trial Therapy Phase Genomic Profile

MEK Inhibitors

NCT03714958 Trametinib and HDM201 (p53
MDM2 inhibitor) 1 RAS/Raf Mutant and TP53 Wild-type

Advanced/Metastatic Colorectal Cancer

NCT03875820 VS-6766 and Defactinib 1 Advanced RAS-mutant Solid Tumors

NCT04303403 Trametinib and Ruxolitinib 1 Advanced RAS-mutant Colorectal Cancer and
Pancreatic Adenocarcinoma

NCT03932253 FCN-159 1 Advanced Melanoma Harboring
NRAS-aberrant (Ia) and NRAS-mutant (Ib)

NCT01740648 Trametinib Fluorouracil
radiation therapy 1 KRAS, B-Raf and NRAS-mutant Rectal Cancers

NCT03681483 VS-6766 1 Advanced KRAS-mutant Lung
Adenocarcinomas

NCT03990077 HL-085 and Docetaxel 1 KRAS-mutant NSCLC

NCT03299088 Trametinib and
Pembrolizumab 1 Advanced KRAS-mutant NSCLC

NCT02607813 LXH254 and PDR001 1 KRAS-mutant NSCLC,
NRAS-mutant Melanoma

NCT02407509 VS-6766 w/o Everolimus 1 Solid Tumors or Multiple Myeloma [115,116]

NCT03704688 Trametinib and Ponatinib 1/2 KRAS-mutant Advanced NSCLC

NCT03170206 Binimetinib and Palbociclib 1/2 Advanced KRAS-mutant NSCLC

NCT02022982 PD-0325901 and Palbociclib 1/2 KRAS-mutant NSCLC, solid tumors

NCT03973151 HL-085 1/2 NRAS-mutant Advanced Melanoma

NCT04409639 Cobimetinib 2 Newly Diagnosed or HMA-treated CMML
Patients with RAS Pathway Mutations
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Table 2. Cont.

Clinical Trial Therapy Phase Genomic Profile

NCT01320085 Binimetinib 2
Locally Advanced and Unresectable or

Metastatic Malignant Cutaneous Melanoma,
Harboring B-RafV600 or NRAS Mutations [120]

NCT04620330 VS-6766 w/o Defactinib 2 Recurrent KRAS-mutant (KRAS-mt) NSCLC

NCT04625270 VS-6766 w/o Defactinib 2 Recurrent Low-Grade Serous Ovarian
Cancer (KRAS-mt)

NCT03981614
Binimetinib Palbociclib

Trifluridine and Tipiracil
Hydrochloride

2 KRAS- and NRAS-mutant Metastatic
Colorectal Cancers

NCT01933932 Selumetinib, Docetaxel,
Pegylated G-CSF 3 KRAS Mutation-Positive Locally Advanced or

Metastatic NSCLC [97,121]

Erk Inhibitors

NCT02857270

LY3214996 w/o Midazolam or
Abemaciclib or Nab-paclitaxel
or Gemcitabine or Encorafenib

or Cetuximab

1 Metastatic Melanoma or NSCLC with B-Raf or
RAS Mutations [122,123]

NCT04305249 AZD0364 1
Advanced Solid Tumors and Hematological

Malignancies with Alterations in the
RAS-MAPK Pathway

NCT02972034 MK-8353 and Pembrolizumab 1 Advanced Malignancies

NCT03698994 Ulixertinib 2 Tumors Harboring Activating MAPK
Pathway Mutations

Vertical Strategies

NCT04835805 Belvarafenib, Cobimetinib and
Atezolizumab 1 NRAS-mutant Advanced Melanoma Who

Have Received Anti-PD-1/PD-L1 Therapy

NCT03284502 Belvarafenib and Cobimetinib
or Cetuximab 1 Locally advanced, or metastatic solid tumors

with RAS- or Raf-mutation

NCT02974725 LXH254 and LTT462 or
Trametinib or Ribociclib 1

Advanced or Metastatic KRAS- or
B-Raf-mutant NSCLC or

NRAS-mutant Melanoma

NCT03905148 Lifirafenib, Mirdametinib 1/2 Advanced or Refractory Solid Tumors

NCT04417621 LXH254, LTT462, Trametinib,
Ribociclib 2 Previously Treated Unresectable or Metastatic

B-RafV600 or NRAS-mutant Melanoma

NCT04059224 Trametinib, Dabrafenib 2

Advanced pretreated BRAFV600

wild-type/NRAS-mutant melanoma and
advanced pretreated BRAF V600

wild-type/NRAS wild-type melanoma

Metabolic Dependencies

NCT03825289 Trametinib and
Hydroxychloroquine 1 Metastatic Pancreatic Cancer

NCT04145297 Ulixertinib and
Hydroxychloroquine 1 Advanced MAPK-mutant

Gastrointestinal Adenocarcinomas

NCT04132505 Binimetinib and
Hydroxychloroquine 1 KRAS-mutant Metastatic Pancreatic Cancer

NCT04735068 Binimetinib and
Hydroxychloroquine pill 2 Advanced KRAS-mutant NSCLC
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2.3. Erk Inhibitors

The final kinase component of the three-layered MAPK cascade, Erk, is another target
to evade compensatory resistance mechanisms. Several ATP-competitive Erk1/2 inhibitors,
including ASN007 [124], LY3214996 [125], GDC-0994 [126] and MK-8353 [127], have been
discovered, and some of them demonstrated a significant anti-tumor activity in tumors
bearing RAS mutations. However, the therapeutic index of Erk inhibitors remains limited
in monotherapies due to their inhibitory role in both malignant and normal tissues. In-
stead, they have been generally explored in combined modality settings to potentiate their
effectiveness in cancers with RAS mutations.

Ravoxertinib (GDC-0994) is an orally available small molecule targeting ERK1/2
kinase [128] with promising preclinical efficacy findings from both in vitro and in vivo
experiments [129,130]. These findings have led to the progression of GDC-0994 through
human clinical trials. Disappointingly, in a phase I clinical trial, GDC-0994 monotherapy
has not provided a significant clinical benefit at tolerable doses in patients with KRAS
mutations [131]. In another clinical study, the effect of the compound has been evalu-
ated in combination with cobimetinib, however the phase I study was terminated early
due to the intolerability of the combination with dose-limiting toxicities of myocardial
infarction and rash (NCT02457793) [132]. LY3214996, which is a novel and highly se-
lective small-molecule inhibitor of Erk1/2, has been shown to exhibit robust anti-tumor
activity in xenograft models of RAS-mutant lung cancer when administered in an inter-
mittent regimen [125]. Consistently, LY3214996 exhibited a well-tolerable and synergistic
activity profile in xenograft models of KRAS-mutant NSCLC and colorectal cancer in
combined modality settings [133,134]. On the basis of its preclinical efficacy and the ratio-
nale provided by the combinatorial studies, LY3214996 was advanced into human clinical
trials in cancers with RAS mutations (NCT02857270). Another Erk1/2 inhibitor, ASN007,
which is a potent and selective biomolecule with a long target residence time, showed
promising anti-tumor activity in vitro. It impeded tumor growth in xenograft models with
B-Raf and RAS mutations [135] and also synergized with PI3K inhibitors both in vitro and
in vivo [124]. Given that ASN007, alone or in combination with other agents, is expected to
provide a therapeutic option for RAS-mutant cancers, it has gone to human clinical trials
(NCT03415126). However, data about clinical activity are not yet available. Ulixertinib
(BVD-523) is another Erk1/2 inhibitor that has been shown to suppress tumor growth
and induce tumor regression in B-Raf and RAS-mutant xenograft models [136–138]. In
a phase I dose-escalation and expansion study, ulixertinib exhibited a tolerable safety
profile with promising pharmacodynamic effects in NRAS- and B-Raf-mutant solid tumors
(NCT01781429). Clinical studies are ongoing to examine its role in tumors harboring activat-
ing MAPK mutations as a single agent or in combination with other agents (NCT03698994,
NCT04145297). Recently, the combination of AZD0364, a selective Erk1/2 inhibitor, and
selumetinib has been shown to alleviate tumor progression in multiple xenograft models of
KRAS-mutant NSCLC [139]. Similarly, Catalano et al. showed that dual inhibition of MEK
and Erk represented anti-tumor efficacy and blocked the emergence of drug resistance in an
HRASG12C-driven autochthonous sarcoma model. However, this combination could not be
successful to revert previously developed resistance, which offers the use of dual MEK and
Erk treatment as a first-line therapy [140]. In addition to these, the authors noted that some
cell lines resistant to combined MEK and Erk inhibition showed dependency on MAP4K4
activity, which serves MAP4K4 as a potential new therapeutic target [140]. Despite these
successful examples of dual MEK and Erk inhibition in some RAS-mutant models, the
potential of these combinations for clinical implementation awaits further investigation.

As another example of intra-pathway dual inhibition of the MAPK pathway, concur-
rent application of pan-Raf inhibitors and Erk inhibitors proved potent at low doses in
cell line, organoid and rat models of PDAC with KRAS mutations [141]. Altogether, these
data suggest that Erk inhibitor-anchored treatment strategies can be adopted as a thera-
peutic option in RAS-mutant settings. Clinical studies utilizing MK-8353 (NCT02972034),
AZD0364 (NCT04305249) and LTT462 (NCT02974725) as monotherapy or in combination



Molecules 2021, 26, 7561 12 of 26

with other therapeutic agents are also ongoing to describe the response rate within patients
with RAS mutations.

The functional activity of Erk requires its translocation to the nucleus. Cytosolic
active Erk is phosphorylated by MEK on its specific regulatory residues and undergoes
a conformational change that releases Erk from its anchoring proteins. Then, exposed
Ser residue located within the nuclear translocation sequence (NTS) is phosphorylated,
triggering the interaction of Erk and the beta-like importin, Imp7, thereby escorting Erk
to the nucleus, where Erk activates a large number of targets [142,143]. In an effort to
block Erk/Imp7 interaction, an NTS-derived phosphomimetic peptide (EPE) has been
developed and shown to inhibit proliferation of RAS-mutant cancer cells without affecting
immortalized cells [142]. In a later study, Arafeh et al. showed that concomitant inhibition
of MEK and the nuclear translocation of Erk synergistically reduced the viability of some
NRAS mutant melanomas [144]. These findings point to the therapeutic potential of
targeting nuclear translocation of Erk1/2 for cancers with RAS-mutations.

Erk5 is a more recent member of the MAPK family, which is most similar to the Erk1/2
subfamily but reveals responses through distinct mechanisms [145]. A number of studies
have reported the role of Erk5 in the lack of efficacy of MAPK inhibitors in melanomas
harboring NRAS and B-Raf mutations [146–148]. Adam et al. have shown that inhibition
of Erk5 effectively sensitized NRAS-mutant melanoma cells to MAPK inhibition. Dual
targeting of MEK and Erk5 using Trametinib plus XMD8-92 inhibited the growth of NRAS-
mutant melanoma cells and repressed tumor progression in NRAS-mutated melanoma
xenografts [148]. Concomitant inhibition of MEK1/2 and Erk5 could offer enhanced clinical
efficacy for anti-cancer therapies in patients with RAS mutations.

3. PI3K-Akt Signaling Inhibitors and Vertical Strategies

Aberrations in the PI3K-Akt signaling pathway have been implicated with tumori-
genesis and resistance to anti-cancer therapies. Dysregulation of the PI3K signaling can
occur through different mechanisms with a subset of mutations in the axis. These al-
terations include amplification of RTKs (EGFR and HER2), mutations in PI3K subunits
(p110a, and p85a, encoded by PIK3CA and PIK3R1, respectively), loss/mutation of the
phosphatase tensin homolog (PTEN), Akt overexpression or RAS hyperactivation. Singly
targeting RAS-induced overactivation of PI3K-Akt signaling remains challenging due to
the intrinsic resistance caused by beta catenin [149] and p90 ribosomal S6 kinase (RSK)
activation [150,151], the latter as a family of Erk substrate members. Thus, inhibitors of the
components of PI3K-Akt signaling have been generally combined with different agents to
exert a potent anti-cancer effect.

In the PI3K-Akt signaling, PI3K is the first and direct downstream kinase effector of
RAS as a potential drug target. Two major classes of PI3K inhibitors, including isoform-
selective inhibitors and pan-PI3K inhibitors, have been developed to antagonize PI3K-Akt
signaling. In 2019, the PIK3CA inhibitor BYL719 (Alpelisib, Novartis) was approved by
the FDA for the treatment of estrogen receptor-positive (ER+) breast cancer patients with
PIK3CA mutations [152]. Studies evaluating the therapeutic efficacy of BYL219 in cancers
bearing RAS mutations are under ongoing investigations [153,154]. The latter type of PI3K
inhibitors, pan-PI3K inhibitors, include buparlisib (BKM120), PX-866, copanlisib (BAY80),
LY294002, pilaralisib (XL147), pictilisib (GDC-0941) and taselisib (GDC-0032). In a recent
study, GDC-0941 and siRNA therapeutics targeting KRAS (siKRAS) have been combined
to test their synergistic anti-tumor effect in ovarian cancer cell lines and in an allograft
ovarian cancer model harboring KRAS mutations. Here, the simultaneous use of GDC-0941
and siKRAS co-inhibited PI3K and RAS and led to the induction of apoptosis in the animal
model [155]. There have been multiple examples of clinical trials for the use of siRNAs in
targeted therapies [156], yet their potential for clinical utility remains to be investigated in
RAS-mutant cancers.

The second kinase member in the PI3K-mTOR axis, Akt, consists of three functionally
distinct isoforms, including Akt-1, Akt-2 and Akt-3. It has been shown that RAS-induced
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oncogenic signals are mainly relayed through the Akt-1 isoform in KRAS-mutant lung
tumors [157]. In contrast, Akt-1 inhibition induced migration and invasion in KRAS or
EGFR mutant NSCLC cells, but not in KRAS/EGFR wild-type cells [158]. Considering
that differential genetic background contributes to the controversial roles of Akt in cancer,
the selection of patient groups for clinical trials of Akt inhibitors is of great importance to
avoid an Akt-inhibition-mediated metastatic effect. Recently, inhibition of Akt-1 has been
shown to induce metastasis through EGFR-mediated β-catenin nuclear accumulation in
breast cancer cells, suggesting that the concomitant inhibition of Akt-1 and EGFR might be
effective to limit the metastatic potential of Akt-1 inhibition [159]. It has been shown that
one of the compensatory cellular mechanisms of KRAS-mutant colorectal cancer cells is the
increased phosphorylation of RTKs upon Akt inhibition [160]. In this study, the combinato-
rial use of an allosteric Akt inhibitor (MK-2206) and different RTK inhibitors (Lapatinib,
OSI-906, jnj38877605) reduced the growth of cancer cells harboring KRAS mutations. Simi-
larly, on the basis of the finding that FGFR signaling is overactivated in advanced prostate
cancer, the combined use of AZD4547 (FGFR receptor kinase inhibitor) and AZD5363 (Akt
inhibitor) has led to a reduction in the proliferation of prostate cancer cells both in vitro
and in vivo [161]. Given these encouraging preclinical findings, combinations of Akt and
RTK inhibitors await testing in clinical trials of RAS-mutant cancer therapy.

Inhibitors targeting mTOR, one of the downstream effectors of RAS, have been clini-
cally tested, however the majority of single-agent therapies targeting mTOR did not result
in clear clinical benefits. Inhibition of mTOR has been shown to stimulate feedback acti-
vation mechanisms including MEK/Erk or Akt signaling, demanding for combinatorial
treatment regimens [162,163]. A phase 1 trial is currently ongoing based on the combination
of a dual Raf/MEK inhibitor and evorilumus (mTOR inhibitor) (NCT02407509) in patients
with RAS/Raf-mutant solid tumors. Another strategy might be to concomitantly target
mTOR with other cancer-specific dependencies. For example, the abnormal activity of
histone deacetylases (HDACs), which are critical regulators of gene expression, has been
associated with key oncogenic events [164]. In this regard, Malone et al. analyzed the effect
of dual inhibition of HDAC and mTOR in KRAS-mutant NSCLC and showed that this
combination triggered catastrophic oxidative stress and tumor regression in RAS-driven
tumors [165]. In several cancer types, WEE1, which is the gatekeeper of the G2 arrest,
is expressed at high levels, and its inhibition sensitizes cancer cells to DNA-damaging
agents by compromising the G2-M checkpoint [166]. Owing to this, Hai et al. have shown
that the combined inhibition of WEE1 and mTOR synergistically induced cytotoxicity in
KRAS-mutated NSCLC cells and delayed tumor growth in xenograft models without any
drug-related toxicity [167]. Together, these findings represent some tractable vulnerabilities
of RAS-driven cancers and are expected to bring further benefit in the context of drug
combinations. More promisingly, two independent studies have shown that the efficacy
of the KRASG12C inhibitor ARS-1620 was increased when combined with mTOR and an
IGF1R inhibitor [15] and PI3K inhibitor [14] in lung cancer cells and in vivo models. These
results showed that inhibiting the PI3K-mTOR pathway would potentiate the effectiveness
of KRASG12C covalent inhibitors and provide a therapeutic opportunity for patients with
KRASG12C mutations in combined settings.

4. Horizontal Strategies Targeting Both RAS Effector Pathways

Owing to the adaptive resistance to selective targeting of MAPK signaling in RAS-
mutant cancers, the PI3K-mTOR pathway has attracted growing interest by virtue of its
complementarity to the MAPK pathway. Not only do these pathways share common
inputs but also they can both be activated by oncogenic RAS and appear to provide some
compensatory signaling when one or the other is inhibited (Figure 2). The therapeu-
tic index of inhibitors targeting a single component is limited by this crosstalk, which
provides numerous possibilities for overcoming the effects of inhibition. Horizontally
targeting multiple effector arms might be effective to increase the therapeutic potential of
inhibitors [36]. Since preclinical studies demonstrated that dual inhibition of MEK and
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Akt can abolish RAS signaling [168,169], selumetinib and MK-2206 have been combined to
evaluate drug toxicities and anti-tumor activity in patients with KRAS mutations. Patients
revealed significant treatment benefits at pulsatile dosing, which mitigate toxicities [170].
In line with this finding, it has been previously reported that different dosing regimens
might change anti-tumor activity and off-target toxicities, particularly in combined modal-
ity settings which suffer from adverse effects [171]. Disappointingly, in a phase I trial,
combining MEK and PI3K inhibitors have failed to determine the maximally tolerated
dose due to a high incidence of adverse effects in patients with KRAS, NRAS, B-Raf or
PIK3CA mutations, whereas they have shown synergistic pharmacodynamic tumor activity
(NCT01392521) [172]. On the other side, blockade of RAS downstream effectors in conjunc-
tion with other cellular targets involved in RAS-driven cancers may also reveal a powerful
punch. For example, Ischenko et al. showed that targeting histone deacetylases (HDACs)
in combination with MEK and PI3K induced apoptosis and prevented the development
of lung metastases in vivo [173]. Another drug trio, targeting MEK (PD-901), CDK4/6
(palbociclib) and mTORC1/2 (AZD2014), has reduced colony formation and S6 phospho-
rylation in MEKi/CDK4/6i-resistant melanoma, and significantly induced apoptosis in
NRAS-mutant melanoma, but it is of note that the treatment success might be hindered by
increased toxicities [174].
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Tumor radio-resistance remains a major obstacle for the treatment of many types
of cancer. Both MAPK and PI3K-mTOR pathways have been implicated with radio-
resistance of RAS-dependent cancer cells [175,176]. Clinical data show that most cancer
patients bearing KRAS mutations have a higher frequency of metastasis and recurrence
of disease following radiotherapy [177]. Activation of the PI3K-Akt pathway has been
shown to enable the repair of double-stranded breaks formed by radiotherapy through
the induction of DNA-PKcs in cancer cells [178–180]. Akt-1 directly binds to DNA-PKcs
and promotes its activity to initiate the NHEJ repair pathway, thereby resulting in the
resistance to radiotherapy. Further, it has been shown that PI3K inhibition stimulates



Molecules 2021, 26, 7561 15 of 26

MEK/Erk-dependent reactivation of Akt, thus targeting PI3K alone most likely will not
be sufficient to sensitize KRAS-mutant NSCLC cells to irradiation. Correspondingly, dual
targeting of PI3K and MEK efficiently improved radio-sensitization through the blockade
of Akt reactivation and impairment of DSBs repair [181]. In a phase Ib dose-escalation
study, a highly selective pan-PI3K inhibitor, buparlisib, in combination with the MEK1/2
inhibitor trametinib, represented promising anti-tumor activity in patients with KRAS-
mutant ovarian cancer; however, it should be noted that the combination required dose
modifications and interruptions due to the toxicity [182].

Recently, research has focused intensively on Erk inhibitor-based drug combinations,
which seem more attractive due to their ability to mitigate feedback relief. Dual inhibition
of Erk and PI3K/mTOR with LY3214996 and LY3023414 inhibitors respectively, has been
tolerable and resulted in synergistic inhibition on tumor growth in RAS-driven lung
cancer [125]. We await future clinical trials to understand the efficacy of this combination in
terms of therapeutic limitations. A novel bioactive compound containing a benzothiophene
nucleus, DPS2, has been reported to show a potent anti-tumor effect in several colorectal
cancer and melanoma cell lines harboring B-Raf or KRAS alterations. DPS2 has shown
dual inhibitory action toward Erk and Akt phosphorylation in preclinical models [183]. In
cancer cells, DPS2 has been shown to drive apoptosis and also reduce autophagy with high
selectivity [183].

A great majority of recent combinatorial strategies targeting MAPK and PI3K/Akt
signaling together have been found to be poorly tolerated in clinical studies involving
patients with RAS mutations, which diverted the attention to other cellular targets. The
inhibition of HSP90, highly expressed in most cancers, in combination with a MEK inhibitor
has been identified as a promising therapeutic strategy for KRAS-mutant NSCLC. Several
clinical trials have been conducted to examine the effect of AUY922, an HSP90 inhibitor, on
solid tumors, and revealed the low cellular toxicity of the agent [184,185]. Owing to the fact
that the clinical efficacy of AUY922 remains poor in monotherapies, it has been synergized
with trametinib in KRAS-mutant NSCLC and represented a potent anti-tumor activity
both in vitro and in vivo [186]. In a later study, the same group has shown that the HSP90
inhibitor, AUY922, suppressed both PI3K/mTOR and Raf/MEK/Erk axes and sensitized
cells to PI3K inhibition [187]. In contrast to the combination of MEK and PI3K inhibitors,
dual inhibition of HSP90 and PI3K did not induce toxicity in normal cells. Furthermore,
AUY922 in combination with the PI3K/mTOR dual inhibitor GSK458 induced apoptosis
and reduced compensatory pathway activation in KRAS-mutant NSCLC [187]. Further
clinical trials are required to evaluate the efficacy and tolerability of these combinations in
patients with RAS mutations. Of note, due to the direct association of HSP90 with specific
components of both RAS effector pathways, HSP90-anchored combinations are discussed
within the current section.

5. Targeting Metabolic Dependencies in Combination with RAS Effectors

One of the key hallmarks of cancer is the metabolic reprogramming of tumor cells,
which meet the need of increased biomass by altering their metabolism to grow [188].
RAS signaling promotes metabolic adaptation of tumor cells by coordinating different
anabolic processes, including lipid, nucleotide and glycolytic pathways. A growing body of
evidence has shown that RAS-driven tumors develop metabolic dependency owing to au-
tophagy to generate metabolic substrates for tumor maintenance [189]. Thus, co-targeting
RAS-downstream effectors and the autophagic reliance of the cancerous cells might be
an effective strategy to improve tumor response to treatment. Chloroquine and hydrox-
ychloroquine are well-characterized autophagy inhibitors, which function by inhibiting
lysosomal acidification. Combinations of autophagy inhibitors with MEK (trametinib and
MEK162) [190,191] or Erk (SCH772984) [192] inhibitors or genetic MAPK inhibition [193]
have been shown to result in synergistic anti-proliferative effects against multiple refrac-
tory RAS-mutant cancer models, including pancreatic, melanoma and lung cancers. These
results encouraged the initiation of a number of ongoing clinical trials combining hydroxy-
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chloroquine with trametinib (NCT03825289), binimetinib (NCT04132505, NCT04735068)
and ulixertinib (NCT04145297) in RAS-addicted cancers, but data about clinical efficacy are
not yet available. Although there are some promising results to treat RAS-driven cancers
with several combinations, autophagy inhibitors have low potency and require a longer
time for efficient treatment. Thus, more potent autophagy inhibitors are currently under
development. Given that certain cancer genotypes may be particularly susceptible to
autophagy inhibition, challenges and opportunities remain in the selection of patients most
likely to benefit from this strategy.

One of the most important metabolisms related to cancer is the mevalonate pathway,
which is an essential metabolic pathway for cholesterol biosynthesis. Tumorigenesis re-
quires increased mevalonate pathway flux to meet the need for precursors. The mevalonate
synthesis inhibitors, Statins, suppress protein prenylation and mediate several cellular
events associated with cancer hallmarks, including proliferation, survival and metastasis.
Statins have been previously shown to induce apoptosis by suppressing Erk and Akt acti-
vation [194]. Blockade of the mevalonate pathway with the oral administration of statins
has been reported as a promising strategy when combined with MEK inhibitors (trametinib
and CH5126766) against Akt activation related to MEK inhibitor resistance [195]. On the
other hand, it has been shown that inhibition of autophagy sensitizes KRAS-mutant col-
orectal cancer cells to concurrent use of glycolysis and mevalonate pathway inhibitors [196],
suggesting that multiple metabolisms may be targeted simultaneously. The use of kinase
inhibitors in alternative drug duos or trios is awaiting evaluation for targeting metabolic
dependencies of cancer cells in combination with RAS effectors.

6. Summary and Perspectives

Tremendous progress has been made in understanding the genetic architecture, the
biological heterogeneity and the distinct molecular pathways driven by RAS oncogenes.
Although none of these findings could be successfully extrapolated into cancer therapy
yet, future progress will be built on the foundation of this deeper understanding of tumor
response. The more detailed assessment of these finely balanced signaling networks
could help researchers refine their approach and allow greater focus on rational drug
combinations. These observations underscore that a focus should be placed on in-depth
optimization of timing, dosing schedules and treatment sequences to remedy toxicities
and side effects of drugs. Evidently, there is also still a need to improve clinical tools for
accurately stratifying patients based on their molecular status. In this regard, the specific
markers associated with drug sensitivity and acquired resistance in aiding therapeutic
interventions for RAS-driven cancer entities are of utmost importance.

Beyond small-molecule inhibitors, some innovative therapeutic approaches, such as
oncolytic virus-mediated gene-editing [197], mRNA vaccines [198] and novel classes of in-
hibitors [199], have emerged. RAS-driven tumors have been shown to possess a natural vul-
nerability to the oncolytic M1 virus, which provides insights into the use of gene-editing on-
colytic virotherapy in cancers bearing RAS mutations [200]. Oncolytic viruses are currently
under examination and might be a promising alternative for RAS-driven cancer therapy in
the upcoming years [201,202]. On the other hand, proteolysis-targeting chimera (PROTAC),
comprising ligands of target proteins, E3 ligase-recruiting elements and linkers, has been
shown as a potential anticancer therapeutic in KRAS-mutant cancers [203,204]. In addition
to these, mRNA vaccines that induce an immune response against specific tumor antigens
have been found to be promising in checkpoint-inhibitor-treated melanoma [205]. A phase
1 clinical trial is currently ongoing with a tetravalent RNA-lipoplex cancer vaccine targeting
four melanoma-associated antigens in advanced melanoma patients (NCT02410733). There
are also improvements in conventional therapies, e.g., stereotactic ablative radiotherapy
(SBRT) has been found to be significantly efficient in various solid tumors with remarkable
advantages over conventional radiotherapy, and its use in combined modality settings is
now considered in various strategies [206].
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In the near future, all these efforts will likely bear fruit for the treatment of RAS-driven
cancers. Each strategy developed on the basis of scientific research will form another pillar
for cancer treatment and serve as an opportunity to develop efficient and well-tolerated
combinations in clinical practice.

Supplementary Materials: The following is available online. Table S1: Inhibitors and their chemical
structures along with their potency.
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