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Abstract

Prohormone convertases (PCs) are subtilisin-like proteases responsible for the intracellular

processing of prohormones and proneuropeptides in vertebrates and invertebrates. The

full-length PC2 cDNA sequence was cloned from pleuropedal ganglion of Haliotis discus

hannai, consisted of 2254-bp with an open reading frame of 1989-bp and encoded a protein

of 662 amino acid residues. The architecture of Hdh PC2 displayed key features of PCs,

including a signal peptide, a pro-segment domain with sites for autocatalytic activation, a

catalytic domain, and a pro-protein domain (P-domain). It shares the highest homology of its

amino acid sequence with the PC2 from H. asinina and to lesser extent with that of Homo

sapiens and Rana catesbeiana PC2. Sequence alignment analysis indicated that Hdh PC2

was highly conserved in the catalytic domain, including a catalytic triad of serine proteinases

of the subtilisin family at positions Asp-195, His-236, and Ser-412. The cloned sequence

contained a canonical integrin binding sequence, and four cysteine residues involved in the

formation of an intramolecular disulfide link. Phylogenetic analysis revealed that the Hdh

PC2 is robustly clustered with the Has PC2. Quantitative PCR assay demonstrated that the

Hdh PC2 was predominantly expressed in the pleuropedal ganglion rather than in other

examined tissues. Although PC2 mRNA was expressed throughout the gametogenetic

cycle of male and female abalone, the expression level was significantly higher in the ripen-

ing stage of female abalone. Also, a significantly higher expression was observed in the

pleuropedal ganglion and gonadal tissues at a higher effective accumulative temperature

(1000˚C). In situ hybridization revealed that the PC2 mRNA expressing neurosecretory cells

were distributed in the cortex region of the pleuropedal ganglion. According to the results, it

can be concluded that pleuropedal ganglion is the highest site of PC2 activity, and this

enzyme might be involved in the abalone reproduction process.
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Introduction

Prohormone convertases (PCs) are Ca2+ dependent subtilisin-like endoproteases and are

thought to be involved in the post-translational process of hormones, neuropeptides, and

other regulatory proteins [1,2]. PCs play a pivotal role to convert an inactive neuropeptide pre-

cursor into an active mature peptide by limited proteolysis at multiple basic sites [3–5]. Several

subtypes of PCs have been identified by molecular cloning and categorized as members of the

subtilisin-like endoproteases family. These enzymes include furin, PC1/3, PC2, PC4, PACE4,

PC5/6, PC7, SKI-1 (Mbtps1), and PC9 [6]. These neuropeptide proteases are structurally and

functionally related to yeast Kex2, and are a homologue of bacterial subtilisin-like serine prote-

ases [7,8]. The subtypes of PCs generally seem to be involved in the tissue-specific processing of

multiple neuropeptide and peptide hormones. Some PCs (furin and PACE4) exhibited a ubiqui-

tous tissue distribution, whereas the expression of others, including PC1 and PC2, is restricted

to neural and endocrine cells [9]. Although each of these subtypes has distinct characteristics

and specificities, similar biochemical properties are found among the members of PCs in both

vertebrates and invertebrates [6]. The cDNA architecture of PCs contains an N-terminal signal

peptide, a pro-peptide segment, a catalytic domain, a pro-protein domain (P-domain), and a

carboxy terminal region with high sequence variability among different subtypes of PCs [10–

12]. PC2 is responsible for the maturation of precursor molecules by endoproteolytic cleavage

at pairs of basic amino acid residues in the regulated secretory pathway of neuroendocrine cells

[13]. In Xenopus, PC2 plays a crucial role in the processing of proopiomelanocoretin (POMC)

to α-MSH [13]. It is also involved in the processing of egg-laying hormone-related precursors

in atrial-gland secretory cells of Aplysia [14]. Toullec et al.[15] reported that PC2 is the key

endoprotease responsible for the maturation of crustacean hyperglycemic hormone (CHH).

Homologues of PC2 have been characterized in only few invertebrates, including the nematode

Caenorhabditis elegans [16], gastropod mollusk species Lymnaea stagnalis [17], Aplysia califor-
nica [14],H. asinina [18], arthropod species Lucilia cuprina [19], Drosophila melanogaster [20],

Orconectes limosus [15], and Penaeus monodon [21].

The abalone is a marine gastropod species widely distributed throughout temperate and

tropical coastal regions [22]. Of theHaliotis species,H. discus hannai is a highly valued seafood

in the southern coasts of China, Japan, Taiwan, and Korea because of the presence of health-

beneficial bioactive molecules [23]. Although many neuroendocrine hormones have been

reported inH. discus hannai, the enzymes involved in post-translational modification of neu-

roendocrine hormones in Pacific abalone are lacking. Hence, the present study was conducted

to isolate and molecularly characterize the PC2 inH. discus hannai.

Materials and methods

Experimental animals and sample collection

An adult female abalone (H. discus hannai) with shell length of 10.5 cm and total body weight

of 148.2 g were collected from Naesan, Gogun-myeon, Jindo Island (34˚31’16.2"N 126˚

22’28.7"E) and transferred to the laboratory in the Department of Fisheries Science, Chonnam

National University. The animals were anesthetized with ethyl 3-aminobenzoate methane sul-

fonate (MS-222: 1g/L; Sigma-Aldrich, St. Louis, MO, USA) and the pleuropedal ganglion, cere-

bral ganglion, branchial ganglion, digestive gland, testis, ovary, gill, and mantle were collected.

Each collected sample was frozen immediately in liquid nitrogen, and then stored at −80˚C for

total RNA isolation.

For preparing the cryosection, the pleuropedal ganglion was washed in phosphate buffered

saline (PBS; pH 7.4) and immersion fixed it in 4% paraformaldehyde (PFA) overnight. A brief
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procedure of cryosection preparation from pleuropedal ganglion tissue was described by Shar-

ker et al. [24].

Animal experiments were conducted in accordance with the guidelines of the Institutional

Animal Care and Use Committee of Chonnam National University (CNU IACUC) and

according to Article 14th of the Korean Animal Protection Law of the Korean government,

and the animals were cared for in accordance with the Guidelines for Animal Experiments of

Chonnam National University. No specific permissions are required to work with inverte-

brates in South Korea. Similarly, no permissions were needed for the collection ofH. discus
hannai from sample sites because they were not harvested from the protected area and this

species is not an endangered or protected species.

RNA isolation and cDNA synthesis

Total RNA was extracted from each tissue of Pacific abalone using an RNeasy mini kit (Qiagen,

Hilden, Germany) and treated with RNase-free DNase (Promega, Madison, WI, USA) to elimi-

nate the genomic DNA contamination. The concentration and integrity were then detected by

spectrophotometry (NanoDrop1NP 1000 spectrophotometer) and electrophoresis on a 1% (w/

v) agarose gel. Total RNA (1 μg) was reverse transcribed to cDNA using Superscript1 III First-

Strand synthesis kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol.

Cloning and sequencing of PC2

In order to isolate and characterize PC2 cDNA, reverse transcription (RT) primers (sense:

50- AGAGCTGGTCGTATGTAAGG -30 and antisense: 50- GCTACTCCTCCACTCTGTC -30),
were designed based on theH. asinina PC2 cDNA sequence (GenBank accession no.

EU684323.1). PCR amplification was performed in a final reaction volume of 20 μL containing

1 μL (20 pmol) each of forward and reverse primers, 4 μL of 5× Phusion HF buffer (1×), 2 μL

of dNTP (200 μM), 0.5 μL of 1 U Phusion DNA polymerase, 10.5 μL sterile distilled water

(dH2O), and 1 μL of the synthesized cDNA from the pleuropedal ganglion as a template. The

cycling condition was as follows: 5 min at 94˚C, followed by 35 cycles of 2 min at 94˚C, 30 s at

58˚C, 30 s at 72˚C, with a final dissociation step of 5 min at 72˚C. The amplified PCR products

were separated on 1.2% agarose gel electrophoresis and purified using a Wizard SV gel and

PCR clean-up kit (Promega). The purified PCR products were then ligated into the pTOP

Blunt V2 vector (Enzynomics, Daejeon, Korea), and transformed into competent E. coliDH5α
cells (Enzynomics). Plasmid DNA was extracted from the positive clones with a plasmid mini-

prep kit (Qiagen) and sequenced using the Macrogen Online Sequencing System (Macrogen,

Seoul, Korea). Rapid amplification of 50 and 30 cDNA ends (RACE) were performed with a

SMARTer1 RACE 50/30 Kit (Clontech Laboratories, Inc., USA) according to the manufactur-

er’s recommendation. Gene-specific primer sequences (GSPs), including a 15-bp overlap with

the 50-end of the GSP sequence (antisense primer: 50-GATTACGCCAAGCTTGCTGGTCCAG
CATTCTCAAGTCTGCAAC-30, sense primer: 50- GATTACGCCAAGCTTGTTGCAGACTTG
AGAATGCTGGACCAGC-30), a universal primer mix (UPM): 50-CTAATACGACTCACTAT
AGGGCAAGCAGTGGTATCAACGCAGAGT-30, and SeqAmp DNA Polymerase in a final vol-

ume of 50 μL were used to conduct the RACE PCRs. Touchdown PCR was performed with 25

cycles for 30-RACE and 30 cycles for 50-RACE PCR following the kit instructions. Purification

of RACE PCR products was done using NucleoSpin Gel and PCR Clean-Up kit and ligated

them into the linearized pRACE vector, transformed them into Stellar Competent Cells sup-

plied with the kit, and then sequenced them with the Macrogen Online Sequencing System

(Macrogen, Seoul, Korea). Finally, the sequenced RACE products were assembled by overlap-

ping with the initial fragment.
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Sequence analysis

To analyze the PC2 protein sequence ofH. discus hannai, multiple online software programs

were used. Basic Local Alignment Search Tool (BLASTP) (http://www.ncbi.nlm.nih.gov/

BLAST/) was used to identify the protein homology of PC2 protein with the PC2 of other spe-

cies. Predictions of N-linked glycosylation motifs and serine/threonine phosphorylation sites

were performed with the NetNGlyc 1.0 server and NetPhosK 1.0 server, respectively. SignalP

4.1 (www.cbs.dtu.dk/services/SignalP/) was used to infer the N-terminal signal peptide, and

the bonding state of cysteines in the protein sequence was determined using CYSPRED [25].

Physical and chemical properties associated with the primary sequence of the protein were cal-

culated using ProtParam (http://expasy.org/tools/protparam.html), and subcellular localiza-

tion was determined with Protcomp (http://www.softberry.com/berry.phtml). Multiple

alignments of the deduced amino acid sequences of PC2 protein were accomplished with Clus-

tal Omega [26,27]. Jalview, version 2.10.0 (www.jalview.org) was used for editing and visualiz-

ing the aligned sequence [28].

Phylogenetic analysis

To construct a phylogenetic tree, PC2 protein sequences from invertebrates and vertebrates

were retrieved from the NCBI database using the BLASTP algorithm. The sequences were

aligned using Clustal Omega [26,27]. The tree was generated with MEGA software (version

6.06) using a neighbor-joining method with 1,000 bootstrapping replicates [29].

Quantitative PCR (qPCR) analysis

The tissue expression pattern of PC2 mRNA was analyzed by qPCR assay using the 2×
qPCRBIO SyGreen Mix Lo-Rox kit (PCR Biosystems, Ltd., London, UK) according to the man-

ufacturer’s protocol. Gene-specific primers (forward: 50-ATGTAAGGAGGTCGAAGTGC-30 and

reverse: 50-GTCTAGTATGTGGTACGCTTC-30) and primers (forward: 50- TGTCCGTTTCA
CCAACAAGG-30 and reverse: 50- AGATGGAATCAAGTTTCAATT -30) from ribosomal pro-

tein L-5 gene (RPL-5, JX002679.1) ofH. discus hannai were used to normalize the expression of

the target gene. The 20 μL reaction mixtures comprised 1 μL cDNA template of each tissue,

1 μL (10 pmol) of each forward and reverse primer, 10 μL SyGreen Mix, and 7 μL PCR-grade

water. PCR was performed under the following conditions: pre-incubation at 94˚C for 5 min,

followed by three-step amplification at 95˚C for 2 min, 60˚C for 30 s, and 72˚C for 30 s for 40

cycles. Three replicates (N = 3) were done for each qPCR product. The relative gene expression

was analyzed on the basis of the 2−ΔΔct method [30].

Expression of PC2 mRNA in gonads during gametogenesis

qPCR assay was performed to assess the expression levels of PC2 mRNA in the gonads at dif-

ferent stages. The stages of the gonad were classified according to a previous study [31]. qPCR

assay and analysis of relative mRNA levels were performed as previously described.

Expression of PC2 mRNA in neural ganglia and gonad at Effective

Accumulated Temperature (EAT)

The mature abalones were obtained from the hatchery and kept in the tanks with filtered sea-

water and continuous aeration at 9.5˚C for one month. The sample preparation and expression

level of PC2 mRNA transcript at different EAT was found according to the method described

by [31]. One microliter of cDNA template from the neural ganglia and gonadal tissues at dif-

ferent EAT were used to do the qPCR assay.
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In Situ Hybridization (ISH)

DIG-labeled antisense and sense RNA probes were prepared from the coding region of the

PC2 nucleotide sequence by in vitro transcription following previous studies inH. discus han-
nai [24,31]. The pleuropedal ganglion tissue sections were pre-hybridized with hybridization

buffer and yeast total RNA (50 μL) for 2 h, followed by overnight hybridization with the RNA

probe at 65˚C. The hybridized tissue sections were sequentially washed, and then non-specific

binding was blocked with 10% calf serum for 1 h at room temperature. The sections were incu-

bated at 4˚C overnight with alkaline phosphatase-conjugated anti-digoxigenin-Ap-Fab frag-

ments antibody (diluted 1:500 in blocking solution [Roche]) to detect the hybridization signal.

Finally, the sections were treated with the labeling mix (2 ml alkaline tris buffer, 9 μl nitroblue

tetrazolium, 7 μl 5-bromo-4-chloro-3-indolyl phosphate disodium salt) and incubated in a

dark and humid chamber for at least 1 h to observe the color. After optimal color development,

the sections were observed and photographed using a stereo microscope (SMZ1500, Nikon,

Tokyo, Japan).

Nuclear fast red counterstain

Antisense probe hybridized ISH slides were counterstained using nuclear fast red (Sigma-

Aldrich, USA). Slides were rinsed with distilled water and then incubated in nuclear fast red

solution for 5 min followed by washing in tap water for 3 min. Slides were dehydrated using

ascending series of ethanol, dipped in histo-clear (National diagnostics, USA) for 3 min, and

finally cover-slipped with permount mounting medium.

Statistical analysis

Data were analyzed using one-way analysis of variance (ANOVA), followed by Tukey’s multi-

ple comparisons using SPSS (version 16.0) to detect the differences in relative mRNA expres-

sion levels. All the data are presented as mean ± SD, and a difference of p< 0.05 was regarded

as statistically significant.

Results

Cloning and characterization of PC2 from Pacific abalone

The full-length PC2 cDNA sequence was obtained from the pleuropedal ganglion and referred

to as Hdh PC2. The sequence data have been deposited in the GenBank database under the

accession number MN822082. A total of 2254-bp cDNA transcript of PC2 contained a 143-bp

50-untranslated region (UTR) and a 122-bp 30-UTR with a canonical polyadenylation signal

sequence (AATAAA) located 13-bp upstream of the poly-A tail. The open reading frame

showed a complete coding sequence of 1989-bp that encodes a putative protein of 662 amino

acids with a theoretical molecular mass of 73.38 kDa and an isoelectric point of 6.91 (Fig 1).

In silico analysis (protcomp, http://www.softberry.com/berry.phtml) indicated that the sub-

cellular localization of this deduced protein is in the membrane bound golgi network. The

cloned sequence contained a 29-amino acid NH2-terminal signal peptide, a pro-segment

region, a catalytic domain, and a pro-protein domain (P-domain) with a variable C-terminal

region. The three active sites residue (D195, H 236, S412) consisting of a catalytic triad of serine

protinases of the subtilisin family were found in this sequence. The ASP338 residue was

believed to be involved in the oxyanion stabilization. A canonical integrin binding signatures

(RGD) were present in the P-domain of Pacific abalone PC2. Three potential N-linked glyco-

sylation motifs (Asn-281, Asn-311, and Asn-403), and four cysteine residues (Cys-240, Cys-

253, Cys-347, and Cys-498), were identified which could potentially form an intrachain
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disulfide link. The threonine and serine residues at positions 166S, 231T, 377S, 381S, 444T, 462S,

and 505T serve as potential sites for phosphorylation by protein kinase A or C. A BLASTP

search indicated that this translated protein sequence showed the highest homology (95%)

with theH. asinina PC2 (Has PC2). It also exhibited 73%, 71%, 66%, and 61% identity with A.

californica, L. stagnalis,Mizuhopecten yessoensis, and Limulus polyphemus PC2, respectively.

Multiple sequence alignment analysis demonstrated that the potential cleavage site indicat-

ing the pro-segment region was conserved remarkably among different invertebrate species.

The catalytic triad and oxyanion hole residues were also well conserved in the PC2 sequences

(Fig 2).

The integrin binding sequence Arg547 and Gly548 were conserved in all organisms, whereas

the ASP549 residue was replaced by a Cys residue in P. canaliculata, L. stagnalis, and A. califor-
nica, and a Tyr residue inH. asinina and H. rubra.

The constructed phylogenetic tree revealed several distinct clades. Hdh PC2 is contained in

the gastropod PC2 clade and is more closely related to Has PC2. TheH. discus hannai serine

protease was used as a outgroup (Fig 3).

qPCR assay was performed to investigate the mRNA expression profile of Hdh PC2 in neu-

ral ganglia (cerebral ganglion, branchial ganglion, pleuropedal ganglion), digestive gland,

Fig 1. The nucleotide and deduced amino-acid sequences encoding a PC2 of Pacific abalone. The initiation and

termination codon (asterisks), and the classical polyadenylation signal are in the bold font. The N-terminal signal

peptide is underlined with dots. The potential N-linked glycosylation and phosphorylation sites are shown by circles

and triangles, respectively. Four cysteine residues (Cys-240, Cys-253, CYS-347, and Cys-498) that form a disulfide link

are shaded in green. The active-site residues (ASP, His, and Ser) are circled, and the ASP residue stabilizing the

oxyanion is boxed. The canonical integrin-binding motif is denoted by a green background. The pro-region, catalytic

site, and P-domain are delimited by a broken line with arrows, a solid line, and a broken line, respectively.

https://doi.org/10.1371/journal.pone.0231353.g001

Fig 2. Comparative alignment of the predicted Hdh PC2 amino-acid sequences of the Pacific abalone with those of other

invertebrate PC2. The pro-domain indicating the cleavage site is denoted by a diamond circle. The catalytic triad active-site residues and

the cognate integrin-binding residue are indicated by black arrowheads and asterisks, respectively. Plus sign (+) represents the oxyanion

hole residue.

https://doi.org/10.1371/journal.pone.0231353.g002
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gonad (testis, ovary), gill, and mantle using gene-specific and ribosomal protein L-5 (RPL-5)

primers. The RPL-5 gene (JX002679.1) ofH. discus hannai was used as internal control based

on its expression stability. The results of the qPCR showed that the relative mRNA abundance

of Hdh PC2 was significantly (p< 0.05) higher in the pleuropedal ganglion than in other

examined tissues (Fig 4).

The Hdh PC2 mRNA was expressed differently in the gonad at different gametogenesis

stages of Pacific abalone. In female, PC2 mRNA was expressed moderately in the degenerative,

spent, and active stages, but a significantly higher level of expression was found in the ripening

stage (Fig 5).

Although the relative mRNA expression level showed a rising tendency in the male repro-

ductive cycle, there were no statistical differences between the different gametogenetic stages.

The expression levels of Hdh PC2 mRNA in the neural ganglia and gonad was investigated

by qPCR at different effective accumulative temperatures (EAT). It has been shown that the

Fig 3. Molecular phylogenetic analysis of Hdh PC2 using a neighbor-joining method after Clustal Omega alignment.

The 1000 bootstrap replicates to construct the phylogenetic tree. The 0.20 scale bar indicates the number of amino acid

substitutions per site. The Hdh PC2 in this study is highlighted in the bold font.

https://doi.org/10.1371/journal.pone.0231353.g003
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pleuropedal ganglion, testis, and ovary exhibited significantly higher expression at 1000˚C (Fig

6). There were no significant differences observed in other ganglia at different EAT.

The site of PC2 mRNA expression in the pleuropedal ganglion section was found by in situ
hybridization with a DIG-labeled antisense probe. The positive hybridization signal for PC2

mRNA transcript was found in cells shown in purple color (Fig 7A, 7B, 7C and 7D).

These types of signals were not visualized in the negative control section, because of the

absence of an antisense probe in the hybridization mix during incubation (Fig 7E). The results

of fast red counterstaining indicated that the positive signal was likely localized in the neurose-

cretory cells of the cortex region (Fig 7F).

Discussion

Prohormone convertases act as a molecular switch for the processing of biologically inactive

polypeptide precursors to active peptides by limited endoproteolysis. This proteinase deter-

mines the cell type and time at which mature products are derived from a given inactive pre-

cursor protein, thereby profoundly affecting cellular communication, differentiation, and

metabolic activity [9]. In mollusks, the PC2 was first reported in the cerebral ganglion of the

central nervous system of the freshwater snail, L. stagnalis [17]. To date, reports on the

Fig 4. Different mRNA expression levels of Hdh PC2 (means ± SD, N = 3) in various tissues were quantified using

qPCR. Data were compared with the value of the branchial ganglion, which was assigned a relative value of 1. Different

letters indicate significant differences (p< 0.05).

https://doi.org/10.1371/journal.pone.0231353.g004
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molecular characterization and expression profile of PC2 inH. discus hannai has been lacking.

For the first time, this study demonstrated the mRNA sequence encoding the PC2 from the

pleuropedal ganglion ofH. discus hannai. Similar to other PCs, the structural profile of Hdh

PC2 possesses several recognition motifs, including a hydrophobic signal peptide, a pro-seg-

ment, a subtilisin-homologous catalytic region, a P-domain, and a variable C-terminal region

(Fig 1). The catalytic domain contained Asp, His, and Ser active site residues, which seem to

be involved in transition-state stabilization [32]. The catalytically important residue Asp338,

which is thought to be important for oxyanion stabilization during catalysis [33] as well as for

interaction with the specific binding neuroendocrine polypeptide 7B2 in endoplasmic reticu-

lum [34,35]. The presence of tyrosine sulfation, N-linked glycosylation, and phosphorylation

motif might be crucial for preventing PC2 degradation in ER [36]. In the P-domain, the integ-

rin-recognition sequence (RGD) plays a critical role in the intracellular sorting of enzymes

into secretory granules as well as for controlling the stability of the enzyme within the ER [37].

Three putative N-linked glycosylation motifs were evident in Hdh PC2 (Fig 1), predicting it to

be a glycoprotein. The predicted protein might be localized in the membrane bound golgi net-

work which is in agreement with the results of previous studies [6].

The outcome of multiple sequence alignment indicated that the Hdh PC2 showed high

degree of sequence identity in the catalytic region, proving that these residues are crucial in the

catalytic activity of the enzyme (Fig 2). This result is consistent with previous reports [18,38].

The constructed phylogenetic tree revealed that the Hdh PC2 is robustly clustered with the

Has PC2 and is most similar to other molluscan PC2s (Fig 3). Similar reports have been

Fig 5. Quantitative PCR analysis of Hdh PC2 mRNA expression in the gonads (ovary and testis) at different

gametogenetic stages. Asterisks indicate significant differences (p< 0.05). DS, Degenerative stage; AS, Active stage;

RS, Ripening stage; SS, Spent stage.

https://doi.org/10.1371/journal.pone.0231353.g005
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published by Cummins et al. [18], who observed that the PC2 ofH. asinina is most closely

related toH. rubra, L. stagnalis, and A. californica homologues.

The tissue-specific expression and relative mRNA expression of Hdh PC2 were determined

using a qPCR assay. In the present study, a significantly higher expression was found in the

pleuropedal ganglion than in other examined tissues (Fig 4). These results suggest that pleuro-

pedal ganglion could be the main site of PC2 activity in abalone.

In order to explore the physiological activities of PC2 inH. discus hannai reproduction, the

expression profile of PC2 mRNA was analyzed at different phases of the reproductive cycle.

The results showed that the expression level of PC2 is higher in the ripening stage, suggesting

that PC2 might be involved in reproductive regulation of the Pacific abalone. The level of a fol-

licle-stimulating hormone (FSH) and luteinizing hormone (LH) would increase via the con-

version of a prohormone into a mature peptide during the reproductive season of the

freshwater snail [39]. Liu and Sun [40] reported that the egg-laying hormone usually existing

as a biologically inactive precursor, needed to be converted into an active form by protease

cleavage, such as prohormone convertase. PCs may play an important role in the processing of

gonadotropin-releasing hormone, which is essential for the maturation of the gonads [41].

In abalone, effective accumulative temperature (EAT) is an influential factor for the regula-

tion of gonadal maturation and spawning [42]. To date, no reports on the PC2 mRNA expres-

sion in tissues at different EAT in the abalone species have been published. In this study, the

mRNA abundance of PC2 was highest in pleuropedal ganglion and gonadal tissues at higher

Fig 6. Expression pattern of Hdh PC2 mRNA in neural ganglia and gonads at different Effective Accumulative

Temperatures (EAT). The mRNA levels were quantified by qPCR. Asterisks indicate significant differences

(p< 0.05).

https://doi.org/10.1371/journal.pone.0231353.g006

PLOS ONE Characterization and expression of prohormone convertase 2 in Haliotis discus hannai

PLOS ONE | https://doi.org/10.1371/journal.pone.0231353 April 9, 2020 11 / 15

https://doi.org/10.1371/journal.pone.0231353.g006
https://doi.org/10.1371/journal.pone.0231353


EAT (Fig 6). The results suggest that the rate of gonadal development and quantity of gametes

increases with increasing EAT.

Previously, the distribution and expression of PC2 has been studied in the clawed frog [13],

bullfrog [43], and medaka [38] by using in situ hybridization. An in situ hybridization experi-

ment with the antisense mRNA inH. asinina PC2 revealed that PC2 mRNA transcripts were

present in the cerebral and pleuropedal ganglia [18]. The Lymnaea PC2 mRNA was predomi-

nantly expressed in the central nervous system [17]. In this study, in situ hybridization of PC2

was shown to be expressed in the neurosecretory cells of the pleuropedal ganglion. All these data

suggest that the PC2 enzyme might be synthesized in neural ganglia and be essential for intracel-

lular processing of the prohormone that is involved in the gonadal maturation of abalone.
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