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Abstract: Density functional theory, DFT, calculations were carried out on complexes containing
cyclopentadienyl anions and lithium or sodium cations; half-sandwich, sandwich and sandwich-
like complexes (among them triple-decker ones) are analyzed. Searches performed through the
Cambridge Structural Database revealed that crystal structures containing these motifs exist, mostly
structures with sodium cations. The DFT calculations performed here include geometry optimization
and frequency calculations of the complexes at the ωB97XD/aug-cc-pVTZ level, followed by the
partitioning of the energy of interaction via the Energy Decomposition Analysis scheme, EDA, at the
BP86-D3/TZ2P level. Additional calculations and analyses were performed using both the Quantum
Theory of Atoms in Molecules, QTAIM, and the Natural Bond Orbital analyses, NBO. The results of
this work show that the electrostatic interaction energy is the most important attractive contribution
to the total interaction energy of each of the complex systems analyzed here, and that complexation
itself leads to minor electron charge shifts.

Keywords: sandwich complex; triple-decker complex; DFT calculations

1. Introduction

The cyclopentadienyl anion is a species that is important in numerous reactions and
processes of organometallic chemistry [1–3]. As a planar system containing six π-electrons,
the cyclopentadienyl anion possesses properties typical of other aromatic systems [4,5];
its importance in the processes of catalysis is also very well-known. There are numerous
energetically stable complexes and other units containing one or more cyclopentadienyl
anions. Among the stable complexes, one can mention sandwich and half-sandwich
species [6]. Ferrocene is a very well-known example of a sandwich complex [7]. The
structure of ferrocene was proposed independently by Fischer and Pfab on the one hand [8]
and by Wilkinson and co-workers on the other hand [9]. The actual crystal structure
of ferrocene was solved by Dunitz and co-workers [10]. The authors of the latter study
proposed the name “sandwich compounds” for such classes of systems [10].

The studies on ferrocene and on similar compounds have initiated extended investi-
gations in organometallic chemistry on similar structures. One can mention, for example,
the analysis of the process of proton transfer to the transition metal attached to cyclopenta-
dienyl ion [11], the study on reactions of cyclopalladation and synthesis of borohydrides
or the analysis of crystal structures of metal sandwich systems [12]. In the latter study,
a special attention was paid to silver species. Other interesting investigations were per-
formed on the sandwich-like structures’ complexes of corannulene with lithium and cesium
cations [13]. Numerous other studies may be mentioned.

In this study, however, the emphasis is put on the nature of interactions in such
classes of compounds, i.e., in sandwich-like species. This is why the results of theoretical
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calculations reported in former studies may be mentioned here. For example, high-level
BP86/TZP geometry optimizations of the main-group metallocenes were performed, and
such optimized geometries were then used for coupled-cluster theory energy calculations
up to the CCSD(T) level [14]. Several findings and conclusions were presented in the
latter study. In particular, it was found that the C5H5

−-Be2+-C5H5
− complex structure

of Cs symmetry is energetically more stable than the D5d symmetry structure by about
0.6 kcal/mol. It was also found that for the C5H5

−-Mg2+-C5H5
− complex, the structures of

D5h and D5d symmetries correspond to energy minima and that their energy difference is
negligible (0.01 kcal/mol). Energy partitioning analysis was performed on the mentioned
sandwich structures. For the magnesium complex, the electrostatic and orbital interaction
energies make up 71.6% and 28.4% of the attractive part of the interaction energy, respec-
tively, whereas for the beryllium moiety these terms contribute 59.2% and 40.8% of the
total attractive energy, respectively. The orbital interaction energy is related to the electron
charge shifts, and consequently to the covalent character of an interaction. Accordingly,
a greater importance of the covalency for the Be-cyclopentadienyl contacts was observed
than that for the Mg-cyclopentadienyl ones. Similarly, for other systems, the more covalent
and less ionic character of the beryllium species compared to their magnesium counterparts
occurs. The latter conclusion is confirmed by other studies; a review on structures of
metallocenes was performed, particularly an emphasis was put on the beryllocenes [15]. It
was stated that the beryllium systems are less ionic than the magnesium analogues. The
main-group metallocenophanes were also analyzed in a recent study [16]. It was found
that the non-parallel structures occur not only for calcocenes, as was discussed in another
study [14], but also in other species, as for example, in stannocene and plumbocene [16].

Very recently, the BP86-D3/TZ2P calculations were performed on half-sandwich and
sandwich beryllium and magnesium moieties [17]. The results of the calculations show that
beryllium and magnesium species are ruled mainly by electrostatic interactions; however,
a covalent character of interactions is also pronounced. The latter is more evident for
beryllium species than for magnesium ones. The decomposition energy calculations also
show that the interactions of beryllium and magnesium cations with the cyclopentadienyl
rings are stronger and “more covalent” than the corresponding Be-X and Mg-X interactions
(where X designates a halogen center).

Interestingly, numerous studies have shown that the interactions of the first-group
cations with other species, particularly with the π-electron systems, are more ionic than
such interactions of the second-group cations (such as the beryllium and magnesium ones
mentioned previously) [18]. Thus, the work presented here aims at furthering and deepen-
ing our understanding about the nature of the interactions in sandwich and sandwich-like
complexes containing the cations of the first group.

2. Computational Details

The complexes that are composed of the cyclopentadienyl anions and lithium or
sodium cations are the subject of this study. These are half-sandwich, sandwich, triple-
decker and other sandwich-like systems, as can be seen in Figure 1. The calculations for
these complexes, i.e., the geometry optimizations, were performed with the use of the
Gaussian16 set of codes [19]. The ωB97XD functional [20] with the aug-cc-pVTZ basis
set [21] were applied. It was justified that the ωB97XD functional offers more reliable
results in comparison with other commonly applied functionals [20]. It was also shown
that for the analysis of interactions, this functional, especially in conjunction with the
aug-cc-pVTZ basis set, provides results superior to other functionals and basis sets [22].
Frequency calculations were carried out at the same ωB97XD/aug-cc-pVTZ level for all
systems considered; imaginary frequencies were not found, confirming that the optimized
systems correspond to energetic minima. For all complexes analyzed here that contain
two or more cyclopentadienyl anions, the neighboring anions are twisted relative to each
other, and thus these complexes may be classified as staggered ones. One may expect that
for the systems discussed here there are various configurations with different symmetries.
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This is not a subject of the analysis here. Different configurations and different symmetries
were analyzed for sandwich-like structures, but only for the simple systems containing
two carbon-rings [14–16]. Larger linear and non-linear sandwich-like chains that occur in
crystal structures are discussed only occasionally.
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Figure 1. Molecular graphs of complexes’ analyzed here; big circles correspond to attractors and
green small circles to bond critical points, while red and blue small circles correspond to ring and cage
critical points, respectively. Continuous and broken lines indicate bond paths. Few characteristics of
complexes are presented, NBO charges of lithium centers are presented at right sides of pictures, the
Wiberg indices are given at the left side (of C···Li+/Na+ contacts and of the whole Li+/Na+ centers).
(a) Li+C5H5

− (b) Na+C5H5
− (c) C5H5

−Li+C5H5
− (d) C5H5

−Na+C5H5
− (e) Li+C5H5

−Li+C5H5
−

(f) Na+C5H5
−Na+C5H5

− (g) C5H5
−Li+C5H5

−Li+C5H5
− (h) C5H5

−Na+C5H5
−Na+C5H5

−

(i) Li+C5H5
−Li+ (j) Na+C5H5

−Na+.

The BP86-D3/TZ2P level was applied to perform energy decomposition calculations
for the ωB97XD/aug-cc-pVTZ geometry optimized complexes. That is, the BP86 func-
tional [23,24] with the Grimme dispersion corrections [25] and the uncontracted Slater-type
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orbitals (STOs) as basis functions with triple-ζ quality for all elements [26] were applied. The
energy decomposition calculations [27,28] were performed with the use of the ADF2013.01
program [28,29]. The total interaction energy in the energy partitioning applied here is
composed of terms according to Equation (1) given below.

∆Eint = ∆Eelstat + ∆EPauli + ∆Eorb + ∆Edisp (1)

The term ∆Eelstat is usually attractive (negative) and it corresponds to the quasi-
classical electrostatic interaction between the unperturbed charge distributions of atoms.
The Pauli repulsion, ∆EPauli, is the energy change associated with the transformation from
the superposition of the unperturbed electron densities of the isolated fragments to the
wave function that properly obeys the Pauli principle through antisymmetrization and
renormalization of the product wave function. The orbital interaction, ∆Eorb, corresponds
to the charge transfer and polarization effects, i.e., to electron charge shifts resulting
from complexation.

The NBO method [30,31] was used to calculate the atomic charges as well as the
energies of the most significant orbital–orbital interactions. In the A-H···B hydrogen bonded
systems, the nB → σAH

* overlap is the most important orbital–orbital interaction [30–32].
nB is the lone electron pair of the B proton accepting center while σAH

* marks an antibond
orbital of the Lewis acid unit. The above-mentioned interaction energy is expressed by
Equation (2).

∆E (nB → σAH
*) = qi 〈nB|F| σAH

*〉2/(ε (σAH
*) − ε (nB)) (2)

〈nB|F|σAH
*〉 is the Fock matrix element, (ε (σAH

*) − ε (nB)) is the orbital energy difference
and qi is the donor orbital occupancy. In the case of the complexes analyzed in this study,
two types of overlaps between orbitals of cyclopentadienyl anion and alkali metal cation are
the most important: nC → nLi/Na and σcc → nLi/Na. However, for each complex analyzed,
none of the interaction energy corresponding to such overlap exceeds 1 kcal/mol. The
NBO 6.0 program [33] implemented in the ADF2019 set of codes [28,29] was used to carry
out NBO calculations; this program was also applied to calculate atomic charges and the
Wiberg indices [34].

The “Quantum Theory of Atoms in Molecules“, QTAIM [35,36], was applied to analyze
characteristics of the bond critical points corresponding to interactions occurring in the
structures analyzed in this study. The AIMAll program [37] was used to carry out QTAIM
calculations. Systematic searches through the Cambridge Structural Database, CSD [38,39],
were performed to find crystal structures containing the type of motifs that are the subject
of this study.

3. Results and Discussion
3.1. Crystal Structures

The search through the Cambridge Structural Database, CSD [38,39], was performed to
find decker sandwich-like crystal structures. The search was constrained to having at least
two alkali metal cations located between cyclopentadienyl anions or other five-membered
ring carbon structures. Accordingly, C5H5

−···A+···C5H5
−···A+···C5H5

− fragments (A = Li,
Na, K, Cs, Fr), or other ones where the C5H5

− anion is replaced by species containing a
five-member ring carbon motif, were searched for. The search was also constrained to
distances between the A+ cation and two neighboring carbon species, C···A, that were
shorter than the sum of corresponding van der Waals radii. The radii that were proposed
by Bondi [40] and that are inserted in the CSD were applied here. However, only two
C···A contacts are taken into account for each neighboring pair (as the C5H5

−···A+ pair,
for example) and they concern non-adjacent carbon atoms of the five-membered carbon
ring. The following criteria of accuracy for these searches were applied: 3D coordinates
determined, no disordered structures, no errors, no polymeric structures, R-factor less or
equal to 10% and only single crystal structures.
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Twelve crystal structures were found in this search. In five of the structures, the metal
ions located between carbon rings are the sodium cations, whereas in the remaining seven
they are the potassium cations. However, whenever any of the criteria of accuracy were
not applied then 29 crystal structures were found. Specifically, 4, 7 and 18 structures that
contain lithium, sodium and potassium ions, respectively. In two crystal structures, the
cesium cations occur apart from the lithium cations, and in another structure, the cesium
cations occur apart from the potassium cations.

Figure 2 shows examples of three crystal structures; in one of them (Figure 2a),
(1,4,7,10,13,16-hexaoxacyclooctadecane)-sodium bis(η5-cyclopentadienyl)-sodium struc-
ture [41], the sodium cations are located between cyclopentadienyl anions. However, two
types of arrangements of the sodium cations are apparent. In one type, there is no close
atom–atom contacts apart from those between the sodium cations and the cyclopentadienyl
rings. In another type of arrangement, there are additional close contacts of the sodium
cations with the oxygen centers of the 1,4,7,10,13,16- hexaoxacyclooctadecane molecules.
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Figure 2. Three examples of crystal structures containing decker motifs: (a) (1,4,7,10,13,16-hexaoxacy
clooctadecane)-sodium bis(η5-cyclopentadienyl)-sodium, (b) catena-((µ2-η5, η5-cyclopentadienyl)-
potassium), (c) potassium 2-(12,14,16,32,34,36-hexamethyl [11,21:23,31-terphenyl]-22-yl)cyclopen
tadienyl (for the simplicity of this picture, the structure is presented by sticks, except
potassium cations).

Figure 2b presents another example, i.e., the crystal structure of catena-((µ2-η5, η5-
cyclopentadienyl)-potassium), and the C5H5

−···K+···C5H5
−···K+···C5H5

− chains occur
in this structure [42]. One may say that “infinite-type” decker structures occur here (in
reality these chains are restricted by the size of crystals). The fragment of the crystal
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structure that shows two chains is presented in Figure 2b. Figure 2c presents the fragment
of the crystal of potassium 2-(12,14,16,32,34,36-hexamethyl [11,21:23,31-terphenyl]-22-yl)
cyclopentadienyl [43]. One can see that another type of sandwich-like structure occurs
here. Four cyclopentadienyl species and four potassium cations located alternately one to
another form a ring.

The aforementioned three examples show that there are various types of crystal
packing that realize the decker-type arrangements. In addition, regular parallel collocation
of rings, which are interspersed with alkali cations, do not exist; the crystal packing disturbs
such regular arrangements (see Figure 2b for an example where the anion–cation chains
are not regular).

3.2. The Energetic Parameters

The interaction energies and the corresponding energy decomposition results,
i.e., the terms of energy, for complexes analyzed in this study are presented in Table 1.
The energy decomposition was performed according to the scheme briefly described in
the former section (Equation (1)). The majority of complexes are treated as composed of
two monomers. The division of the complex into monomers is designated in Table 1 by
three points. This means that for the same complex various interactions may be taken
into account. For example, for the C5H5

−Li+C5H5
−Li+C5H5

− complex, the interaction
energy of the C5H5

−Li+C5H5
−Li+ unit with the C5H5

− anion is equal to −78.05 kcal/mol
whereas for the same complex the interaction energy of the C5H5

−Li+ species with the
C5H5

−Li+C5H5
− anion is −43.49 kcal/mol. It is worth mentioning that there is one excep-

tion from the above-mentioned division of complexes into two conjoint monomers. For
the Li+C5H5

−Li+ cation, the additional division into the C5H5
− anion and two Li+ cations

is performed (the Li+···C5H5
−···Li+ designation in Table 1). The strongest interaction was

observed here (∆Eint = −328.26 kcal/mol). A similar additional division is applied for
the analogous sodium Na+C5H5

−Na+ moiety where ∆Eint = −270.09 kcal/mol. Some
important observations concerning the interactions of the complexes analyzed in this study
follow next.

Table 1. The interaction energy terms (in kcal/mol) according to the scheme expressed by
Equation (1); the ∆Eelstat/∆Eorb ratio is also included. The decomposition scheme was applied
for the lithium and sodium species for divisions of complexes indicated by three points.

System ∆Eint ∆EPauli ∆Eelstat ∆Eorb ∆Edisp ∆Eelstat/∆Eorb

Li-complexes
Li+···C5H5

− −174.17 24.79 −150.47 −42.92 −5.58 3.51
C5H5

−Li+···C5H5
− −62.02 12.06 −42.83 −19.96 −11.29 2.15

Li+C5H5
−Li+···C5H5

− −152.30 10.48 −112.24 −41.16 −9.37 2.73
C5H5

−Li+C5H5
−Li+···C5H5

− −78.05 14.17 −56.09 −25.15 −10.98 2.23
C5H5

−Li+···C5H5
−Li+ −23.00 8.57 −12.70 −8.26 −10.61 1.54

C5H5
−Li+···C5H5

−Li+C5H5
− −43.49 11.56 −29.53 −14.08 −11.45 2.10

Li+C5H5
−···Li+ −64.97 14.06 −34.80 −36.47 −7.76 0.95

Li+···C5H5
−···Li+ −328.26 33.36 −292.19 −54.20 −15.22 5.39

Na-complexes
Na+···C5H5

− −144.47 20.48 −137.39 −20.78 −6.78 6.61
C5H5

−Na +···C5H5
− −54.88 11.72 −47.55 −10.28 −8.78 4.63

Na+C5H5
−Na+···C5H5

− −117.54 17.11 −109.54 −16.80 −8.32 6.52
C5H5

−Na+C5H5
−Na+···C5H5

− −70.35 13.26 −62.23 −12.60 −8.78 4.94
C5H5

−Na +···C5H5
−Na + −25.67 6.60 −17.74 −6.07 −8.46 2.92

C5H5
−Na+···C5H5

−Na+C5H5
− −42.45 9.25 −34.30 −8.51 −8.89 4.03

Na +C5H5
−···Na+ −56.48 10.90 −40.77 −18.67 −7.94 2.18

Na+···C5H5
−···Na+ −270.09 26.93 −261.02 −20.37 −15.63 12.81

In general, the absolute values of the interaction energies, |∆Eint|’s, are greater
for the lithium species than for their sodium analogues. For example, |∆Eint| for the
Li+C5H5

−···Li+ interaction is equal to 64.97 kcal/mol, which is 8.49 kcal/mol larger than
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that for the Na+C5H5
−···Na+ analogue (56.48 kcal/mol). The only exception occurs for the

C5H5
−Li+···C5H5

−Li+ and C5H5
−Na+···C5H5

−Na+ pair of interactions since |∆Eint| is
respectively equal to 23.00 kcal/mol and 25.67 kcal/mol, i.e., a slightly stronger interaction
was observed for the sodium complex than for the lithium analogue.

Regarding the lithium complexes, the strongest interaction was observed for the Li+C5H5
−

complex, |∆Eint| = 174.17 kcal/mol. It is worth noting that when the size of the complex
increases, the interaction between the cyclopentadienyl ring and the remaining part of the com-
plex gets weaker. For example, the |∆Eint| value is 62.02 kcal/mol for the C5H5

−Li+C5H5
−

complex. Likewise, |∆Eint| value is equal to 152.30 kcal/mol for the Li+C5H5
−Li+C5H5

−

complex, and yet it is only 78.05 kcal/mol for the C5H5
−Li+C5H5

−Li+C5H5
− moiety. Simi-

lar changes were observed for the sodium analogues, with |∆Eint| values of 144.47, 54.88,
117.54 and 70.35 kcal/mol for the Na+C5H5

−, C5H5
−Na+C5H5

−, Na+C5H5
−Na+C5H5

− and
C5H5

−Na+C5H5
−Na+C5H5

− complexes, respectively, whenever the interaction of the C5H5
−

unit with the remaining part of the complex is considered. These systematic energetic changes
for the lithium and sodium complexes discussed above are displayed in Figures 3 and 4,
respectively. One can see that, for these complexes, |∆Eint| exceeds 100 kcal/mol when the
cation···anion interactions are considered; in contrast, |∆Eint| is lower than 100 kcal/mol
when the neutral unit···anion interactions are considered. These results indicate an important
role of the electrostatic term of interaction in the stabilization of such complexes.
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Figure 3. Energies of interactions (and their components according to Equation (1), all in kcal/mol)
of a few complexes analyzed here; this figure presents the influence of the extension of the whole
lithium system on these energies.

Inspection of Table 1 shows that the ∆Eelstat/∆Eorb ratios are greater for cation···anion
interactions than for the corresponding ratios for neutral unit···anion interactions in the
two sets of four complexes (lithium and sodium) discussed previously. The terms of the
energies of interactions are also shown in Figures 3 and 4. Particularly, the changes for the
electrostatic and orbital energy terms, ∆Eelstat and ∆Eorb, follow similar trends as those seen
for the total interaction energies, ∆Eint’s, i.e., decrease, increase and decrease in absolute
values of energies if the size of the complex increases.
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Figure 4. Energies of interactions (and their components according to Equation (1), all in kcal/mol)
of a few complexes analyzed here; this figure presents the influence of the extension of the whole
sodium system on these energies.

Table 1 also shows that, in general, the electrostatic interaction is the most important
attractive term for all complexes analyzed here, followed next by the orbital interaction, and
last by the dispersion term. There are three exceptions, however, for which the dispersion
term is actually larger than the orbital one: C5H5

−Li+···C5H5
−Li+, C5H5

−Na+···C5H5
−Na+

and C5H5
−Na+···C5H5

−Na+C5H5
−. It is worthwhile to note that two of these three com-

plexes involve interactions between neutral units, and that all three complexes exhibit the
weakest interactions among all complexes considered here, with |∆Eint| < 43 kcal/mol.

As mentioned above, the crucial role of the electrostatic interaction, ∆Eelstat, was
observed in all complexes analyzed since the corresponding term resulting from the decom-
position shows that it is the most important contribution to the attraction interaction energy.
The comparison of the ∆Eelstat/∆Eorb ratios shows that they are greater for the sodium
complexes than for the corresponding lithium analogues, indicating that, in the former
complexes, the electrostatic attraction is much more important than in the latter ones. In ad-
dition, this ratio is greater for the cation···anion interaction than for the neutral unit···anion
interaction. For the lithium complexes, the lowest ratio for the cation···anion interactions
was observed for the Li+C5H5

−Li+···C5H5
− system, 2.73. All interactions with neutral units

are characterized by the lower ratios. In the case of sodium complexes, the lowest ratio for
the cation···anion interactions was observed for the Na+C5H5

−Na+···C5H5
− system, 6.52.

The interactions of one cyclopentadienyl anion with two cations are characterized by the
greatest ratios, 5.39 and 12.81, for lithium and sodium species, respectively.

3.3. The Larger Chain Structures of Cyclopentadienyl Complexes

It was discussed in the previous section that the strongest interactions (characterized by
the greatest |∆Eint| values) between the terminal cyclopentadienyl ring and the remaining
part of the complex occur in both lithium and sodium series for the simplest Cat+···Cp−

complexes (Cat+ = Li+ or Na+, Cp− = C5H5
−). The enlargement of the latter systems

results in the weakening of interactions. The subsequent addition of an anion weakens the
interaction, and then the subsequent addition of the cation leads to its strengthening. It is
expressed by Figures 3 and 4, for the lithium and sodium complexes, respectively. However,
as the complex increases by an anion or cation unit, the difference between interaction
energies in complexes differing by only one-unit decreases. One may expect that the further
enlargement of the complex results in the further diminishing of the latter difference.

To check this tendency, additional calculations were performed here for the systems
occurring in Figures 3 and 4 and for the corresponding greater systems for the less saturated
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Pople style 6-311++G(d,p) basis set [44]. So, the ωB97XD/6-311++G(d,p) level was applied.
The complexes optimized at this level correspond to energetic minima since imaginary
frequencies are not observed here. These are “linear systems”, which means the cations
and the centers of cyclopentadienyl anions are located approximately at the same line (as
occurs forωB97XD/aug-cc-pVTZ complexes discussed so far). However, the closest anions,
separated only by one cation, are twisted, forming a staggered structure. That occurs for all
ωB97XD/6-311++G(d,p) complexes optimized here.

Table 2 presents the interaction energies corrected for the basis set superposition
error, BSSE [45], and for complexes optimized at the ωB97XD/6-311++G(d,p) level, BSSE
corrections are also specified there. The division of the complex into monomers, the
terminal C5H5

− cation and the remaining part is designated as before by three points. One
can see that the tendency of the decrease in the interacting energies´ difference between
complexes differing only by one anion or cation is preserved for the larger systems. This
tendency is also apparent in Figure 5, where the relationships between the size of complex
and the interaction energy for lithium and sodium series are presented.

Table 2. The interaction energies calculated at the ωB97XD/6-311++G(d,p) level (in kcal/mol) for
the lithium and sodium complexes; BSSE corrections are included (kcal/mol).

System
Li Complexes Na Complexes

∆Eint BSSE ∆Eint BSSE

Cat+···Cp− −167.5 0.6 −137.7 0.8
Cp−Cat+···Cp− −49.9 1.1 −49.1 1.0

Cat+Cp−Cat+···Cp− −132.5 1.2 −110.2 1.0
Cp−Cat+Cp−Cat+···Cp− −67.3 1.2 −63.9 1.0

Cat+Cp−Cat+Cp−Cat+···Cp− −118.8 1.2 −100.2 1.0
Cp−Cat+Cp−Cat+Cp−Cat+···Cp− −76.1 1.1 −70.5 1.0
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One can expect that for larger systems containing more Cp− and Cat+ units, the
further adding of cations and anions does not change the interaction energies for the
specified cyclopentadienyl anion. It is worth mentioning that the chains discussed here
correspond to arrangements that occur in numerous crystal structures, where large chains
of sandwich-like structures are observed.
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3.4. The QTAIM and NBO Results

The Quantum Theory of Atoms in Molecules, QTAIM [35,36], characteristics as well
as other results derived from the Natural Bond Orbital, NBO, method [30,31] are discussed
in this section. Table 3 presents the cation···carbon distances (upper lines) and the electron
densities, ρBCP´s, at bond critical points, BCPs (bottom lines), of the corresponding bond
paths (see also Figure 1).

Table 3. The C···Li+/Na+ distances (upper, mean values for each contact between the cation and the
cyclopentadienyl anion, in Å) and the mean electron density (bottom values, in au) of the BCPs of
corresponding carbon–cation bond paths, ρBCP. The contacts are presented in the same order as for
the designations given in the first column, i.e., from the left site to the right site.

Complex C···Li+/Na+ Distance (Up) and ρBCP (Down)

Li+C5H5
− 2.113

0.0281

C5H5
−Li+C5H5

− 2.355
0.0149

2.354
0.0150

Li+C5H5
−Li+C5H5

− 2.128
0.0269

2.510
0.0095

2.186
0.0233

C5H5
−Li+C5H5

−Li+C5H5
− 2.289

0.0178
2.410

0.0127
2.409
0.0127

2.289
0.0178

Li+C5H5
−Li+ 2.224

0.0210
2.224

0.0210

Na+C5H5
− 2.538

0.0180

C5H5
−Na +C5H5

− 2.708
0.0119

2.708
0.0119

Na+C5H5
−Na+C5H5

− 2.568
0.0166

2.822
0.0087

2.594
0.0157

C5H5
−Na+C5H5

−Na+C5H5
− 2.670

0.0131
2.745

0.0107
2.745
0.0107

2.670
0.0131

Na +C5H5
−Na+ 2.655

0.0133
2.650

0.0133

For each C5H5
−···Li+/Na+ pair in a contact, the mean C···Li+/Na+ distance and

the mean ρBCP value are shown. However, for such pairs, the differences between the
C···Li+/Na+ distances do not exceed 0.001 Å, and the differences between corresponding
ρBCP values are also negligible. The Na+C5H5

−Na+C5H5
− complex is slightly different

since the differences between C···Na+ distances for the “middle” C5H5
−···Na+ pair are

greater, up to 0.005 Å. This is a special kind among the anion–cation neighboring pairs
since only one C···Na+ bond path occurs here (see Figure 1). The mean C···Na+ distance
is equal to 2.822 Å here. Moreover, for this contacting pair, the weakest interaction was
observed when compared with the other sodium complexes, where |∆Eint| is equal to
25.67 kcal/mol.

Figure 6 presents exponential correlations between the carbon–cation distance and
the electron density at BCP of the corresponding bond path. Two separate correlations, for
lithium and sodium complexes, are presented. It is worth mentioning that the ρBCP value
is often treated as a measure of the strength of interaction. Numerous correlations between
the electron density at BCP and other measures of the strength of interaction were reported
in other studies [46], particularly in the case of hydrogen bonded systems [47,48]. It was
also reported in numerous studies that the atom–atom distance often roughly expresses the
strength of the corresponding interaction [49]. Thus, the correlations presented in Figure 6
may be treated as those between measures of the strength of interaction.
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It is interesting that the ρBCP values for the systems analyzed here correlate with the
energies presented in Table 1, i.e., the stronger the interactions, the greater the correspond-
ing ρBCP values that are observed. One can also see that the ρBCP values for the lithium
systems are greater than for the corresponding sodium analogues; the former complexes
are linked by stronger interactions than the latter ones. It should be noted that, for all
complexes discussed here, the |∆Eint| values are relatively large, with no values below
20 kcal/mol and several values over 100 kcal/mol. Notwithstanding these relatively large
|∆Eint| values, low values of ρBCP for the C···Li+/Na+ contacts occur.

It has been shown that the ρBCP parameters, which often correlate with the total
interaction energies, are rather related to the covalent character of interactions [50]. This is
in agreement with the results presented here for complexes analyzed. The Quantum Theory
of Atoms in Molecules, QTAIM, characteristics indicate that interactions discussed here
may be only slightly covalent in nature. The low ρBCP values for these interactions were
already pointed out above. The Laplacian of the electron density at BCP,∇2ρBCP, is positive
as well as the total electron energy density at BCP, HBCP, for all carbon–cation contacts.
The latter two parameters, ∇2ρBCP and HBCP, would confirm the covalent character of an
interaction considered if they were negative [51,52].

Figure 7 presents two examples, the C5H5
−Li+C5H5

− and Na+C5H5
−Na+ complexes

with the surfaces characterized by the Laplacian equal to zero, ∇2ρ = 0. The areas closed
by those surfaces are characterized by the negative ∇2ρ; thus, the interactions of pairs of
linked atoms within them are covalent in character. This figure shows that the interactions
between cyclopentadienyl rings and cations are rather not covalent in nature, the BCPs of
the corresponding C···Li+/Na+ contacts are in areas of the positive ∇2ρ. This observation
is true also for all other complexes analyzed in this study.

The orbital energy, ∆Eorb, in the decomposition scheme (Equation (1)) is often related
to the covalent character of interaction since it corresponds to the electron charge shifts
resulting from complexations. Figure 8 presents a fairly good linear correlation between the
electron density at BCP, ρBCP, of the C···Li+/Na+ contact and the orbital interaction energy,
∆Eorb. The cation–anion pair that corresponds to the latter contact indicates a way of the
complex partition into interacting units. This correlation is valid for all lithium and sodium
complexes, except of the Li+C5H5

−Li+ and Na+C5H5
−Na+ ones. They are excluded from

this correlation since they differ from other species discussed here. For example, only
in these cases do the number of cations overwhelms the number of anions. Accordingly,
the corresponding interactions for the latter complexes differ from those occurring in the
remaining systems.
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corresponding bond path and the orbital–orbital interaction energy term (Equation (1), in kcal/mol)
for the corresponding cation–cyclopentadienyl anion contact. Black and white circles correspond to
the lithium and sodium species, respectively. Black and white squares not included in the correlation
presented correspond to the Li+C5H5

−···Li+ and Na+C5H5
−···Na+ species, respectively.

Figure 9 presents the NBO charges of cations that occur in the complexes discussed
here (they are also presented in Figure 1).

For the lithium systems, the Li-charge is within the 0.91–0.97 au range, whereas for
the sodium systems the charge is within the 0.95–0.99 au range. Accordingly, negligible
electron charge shifts take place upon complexation in the systems considered here; the
cation charges are close to unity, even closer in the case of the sodium species. This means
that the orbital interaction energy, ∆Eorb, should be less important than the electrostatic
one for the systems analyzed here. It is less important for the sodium complexes than for
the lithium ones since the ∆Eelstat/∆Eorb ratio is greater for the former species than for the
latter ones.
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Figure 9. The linear correlation between the total Wiberg index of the Li or Na center and the
corresponding NBO charge (in au). The lithium and sodium species are marked by the black and
white circles, respectively.

Figure 1 also presents the Wiberg indices for the cation–carbon contacts, mean values
for each pair of the cyclopentadienyl anion and the neighboring cation. The Wiberg
index is approximately related to the bond order and consequently to the strength of
interaction [34,53]; the total Wiberg indices for cations are also presented in Figure 1. The
total Wiberg indices are the sums of all Wiberg indices related to links between the cation
and other centers (in the case of this study these are the hydrogen and carbon centers).
Figure 9 presents an excellent linear correlation between the NBO charge of the cation and
its total Wiberg index, the greater the charge (closer to unity) then the lower the value of
the Wiberg index. It means that the greater outflow of the electron charge from the ligands
to the linked cation results in the greater bond orders of this cation. It should lead to the
formation of bond orbitals in extremal cases of such electron charge shifts. This is not
observed for the systems analyzed here, given the slight electron charge shifts that occur.

4. Summary

The Cambridge Structural Database, CSD, searches show that in the majority of
systems containing alternately cyclopentadienyl anion and the first group of periodic
system cation, the sodium cations occur most often, followed by the potassium cations, and
the occurrence of lithium cations is rather rare.

The results of calculations presented here show that in the systems containing lithium
or sodium cations between cyclopentadienyl anions, the electrostatic interaction energy is
the most important attractive contribution to the total attractive interaction energy. The
orbital interaction is less important; it is related to the electron charge shifts that are not
important in systems analyzed here. The charges of cations, lithium or sodium ones, are
close to unity in complexes analyzed, consistent with negligible electron charge shifts
resulting from complexations.

The interactions between the cyclopentadienyl rings and the cations are mostly not
covalent in nature; the covalent character is only slightly manifested. The QTAIM char-
acteristics confirm the electrostatic nature of such interactions since, for the bond critical
points corresponding to the cation–carbon bond paths, the Laplacian of the electron density
and the total electron energy density are positive. It is interesting that the electron density
at the cation–carbon bond critical point, ρBCP, expresses the strength of the local interaction.
The latter value is in agreement with the interaction energy. However, a better correlation
was observed between the orbital energy, ∆Eorb, and ρBCP. The Wiberg index reflects the
negligible electron charge shifts between cations and the cyclopentadienyl anions.

It is worth noting that the relationships and parameters presented and discussed
in this study may be applied for a broader class of systems, as for example, for those
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containing the cations of the first group of the periodic system. For example, the lithium
salt of the alumole dianion was discussed and the X-ray crystal structure analysis of this
system shows that two lithium cations are located at both sites of the planar AlC4 ring [54].
A similar situation was observed for the X-ray crystal structure of dilithioplumbole, where
two lithium cations are situated above and below the planar plumbole ring [55]. These
two lithium structures are very similar to the Li+C5H5

−Li+ system analyzed in this study,
where large interactions are detected.

In this study, all results show the dominance of the electrostatic interaction in com-
plexes analyzed. However, the covalent character, much less important than electrostatic
one, was also observed, although it is negligible. It is more pronounced in lithium struc-
tures than in the sodium ones. Figure 6 shows the greater electron density at the bond
critical point, ρBCP, and the shorter Li···C distance for the lithium systems than for the
corresponding sodium ones, the ρBCP value and the Na···C distance, respectively. Figure 8
shows greater orbital energies, |∆Eorb|, for Li-complexes than for Na-complexes. Finally,
Figure 9 presents the charges of Li and Na species that are lower for lithium complexes.
The latter corresponds to greater Wiberg indices that are related to the sum of bond orders
of the center considered. The observed Wiberg indices are greater for the lithium systems
than for the sodium ones.
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