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Abstract 
Background: Evidence for kidney function monitoring intervals in 
primary care is weak, and based mainly on expert opinion. In the 
absence of trials of monitoring strategies, an approach combining a 
model for the natural history of kidney function over time combined 
with a cost-effectiveness analysis offers the most feasible approach 
for comparing the effects of monitoring under a variety of policies. 
This study aimed to create a model for kidney disease progression 
using routinely collected measures of kidney function. 
Methods: This is an open cohort study of patients aged ≥18 years, 
registered at 643 UK general practices contributing to the Clinical 
Practice Research Datalink between 1 April 2005 and 31 March 2014. At 
study entry, no patients were kidney transplant donors or recipients, 
pregnant or on dialysis. Hidden Markov models for estimated 
glomerular filtration rate (eGFR) stage progression were fitted to four 
patient cohorts defined by baseline albuminuria stage; adjusted for 
sex, history of heart failure, cancer, hypertension and diabetes, 
annually updated for age. 
Results: Of 1,973,068 patients, 1,921,949 had no recorded urine 
albumin at baseline, 37,947 had normoalbuminuria (<3mg/mmol), 
10,248 had microalbuminuria (3–30mg/mmol), and 2,924 had 
macroalbuminuria (>30mg/mmol). Estimated annual transition 
probabilities were 0.75–1.3%, 1.5–2.5%, 3.4–5.4% and 3.1–11.9% for 
each cohort, respectively. Misclassification of eGFR stage was 
estimated to occur in 12.1% (95%CI: 11.9–12.2%) to 14.7% (95%CI: 
14.1–15.3%) of tests. Male gender, cancer, heart failure and age were 
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independently associated with declining renal function, whereas the 
impact of raised blood pressure and glucose on renal function was 
entirely predicted by albuminuria. 
Conclusions: True kidney function deteriorates slowly over time, 
declining more sharply with elevated urine albumin, increasing age, 
heart failure, cancer and male gender. Consecutive eGFR 
measurements should be interpreted with caution as observed 
improvement or deterioration may be due to misclassification.

Keywords 
Kidney Function Decline, Chronic Kidney Disease (CKD), Estimated 
Glomerular Filtration Rate (eGFR), Proteinuria, Hidden Markov Model 
(HMM), Primary Care, Clinical Practice Research Datalink (CPRD)
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Introduction
The National Institute for Health and Care Excellence recom-
mend monitoring kidney function using estimated glomerular 
filtration rate (eGFR) in people with, or at risk of, chronic kid-
ney disease (CKD)1. The guideline suggests increasing the 
intensity of monitoring according to the current level of eGFR 
and albumin-creatinine ratio, stating that monitoring should  
be tailored according to i) the underlying cause of CKD and  
ii) past patterns of eGFR and albumin-creatinine ratio, comor-
bidities, changes to treatments such as reninangiotensin- 
aldosterone system antagonists, inter-current illness and whether  
the patient has chosen conservative management of CKD. One 
of the objectives of monitoring eGFR is to detect progression 
of CKD, which could precede end-stage renal disease (ESRD). 
ESRD is associated with substantial morbidity and mortal-
ity, with cardiovascular disease mortality rates 10 to 30 times 
higher in patients on dialysis than in the general population2. 
Yet, kidney function declines slowly with age and ESRD is rare, 
even for people with moderately impaired renal function (eGFR  
30–59 ml/min/1.73m2). In a study of 58,000 people with CKD 
stage 3 who were followed for 10 years, the cumulative inci-
dence was 40 per 1,000 people3. It follows that recommenda-
tions to monitor everyone annually or more frequently in a  
community setting for progressive kidney function loss will have  
a poor yield. Furthermore, as eGFR is a noisy measurement, 
with a within-person coefficient of variation estimated to be 
approximately 5.5%4, it is likely two consecutive eGFR meas-
urements may appear to indicate declining renal function when  
underlying renal function is stable (false positive), or sta-
ble renal function when underlying renal function has dete-
riorated (false negative). Finally, it is arguable as to whether 
there are any actions that can be taken to halt the deteriora-
tion of renal function if progressive CKD is found, as there is  

currently very little evidence that “catching” CKD early produces  
any benefit5.

There have been no trials of screening or monitoring for CKD6 
and recommendations for how frequently monitoring should 
take place are based on expert opinion. In the absence of  
trials, an approach combining a model for the natural history of 
kidney function over time combined with a cost-effectiveness 
analysis offers the most feasible approach for comparing the 
effects of monitoring under a variety of policies. The aim of this  
study was to create a model for kidney disease progres-
sion using routine measures of kidney function. Our approach 
simultaneously estimates the true rate of kidney function loss 
and the probability of misclassification that inevitably occurs  
from using eGFR. Our study is conducted in a general  
primary care population and our results will be useful in guid-
ing future recommendations for the timing of monitoring  
eGFR in primary care.

Methods
Ethical statement
The protocol for this research was approved by the Inde-
pendent Scientific Advisory Committee of the Medicines  
and Healthcare Products Regulatory Agency (protocol number  
14_150R). Ethical approval for observational research using 
the Clinical Practice Research Datalink with approval from the 
Independent Scientific Adisory Committee has been granted 
by a National Research Ethics Service committee (Trent 
Multi Research Ethics Committee, REC reference number  
05/MRE04/87).

Source and selection of participants
We used the UK Clinical Practice Research Practice Data-
link (CPRD)7 to construct an open cohort of adults  
(≥18 years of age) registered at practices deemed to have “accept-
able” patient records (termed “up-to-standard” in CPRD). 
We included patient records starting from 1 April 2005, post- 
dating the publication of the Kidney Disease Outcomes Quality  
Initiative (KDOQI) guidelines for the classification of CKD in 
20028 and the introduction of Quality and Outcomes Frame-
work targets in UK primary care in 2004. The study end date 
was 31 March 2014. Eligible patients had to be registered  
with their practice for a minimum of 12 months before study 
entry to ensure adequate recording of baseline covariates. 
We excluded patients who, in the 12 months before study 
entry, were pregnant, were receiving dialysis, or were living  
kidney donors or recipients. Follow-up ended at the study 
end date, unless preceded by the date of death, transfer out of 
CPRD, the last available linked data, or (where applicable)  
pregnancy, renal transplantation/donation, or dialysis.

Statistical analysis
To model decline in kidney function, hidden Markov models  
(HMMs)9–13 were fitted to four patient cohorts defined by 
baseline albuminuria stage: 1) no albuminuria measurement  
(unmeasured), 2) normoalbuminuria (<3 mg/mmol), 3) micro-
albuminuria (3–30 mg/mmol), and 4) macroalbuminuria  
(>30 mg/mmol). Models were adjusted for sex, heart failure,  
cancer, hypertension and diabetes, and annually updated age.

                   Amendments from Version 1
In response to the Reviewers’ comments, we have added a 
paragraph to the Discussion explaining the potential impact 
of outcome measure categorisation and Markov model 
assumptions. Regarding the loss of information, it is typically 
small when the number of categories is large (as was the case in 
our study). As for potential violations of the Markov assumption, 
these were mitigated through the stratification of our models by 
baseline albuminuria stage (a key factor determining trajectory of 
kidney function decline) and through conditioning the models on 
updated covariates.
One of the key assumptions of our models, which was not 
previously highlighted, was that kidney function could only 
deteriorate with age. We have added a sentence to our 
Discussion to highlight this.
We have also edited the Discussion to clarify our study’s eligibility 
criteria and to explain that the results are generalisable to the UK 
general practice population (as opposed to the UK population). 
Serum creatinine tests are commonly performed in UK general 
practice, and not necessarily for the purpose of monitoring 
kidney function. Therefore, our study was able to capture an 
unselected UK general practice population, but may have 
omitted patients with end-stage renal disease, or patients who 
did not engage with their general practice.
Any further responses from the reviewers can be found at 
the end of the article

REVISED
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The HMMs comprised two components, a multi-state model 
governing the ‘true’ underlying progression of CKD, and a  
second model for the probability of misclassification to allow 
for the variability in eGFR. The underlying model for CKD 
was parametrised as uni-directional, in which true kidney func-
tion could only deteriorate over time (no spontaneous improve-
ment). The outcome was eGFR stage based on the criteria 
used for the diagnosis of CKD, i.e. G1–G5. We combined 
stages G1 and G2 for the purposes of improving model fit. 
Death from any cause was assumed to be an absorbing state. A  
representation of the HMMs is depicted in Figure 1.

The HMMs were specified so that it was possible for misclas-
sification to occur in neighbouring eGFR categories. Hence, 
for a person with true GFR >60 ml/min/1.73m2 we specified 
the model so that a single measurement of eGFR could fall 
within a G3a or G3b category due to measurement error and  
biological variation, but not G4 or G5. For a person with true 
eGFR in stage G3b, a single measurement of eGFR could be 
misclassified as either G1/2, G3a, G4 or G5. Death was the only  
state assumed to be always classified correctly.

To assess model fit, we used a split-sample approach. Although 
this is a weak procedure for low-variance methods, such as 
the Cox proportional hazards model or logistic regression, 
it is useful for a model that can be over-parametrised or 
exhibit convergence issues (such as a HMM). We split the  
data using pseudo-random numbers into equal size train-
ing and testing data sets. The model was fit in the training data 
set and then used to predict trajectories of eGFR for patients 
in the testing data set, based on their measurement times and  
covariates. Calibration plots were used to compare the pre-
dicted and observed proportion of tests falling within each eGFR  
category over time. Annual transition rates for kidney func-
tion loss and death from any cause were estimated from the  
model, along with the misclassification probabilities and transi-
tion rate multipliers for age, sex, heart failure and cancer, and 
presented as state model diagrams. The models were used to 
estimate the probability of progression to a higher stage within 
six, 12 or 36 months, along with the probability that an eGFR 
test taken at that time would detect the change (true positive), 
and the probability that a change in eGFR stage would occur in 
a person in whom true kidney function had not changed (false 
positive), for all cohorts for baseline stages G3a and G3b; see  
Supplementary Tables S18–21 (Extended data)14.

Finally, we estimated global misclassification probabili-
ties for the four cohorts using the Viterbi algorithm15 to find 
the underlying sequence of true eGFR stages with the highest  
probability given the observed sequence. Assuming the state 
predicted by the model was the truth, we calculated the propor-
tion of times the observed state was a lower stage than predicted  
(under-grading) and the proportion of times the observed was 
a higher stage than predicted (over-grading), and then added 
these together to calculate the total number of misclassified  
tests across cohorts.

All analyses were performed in R version 3.6.1 (“Action of 
the Toes”)16, with HMMs fit using version 1.6.7 of the msm  
package17. Scripts used in these analyses are available  
(see Software availability)18.

Results
The initial data set comprised 3,338,526 patients. A total of 
1,365,458 patients whose records contained fewer than three 
eGFR tests were excluded, leaving 1,973,068 patients eligible 
for analysis: 1,921,949 without a urine albumin test on record, 
37,947 with normoalbuminuria (<3 mg/mmol), 10,248 with 
microalbuminuria (3–30 mg/mmol), and 2,924 with macroalbu-
minuria (>30 mg/mmol). Each of the four cohorts were split  
into two halves and nominated as training and testing data sets. 
Due to the computational demands of the statistical method 
used, we randomly selected a sub-cohort of 50,000 patients to fit 
the model in the cohort without a urine albumin test on record. 
Summary statistics of patient characteristics from the four  
cohorts are presented in Table 1.

Six state continuous time HMMs adjusted for sex, heart fail-
ure, cancer, hypertension and diabetes, and annually updated 
age were fit on the four training data sets. Hypertension and  
diabetes were subsequently removed from the models as they 
were unable to predict eGFR stage progression or death. All 
models converged to their respective maximum likelihood esti-
mates, with positive definitive Hessian matrices permitting 
confidence interval estimation for all parameters. Intensity, 
transition and misclassification matrices for these models are  
given in Supplementary Tables S2—13 (Extended data)14.

Figure 2 shows the annual transition and misclassification  
probabilities for a woman, aged 60, without heart failure or a 
previous diagnosis of cancer and with no urine albumin test 

Figure 1. Representation of the model for the deterioration of kidney function over time. Arrows indicate permitted (instantaneous) 
transitions. The numbers in brackets depict the estimated glomerular filtration rate ranges (in ml/min/1.732) associated with each stage.
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Table 1. Patient characteristics at baseline, by albuminuria stage.

Variable
Category

Albuminuria Stage, Number (%)

Unmeasured Normoalbuminuria Microalbuminuria Macroalbuminuria

Total 1,921,949 (100.0%) 37,947 (100.0%) 10,248 (100.0%) 2,924 (100.0%)

Gender
Female 
Male

1,058,400 (55.1%) 
863,549 (44.9%)

18,312 (48.3%) 
19,635 (51.7%)

4,749 (46.3%) 
5,499 (53.7%)

1,352 (46.2%) 
1,572 (53.8%)

Age (years)

18–39 
40–49 
50–59 
60–69 
70–79 
80–89 
90+

254,037 (13.2%) 
324,362 (16.9%) 
419,561 (21.8%) 
421,704 (21.9%) 
321,522 (16.7%) 

154,881 (8.1%) 
25,882 (1.3%)

2,701 (7.1%) 
4,811 (12.7%) 
7,354 (19.4%) 
9,930 (26.2%) 
8,610 (22.7%) 
3,948 (10.4%) 

593 (1.6%)

502 (4.9%) 
928 (9.1%) 

1,547 (15.1%) 
2,191 (21.4%) 
2,575 (25.1%) 
2,006 (19.6%) 

499 (4.9%)

267 (9.1%) 
352 (12.0%) 
514 (17.6%) 
638 (21.8%) 
602 (20.6%) 
444 (15.2%) 

107 (3.7%)

Ethnicity

Missing 
White 
Black 
Asian 
Mixed 
Other

1,133,893 (59.0%) 
461,796 (24.0%) 

28,480 (1.5%) 
12,314 (0.6%) 

276,750 (14.4%) 
8,716 (0.5%)

18,469 (48.7%) 
10,077 (26.6%) 

1,325 (3.5%) 
728 (1.9%) 

6,999 (18.4%) 
349 (0.9%)

4,950 (48.3%) 
2,465 (24.1%) 

512 (5.0%) 
229 (2.2%) 

1,958 (19.1%) 
134 (1.3%)

1,821 (62.3%) 
515 (17.6%) 

106 (3.6%) 
47 (1.6%) 

422 (14.4%) 
13 (0.4%)

eGFR (ml/min/
1.73m2)

>60 
45–59 
30–44 
15–29 
<15

1,524,003 (79.3%) 
295,312 (15.4%) 

85,303 (4.4%) 
16,091 (0.8%) 

1,240 (0.1%)

27,753 (73.1%) 
6,850 (18.1%) 

2,724 (7.2%) 
591 (1.6%) 

29 (0.1%)

6,114 (59.7%) 
2,147 (21.0%) 
1,440 (14.1%) 

518 (5.1%) 
29 (0.3%)

1,628 (55.7%) 
569 (19.5%) 
453 (15.5%) 

247 (8.4%) 
27 (0.9%)

CKD Read Code

None 
G1/2 
G3 
G4 
G5

1,911,565 (99.5%) 
2,660 (0.1%) 
7,347 (0.4%) 

457 (0.0%) 
87 (0.0%)

37,521 (98.9%) 
122 (0.3%) 
282 (0.7%) 

21 (0.1%) 
1 (0.0%)

10,044 (98.0%) 
23 (0.2%) 

148 (1.4%) 
34 (0.3%) 

0 (0.0%)

2,870 (98.2%) 
5 (0.2%) 

31 (1.1%) 
17 (0.6%) 

2 (0.1%)

Cancer
No 
Yes

1,884,014 (98.0%) 
37,935 (2.0%)

37,698 (99.3%) 
249 (0.7%)

10,206 (99.6%) 
42 (0.4%)

2,912 (99.6%) 
12 (0.4%)

Chronic Renal 
Disease

No 
Yes

1,919,946 (99.9%) 
2,003 (0.1%)

37,928 (99.9%) 
19 (0.1%)

10,230 (99.8%) 
18 (0.2%)

2,914 (99.7%) 
10 (0.3%)

Diabetes
No 
Yes

1,866,051 (97.1%) 
55,898 (2.9%)

35,850 (94.5%) 
2,097 (5.5%)

9,660 (94.3%) 
588 (5.7%)

2,810 (96.1%) 
114 (3.9%)

Heart Failure
No 
Yes

1,905,724 (99.2%) 
16,225 (0.8%)

37,778 (99.6%) 
169 (0.4%)

10,209 (99.6%) 
39 (0.4%)

2,914 (99.7%) 
10 (0.3%)

Hypertension
No 
Yes

1,512,801 (78.7%) 
409,148 (21.3%)

34,353 (90.5%) 
3,594 (9.5%)

9,541 (93.1%) 
707 (6.9%)

2,749 (94.0%) 
175 (6.0%)

Ischaemic Heart 
Disease

No 
Yes

1,841,610 (95.8%) 
80,339 (4.2%)

37,275 (98.2%) 
672 (1.8%)

10,122 (98.8%) 
126 (1.2%)

2,897 (99.1%) 
27 (0.9%)

Peripheral Vascular 
Disease

No 
Yes

1,895,750 (98.6%) 
26,199 (1.4%)

37,766 (99.5%) 
181 (0.5%)

10,213 (99.7%) 
35 (0.3%)

2,912 (99.6%) 
12 (0.4%)

Stroke or TIA
No 
Yes

1,890,775 (98.4%) 
31,174 (1.6%)

37,695 (99.3%) 
252 (0.7%)

10,189 (99.4%) 
59 (0.6%)

2,905 (99.4%) 
19 (0.6%)
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Figure 2. Annual transition model diagram for patients with unmeasured urine albumin at baseline. Probabilities are based on a 
woman aged 60, without heart failure or a previous diagnosis of cancer.

on record. The figure shows that if kidney function is normal  
(G1/G2) then the probability of her true kidney function dete-
riorating to stage G3a in one year is estimated to be 1.1%. The  
probability that a single eGFR test will be misclassified as 
G3a is 2.9%, while the probability that it will correspond to 
her true stage is 97.1%. The probability that this woman dies 
within a year is estimated to be 0.7%. The probability that her  
kidney function remains in this category is 98.2%. If the 
woman is one year older then transition probabilities should be  
multiplied by 1.08 for kidney function and 1.09 for death. For 
example, the annual transition probability from stage G3b, 
is 1.0% for a 60 year old woman, but 1.0 × 1.0810 = 2.16%  
for a 70 year old woman and 1.0 × 1.0820 = 4.66% for woman 
who is 80 years old. Multipliers in which the confidence interval  
overlapped “no effect” are set to 1.00.

Figure 3 represents annual transitions for a woman with 
the same characteristics, but who has had her urine albu-
min tested and found to be in the normoalbuminuric range.  
Corresponding annual transition probabilities for kidney  

function are nearly twice that of an equivalent woman without  
a urine albumin test on record. Respective transition rates to  
death from each stage are also higher, illustrating that this  
cohort represents women in poorer health. Misclassification  
probabilities and transition probability multipliers are broadly  
similar to Figure 2.

Figure 4 and Figure 5 show results for women with micro- and 
macroalbuminuria, respectively. Kidney function transition 
probabilities are higher, as are annual transition probabilities  
for death. Fewer transition multipliers are significant for  
these cohorts but this probably reflects the smaller cohort sizes  
and correspondingly reduced statistical power. 

Table 2 shows the results from applying the Viterbi algorithm 
to the four cohorts. Under-grading of eGFR stage occurs more 
often than over-grading in all cohorts but over-grading tends to 
increase for cohorts having urine albumin tests. In total, 12.1%  
(11.9–12.2%) of all tests done in the unmeasured urine  
albumin cohort are misclassified, 13.1% (13.0–13.3%) in patients 
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Figure 3. Annual transition model diagram for patients with normoalbuminuria at baseline. Probabilities are based on a woman 
aged 60, without heart failure or a previous diagnosis of cancer.

with normoalbuminuria, 14.5% (14.2–14.8%) in patients with 
microalbuminuria, and 14.7% (14.1–15.3%) in patients with  
macroalbuminuria.

Mean sojourn time, i.e. the average time spent in each state, 
decreased with increasing severity of eGFR and albuminuria 
stage (Table 3). One exception was for macroalbuminuric 
patients in eGFR stage G5, for whom the mean sojourn time  
was greater than for microalbuminuric patients in eGFR stage 
G5. However, few patients were present in the more severe 
diseases states and the 95% confidence intervals of the two  
estimates substantially overlap.

Discussion
We have developed a statistical model for kidney function moni-
toring over time, using a large clinical database of longitudi-
nal kidney function measurements from an unselected primary 
care cohort. This model takes into account that observed kidney 
function is measured with error and uses statistical methodology 

to estimate the underlying ‘true’ rate of progression. We strati-
fied our models by albuminuria stage in accordance with the  
findings of previous studies that showed that urine albumin 
excretion is a significant risk factor for the progression of CKD 
and the development of ESRD19–21. Our analyses suggest that 
kidney function declines more rapidly in men than in women, 
independent of other risk factors. Existing evidence for differ-
ences in the rates of progression between men and women is  
conflicting3,22,23. Our analysis supports the observations of oth-
ers, that men are over-represented in the latter stages of CKD24, 
with our model predicting a slower progression of kidney disease 
for women in the unmeasured urine albumin and normoalbu-
minuria cohorts. The fact that women are over-represented  
at CKD stage 3 may be due to the fact that women tend to live 
longer than men.

We estimated the probability of misclassification condition-
ing on true eGFR stage. A consistent pattern is seen across the 
different baseline urine albumin levels and by eGFR stage. 
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Figure 4. Annual transition model diagram for patients with microalbuminuria at baseline. Probabilities are based on a woman 
aged 60, without heart failure or a previous diagnosis of cancer.

Our model suggests that on average, change in underlying  
kidney function is slow with mean sojourn times in stage  
G3a and G3b being between 15 and 25 years for patients with-
out elevated urine albumin. Given the slow rate of change and 
the high chance that observed eGFR misclassifies the true 
eGFR stage, frequent testing of eGFR in these populations 
will inevitably lead to the detection of more spurious change  
than real change.

We assessed whether our models of kidney disease progression  
would be improved by adjusting for clinical characteristics  
that were a priori considered to be associated with increased 
risk, and therefore, faster progression. Our analysis did not  
support the notion that diabetes, hypertension, peripheral  
vascular disease, ischaemic heart disease, stroke or transient 
ischaemic attack are independently associated with deterioration  

of kidney function once albuminuria stage and updated eGFR 
are accounted for. We conclude that conditioning on eGFR  
stage and urine albumin levels, knowledge of diabetes status is  
less important, but we cannot rule out that our study may be  
under-powered to detect small but real effects on transition rates.

A major strength of this study is that we have taken a very large 
and unselected sample of patients from a database that has 
been shown to be representative of the wider UK primary care  
population7. Inclusion into the study was conditional upon 
having three or more serum creatinine measurements, but  
creatinine is commonly measured in UK general and not  
necessarily for the purpose of monitoring kidney function or 
diagnosing kidney disease. Our model for progression takes into 
account multiple stages of kidney function and the competing risk 
of death from any cause. We have also employed a method that 
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Table 2. Probability (%) that any eGFR test is under-graded and/or over-graded, by 
albuminuria stage. 95% confidence intervals shown in brackets.

Grading Unmeasured Normoalbuminuria Microalbuminuria Macroalbuminuria

Under-grading 8.3 (8.2–8.5) 9.2 (9.0–9.3) 8.7 (8.5–8.9) 8.5 (8.1–9.0)

Over-grading 3.7 (3.6–3.8) 4.0 (3.9–4.0) 5.8 (5.6–6.0) 6.2 (5.8–6.6)

Total 12.1 (11.9–12.2) 13.1 (13.0–13.3) 14.5 (14.2–14.8) 14.7 (14.1–15.3)

Figure 5. Annual transition model diagram for patients with macroalbuminuria at baseline. Probabilities are based on a woman 
aged 60, without heart failure or a previous diagnosis of cancer.

takes into account that eGFR is observed with error, and simul-
taneously estimates true underlying eGFR25. This means that 
we can estimate misclassification probabilities and evaluate the 
effects of different monitoring strategies. We used a split-sample  
approach to assess for potential over-fitting and the internal  
validity of the model.

Our study has a number of limitations. Our data was not  
collected for the purpose of conducting a study about modelling 
progression of kidney function. As a consequence, we do not 
know the reasons tests were conducted, and for many patients, 
records were incomplete and examination times were irregular. 
The extent to which this could bias our findings is unclear as it 
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depends on our understanding of the examination scheme used  
by the doctors. We recognise three potential mechanisms 
for these tests to occur in a primary care setting. A signifi-
cant number of creatinine tests will be ‘random’ with respect 
to the kidney function, because they would have been ordered 
as part of a routine check-up and not specifically to moni-
tor or diagnose kidney disease. This could be a result of  
the co-reporting of serum creatinine as part of ‘test batches’ 
in which other biomarkers would have been of primary  
interest, or because serum creatinine may have been requested 
prior to the initiation of a potentially nephrotoxic drug. For  
some patients, the timing of the next measurement will have 
been influenced by the current kidney function level. This is 
likely to have happened if the purpose of the test is to monitor  
CKD and current clinical guidelines are followed1. This  
mechanism has been referred to as ‘doctor’s care’ in the literature.  
The third scenario is when a patient initiates the timing of their 
test themselves, so called ‘patient self-selection’. Of the three 
scenarios, we consider the self-selection scenario possible but 
less likely than the other schemes due to the asymptomatic  
nature of kidney function loss in all but the end stages of the 
disease. Grüger et al.26 showed that estimated transition rates 
are only biased under the “patient self-selection” examination 
schemes and transition rate estimates are unbiased if inefficient 
under doctor’s care scheme. In the case of random timing, the  
estimates are both efficient and unbiased.

We could be criticised for using an approach that categorises 
kidney function rather than a method that models continuous 
eGFR, such as generalised linear mixed models. This is because 
categorisation can lead to loss of information and reduced  
statistical power. However, such information loss is typically 
small when the number of categories is large27, as was the case  
in our study. Furthermore, the use of categories that naturally 
aligned with clinically meaningful eGFR stages added to the 
interpretability of our findings. In addition, HMMs assume 
that all individuals within a state are interchangeable, and 
that the chance of progression to subsequent states depends 
only on the current state. This assumption may not hold if a 
patient whose kidney function has previously rapidly declined  
continues along this trajectory. To mitigate this, we have 
included updated risk factor information in our model and strati-
fied by baseline albuminuria status. Further research could 
include assessing the impact of the Markov assumption on  
predicting kidney function decline using HMMs.

We attempted to include a state to represent transient and 
acute loss of kidney function (acute kidney injury) as this 
is a contributing factor to CKD, but the addition of this  
non-absorbing state with pathways back to each state resulted in 
over-parametrisation of the model. Furthermore, data on urine 
albumin, body mass index and ethnicity is missing in a large 
number of patients in CPRD. To overcome this, we created a  
sub-group of patients in whom urine albumin was not recorded. 
The omission of ethnicity in this model is a limitation as  
kidney function decline is considered to differ between ethnic  
groups. We were not able to adjust our models for ethnicity,  
as historically, ethnicity has been poorly recorded in CPRD.

It is likely that once a patient’s kidney function has been 
observed in stage 4 or 5, they are referred to specialist care, with  
subsequent kidney function testing occurring outside the CPRD 
database. Hence, these patients’ records are missing from  
our study, which potentially explains why transition rates slow  
down rather than increase, as might be expected. Our 
study design means that we would also miss patients with 
ESRD who had not engaged in primary care. In a study  
of electronic health records data from Pennsylvania, a similar 
model was fit to eGFR records, and reported that transition  
probabilities between kidney function stages generally 
increased as stage increased for all but stage 325. Even so, our 
model calibrates well with reports of progression to ESRD  
from different stages. For example, Tangri et al.28 reported 
that three from 2,014 people with CKD stage 3 at baseline  
progressed to ESRD after three years of follow-up. Assuming  
this population contained an equal proportion of people with 
CKD stage 3a and 3b, then our model, based on the unmeasured  
urine albumin cohort, would predict that just one person would 
reach stage 5 after three years. Using the model for patients 
with normoalbuminuria, it would be three people. From the 
same study, 22 of 826 people progressed from stage 4 at  
baseline to kidney failure after three years. Our models predict  
25 people with unmeasured urine albumin and 46 people with 
normoalbuminuria would reach stage 4. In a study reporting 
on sex differences in CKD progression, the rate of ESRD per 
100 person-years was 3.1 in women and 3.8 in men. Based on 
our model for patients with normoalbuminuria our equivalent 
estimates are 1.9 and 2.3, but 2.07 and 2.13 for patients with  
microalbuminuria and 3.0 and 3.2 for patients with macroalbu-
minuria. Our study shows that kidney function deteriorates 
slowly in most patients with average sojourn times in decades 

Table 3. Mean sojourn times, by albuminuria and eGFR stage. 95% confidence intervals shown in 
brackets.

eGFR Stage Unmeasured Normoalbuminuria Microalbuminuria Macroalbuminuria

G1/2 30.5 (29.2–31.8) 20.1 (19.3–20.9) 10.4 (9.7–11.1) 13.1 (11.3–15.3)

G3a 26.7 (25.2–28.4) 15.7 (14.9–16.6) 7.5 (6.9–8.1) 6.0 (5.1–7.0)

G3b 25.1 (23.3–27.1) 15.7 (14.6–16.8) 7.3 (6.7–8.1) 4.5 (3.9–5.3)

G4 19.5 (17.4–21.8) 12.8 (11.5–14.3) 6.8 (5.9–7.7) 4.5 (3.7–5.5)

G5 7.0 (5.6–8.9) 5.9 (4.6–7.6) 3.6 (2.8–4.7) 4.2 (3.1–5.7)
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rather than years. Whilst eGFR is widely used to measure kidney  
function we estimate that the potential for misclassification  
is large and clinically relevant, with implications for monitoring  
for rapid kidney function loss or pharmacovigilance. For 
example, of 1,741 people with CKD stage 3 recruited  
for a study from 32 primary care practices in the UK29, 496 
were in remission at baseline (although qualifying at the recruit-
ment stage) and of these, 157 were back to CKD stage 3 at 
one year, with a further 132 returning to stage 3 CKD by five  
years. This type of pattern is consistent with our model, in 
which underlying kidney function only deteriorates but is 
observed with error. If our model is correct, then it is clear to 
see how monitoring CKD periodically will confuse and might  
lead to inappropriate action. The assumption that true underlying 
kidney function only deteriorates with age is a fundamental 
part of the model and further research could investigate  
alternative models for underlying kidney progression and their  
impact monitoring recommendations.

Conclusions
We have developed a model to predict decline in kidney func-
tion and used it to assess different monitoring strategies and 
screening programmes. The model takes into account stage 
progression and test error, which were recently identified as 
important for future economic evaluations of CKD testing30.  
Future work in this field could look to validate this model in 
another primary care population, ideally one in which patients  
are followed throughout including stages 4 and 5.
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The revised version includes no new or revised analyses.  So this Version 2 report deals entirely 
with the authors' responses to my Version 1 Report and the edits in their Discussion. I repeat the 
positive aspects of this manuscript summarised in the first two paragraphs of my Version 1 
Report, dealing with the importance of the issue raised by the authors, the almost total absence of 
evidence on the utility of measurement of eGFR and proteinuria in a population of subjects similar 
to those followed in UK General Practices, the availability of the nearly unique set of data from the 
Clinical Practice Research Datalink, and the authors' competence in performing their Hidden 
Markov Model analysis.  My reservations dealt mostly with the authors' choice of analytic model. 
 
The authors' rationale for their use of their Hidden Markov Model is that it permits adjustment for 
the well-documented degree of CKD stage misclassification that is revealed when estimates of 
eGFR are compared with directly measured GFR (itself measured with significant "error" when 
evaluated by replicate measurements). But their Hidden Markov Model also makes assumptions 
that may well not hold in reality.  There are two specific issues with the authors' Markov 
assumptions: a. that eGFR once "lost" cannot be recovered, and b: that the history of prior 
changes in renal function is not informative once a Markov transition has occurred.  This model 
seems to be based on an assumption that reduction of eGFR is mostly associated with irreversible 
changes in renal structure or physiology.  This assumption is particularly risky in subjects with 
relatively well preserved renal function and absent or trace proteinuria -- demonstrably the large 
majority of subjects in the authors' cohort and evidently the primary focus of their broader 
project.  In these subjects, the likelihood of a transient reduction of eGFR due to any episode 
leading to dehydration may well be greater than of an event causing an irreversible loss of 
function (conflicting with the assumption that "true" [hidden] eGFR cannot increase following a 
drop in eGFR).  Further, subjects with prior episodes of AKI are known to have greater subsequent 
chance of progressing to ESRD, and subjects receiving treatment with any of the three classes of 
treatment shown to be effective in delaying progression (renin/angiotensin/aldosterone 
inhibitors, reduction of systolic blood pressure, and more recently SGLT2 inhibitors) are all 
associated with immediate reductions of eGFR that are associated with later slower risk of 
subsequent progression.  These facts conflict with the assumption that past changes in eGFR 
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leading to a Markov stage transition are not informative of the chance of subsequent loss of 
eGFR.  I suggested using an alternative model -- joint modeling -- that deals similarly with the issue 
of errors in measurement of proposed predictors by estimating a true but "hidden" path of eGFR 
over time from the observed values and uses estimates from that model at relevant time points as 
the estimated "true" current value for the joint survival model.  This technique permits use of all 
the continuous primary data without collapsing it into categories, makes no assumption excluding 
increases of eGFR, and permits many options for assumptions about the impact of earlier values. 
Additionally, this approach would permit direct evaluation of the concordance and the rate of 
classification error of the relevant primary outcomes -- ESRD or death. In my Version 1 report, I 
noted that "Given the huge amount of information available for this analysis, the inefficiency of 
the hidden Markov model may be overcome in the analysis of the overall community estimates of 
rate of progression."  This seems to be the case in the paper cited in their response to my critique, 
and I agree that their analytic method is useful for evaluation of choice of overall or group policy.  
I suspect, though, that alternative analytic methods permitting use of all of the continuous data 
might be more powerful in refining predictions, and therefore permitting individualized 
recommendations or guidelines applicable to specific patients.   
 
In their response to my Version 1 report, the authors' have included new text recognizing the 
limitations of the Markov approach and recognized that "Further research could include assessing 
the impact of the Markov assumption on predicting kidney function decline using HMMs."  Given 
this addition, I now approve this manuscript.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Nephrology, Epidemiology, Statistics, Clinical trial design, performance, and 
analysis.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.
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Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
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Reviewer Expertise: Renal epidemiology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 28 August 2020

https://doi.org/10.5256/f1000research.22225.r69718

© 2020 Hunsicker L. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Lawrence Hunsicker  
Department of Internal Medicine, University of Iowa, Iowa City, USA 

The authors of this manuscript report on the long-term rate of progression of chronic kidney 
disease (CKD) in a very large cohort of UK general practice patients followed as part of the Clinical 
Practice Research Datalink in the time between 1 April 2005 and 31 March 2014. Progression of 
kidney disease over each patient's course was assessed as the rate of progression from one stage 
to the next across the six currently standard KDOQI/KDIGO "stages" of renal insufficiency (Stages 
1, 2, 3a, 3b, 4, and 5), which are defined by ranges of estimated glomerular filtration rate (eGFR). 
The rate of progression from one stage to the next was modeled as a Hidden Markov Model, 
which assumes that subjects are at "true" eGFR stages at each evaluation point, but that these 
stages may be misclassified based on random error of the eGFR estimate, so that the "observed" 
transitions may be misidentified. The overall conclusions of the authors are: a) that progression of 
renal disease to renal failure occurs quite slowly in general, with only a small fraction of patients 
that progress to kidney failure, and b) that progression of kidney disease as evidenced by 
[exclusive] use of progression in the KDOQI/KDIGO Stage of CKD, though generally reflective of 
the average course of kidney disease in the community, is associated with significant error when 
applied to an individual. Though the authors don't say this, the implication is that use of their 
analysis may not be very helpful in establishing guidelines as to in whom, and at what repeated 
intervals, eGFR determinations would be cost effective. 
 
The major strength of this study is the almost unique test bed offered by access to the data of 
almost 2,000,000 UK qualified general practice patients from Clinical Practice Research Datalink 
with "up-to-standard" data collection. Given the choice of analytic method, the authors' analysis is 
technically entirely competent. The assumptions and methods are well described. The results are 
clearly explained and put in appropriate context in the Discussion Section. The major limitation of 
the available data is that patients with the more advanced Stages of kidney disease are likely to 
have been referred to specialist providers, so that data on the more advanced stages of kidney 
disease, where progression is generally both more rapid and more clinically important, are more 
limited and more susceptible to bias. The authors clearly acknowledge this. Further, the issue 
addressed by this manuscript is potentially important, at least from a health economics point of 
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view. Current policy recommendations uniformly encourage periodic assessment of renal function 
"in people with, or at risk of, chronic kidney disease (CKD)." But as noted above, in general kidney 
disease progresses quite slowly and only a small minority of subjects even with documented 
kidney disease ever progress to chronic renal failure. There is almost no empirical data upon 
which to make any data-based recommendation about in whom or how often the "periodic 
assessments" should be done.  
 
But the choice of analytic method is subject to criticism. The continuous variable eGFR may range 
from over 100 (mL/min/1.73 M2) to close to 0. The reduction of this range of values to a 
classification with 6 levels is associated with massive information loss. Markov models deal with 
chances of transition from one state to another, and all members of one state are considered to 
be interchangeable, so that a patient with an eGFR of 100 (at Stage 1/2 with the combination of 
these two stages) is treated as equivalent to one with an eGFR of 62. But surely the chance of 
progression from an eGFR of 100 to an eGFR < 60 (Stage 3a) is much lower than the chances of 
progression from a value of 62 to < 60 . Similarly, it is intuitively likely (though not at all certain) 
that a subject with a history of rapid loss of eGFR in the past will have more rapid progression in 
the future. But with a Markov model, all history is lost, and only the current stage, and not the 
prior history is taken into account. Given the huge amount of information available for this 
analysis, the inefficiency of the hidden Markov model may be overcome in the analysis of the 
overall community estimates of rate of progression. But these results will be of almost no use in 
prediction of the progression of kidney disease in the individual patient. And it is the individual 
patient's progress, not the average rate of progression in the community, that we are trying to 
clarify in recommending individual testing eGFR and setting repeat testing intervals.  
 
An alternative approach would have been to use a hierarchical ("mixed") analytic method (or 
perhaps even better, joint analysis combining the hierarchical analysis with a time to event 
analysis for ESRD and death) to evaluate the overall community rate of progression while 
estimating the distribution of individual rates of progression. Mixed models deal automatically 
with the problem that eGFR is measured with error (whether due to variability of the underlying 
"true" GFR, error due to the misestimation of GFR by eGFR -- up to 35% CKD Stage misclassification 
using the CKD-Epi formula: Levey et al. (2009)1, error due to the underlying determination of 
serum creatinine (Scr) which is increased at low levels of Scr because of its inverse relationship 
with eGFR, or variability in timing of the underlying measurements of serum creatinine). Mixed 
methods also permit specification of alternative models of change over time, permitting 
exploration of the hypotheses that progression is not linear. They would also facilitate 
development of time dependent models, allowing input of changes to patient's diabetes, 
hypertension, and cancer status over time, rather than limiting those variables to the baseline 
analysis. Most important, this sort of analysis might permit identification of the subset of 
individuals for whom the risk of progression is the highest -- that might be most benefited by 
careful follow-up of eGFR, and might give better guidance as to cost-effective testing intervals. 
 
The authors' choice of analytic methods in this analysis should be put into perspective. The 
authors were evidently motivated to undertake this analysis so that cost-effectiveness studies 
could be done specifically in terms of the KDOQI/KDIGO CKD staging mechanism -- presumably to 
make it easier to develop easily followed guidelines for testing frequency. (See the authors' 
comment and reference 29 in their final Conclusion.) If the authors felt constrained by these 
requirements, they have performed a reasonable, if inefficient, analysis. But they and the authors 
of reference 29 might have done better to request and perform a more efficient analysis using the 
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underlying eGFR data rather than the derived CKD Stages to develop their model, and then 
abstracted stage specific recommendations from the more efficient model, rather than the other 
way around.  
 
In sum, the analysis as performed using the specified analytic model was competently done, and 
the overall conclusions are justified - that the rate of progression of renal insufficiency is slow on 
average, and that dependence on this model would be associated with potentially significant 
error. But these limited conclusions don't exclude the possibility that more clinically reliable and 
useful data might be obtained by use of a method that didn't throw away so much of the available 
data. 
 
References 
1. Levey AS, Stevens LA, Schmid CH, Zhang YL, et al.: A new equation to estimate glomerular 
filtration rate.Ann Intern Med. 2009; 150 (9): 604-12 PubMed Abstract | Publisher Full Text  
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chronic kidney disease (CKD) in a very large cohort of UK general practice patients followed 
as part of the Clinical Practice Research Datalink in the time between 1 April 2005 and 31 
March 2014. Progression of kidney disease over each patient's course was assessed as the 
rate of progression from one stage to the next across the six currently standard 
KDOQI/KDIGO "stages" of renal insufficiency (Stages 1, 2, 3a, 3b, 4, and 5), which are 
defined by ranges of estimated glomerular filtration rate (eGFR). The rate of progression 
from one stage to the next was modeled as a Hidden Markov Model, which assumes that 
subjects are at "true" eGFR stages at each evaluation point, but that these stages may be 
misclassified based on random error of the eGFR estimate, so that the "observed" 
transitions may be misidentified. The overall conclusions of the authors are: a) that 
progression of renal disease to renal failure occurs quite slowly in general, with only a small 
fraction of patients that progress to kidney failure, and b) that progression of kidney 
disease as evidenced by [exclusive] use of progression in the KDOQI/KDIGO Stage of CKD, 
though generally reflective of the average course of kidney disease in the community, is 
associated with significant error when applied to an individual. Though the authors don't 
say this, the implication is that use of their analysis may not be very helpful in establishing 
guidelines as to in whom, and at what repeated intervals, eGFR determinations would be 
cost effective. 
 
Authors: We disagree. We believe our model (unlike others that assume the observed eGFR 
is equal to true eGFR) permits analysis that correctly considers the misclassification that 
commonly occurs when monitoring kidney function using estimated GFR. This is important 
because when a person is misclassified into a higher stage treatment may represent a cost 
but provide less benefit than expected and in the opposite scenario a misclassification into a 
lower stage (false negative) would not incur costs from direct treatment but would render 
the patient at a higher risk for longer. Attempts to model the cost-effectiveness of 
monitoring without taking this into account are potentially misleading. The work presented 
in this manuscript formed part of a wider research project, which is intended to assess the 
cost effectiveness of kidney function monitoring. The health economics study using the 
outputs from this paper can be found at https://doi.org/10.1371/journal.pmed.1003478. The 
Health and Technology Assessment programme this work feeds into can be found at 
https://www.journalslibrary.nihr.ac.uk/programmes/pgfar/RP-PG-1210-12003. 
 
Reviewer: The major strength of this study is the almost unique test bed offered by access 
to the data of almost 2,000,000 UK qualified general practice patients from Clinical Practice 
Research Datalink with "up-to-standard" data collection. Given the choice of analytic 
method, the authors' analysis is technically entirely competent. The assumptions and 
methods are well described. The results are clearly explained and put in appropriate context 
in the Discussion Section. The major limitation of the available data is that patients with the 
more advanced Stages of kidney disease are likely to have been referred to specialist 
providers, so that data on the more advanced stages of kidney disease, where progression 
is generally both more rapid and more clinically important, are more limited and more 
susceptible to bias. The authors clearly acknowledge this. Further, the issue addressed by 
this manuscript is potentially important, at least from a health economics point of view. 
Current policy recommendations uniformly encourage periodic assessment of renal 
function "in people with, or at risk of, chronic kidney disease (CKD)." But as noted above, in 
general kidney disease progresses quite slowly and only a small minority of subjects even 
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with documented kidney disease ever progress to chronic renal failure. There is almost no 
empirical data upon which to make any data-based recommendation about in whom or how 
often the "periodic assessments" should be done. 
 
Authors: We would like that thank the Reviewer for the very positive comments and we 
agree that patients with more advanced stages of kidney disease might have been referred 
to specialist care. We would like to emphasise that the main aim of this study was estimate 
the rate of progression of kidney function decline before they enter end-stage renal 
disease, requiring specialist care. Therefore, there is a plethora of data, on which to make 
data-based recommendations regarding the frequency of periodic assessments. Tables 
S17–20 show that where such recommendations have been made, these have ‘only’ been 
for patients in eGFR stages G3a and G3b. Patients in these stages are still monitored within 
primary care, as opposed to specialist care. Moreover, as general practices are financially 
incentivised by the Quality and Outcomes Framework (QOF) to monitor such patients, there 
is no shortage of data for these patients as demonstrated in Table 1. Furthermore, it’s also 
worth noting that Table 1 represents the baseline values for patients from an open cohort 
spanning the years 2005–2014. During this time, there were two substantial changes to QOF 
that increased the frequency of serum creatinine and proteinuria testing—one in 2006 and 
another in 2009. The effect of these changes can be seen in Figure 3. This figure shows that 
serum creatinine testing increased in subjects with CKD stages ≥2 from 2005 to 2008, where 
it reached a new plateau, and proteinuria testing increased in subjects with CKD stages ≥4 
from 2008 to 2010, where it too reached a new plateau. A significant number of patients 
would have entered our study cohort prior to these dates, making Table 1 a poor reflection of 
the general quality of the testing data https://doi.org/10.1136/bmjopen-2018-028062. This 
figure shows that serum creatinine testing increased in subjects with CKD stages ≥ 2 from 
2005 to 2008, where it reached a new plateau, and proteinuria testing increased in subjects 
with CKD stages ≥ 4 from 2008 to 2010, where it too reached a new plateau. A significant 
number of patients would have entered our study cohort prior to these dates, making Table 1 
a poor reflection of the general quality of the testing data. 
 
Reviewer: But the choice of analytic method is subject to criticism. The continuous variable 
eGFR may range from over 100 (mL/min/1.73 m2) to close to 0. The reduction of this range 
of values to a classification with 6 levels is associated with massive information loss. Markov 
models deal with chances of transition from one state to another, and all members of one 
state are considered to be interchangeable, so that a patient with an eGFR of 100 (at Stage 
1/2 with the combination of these two stages) is treated as equivalent to one with an eGFR 
of 62. But surely the chance of progression from an eGFR of 100 to an eGFR < 60 (Stage 3a) 
is much lower than the chances of progression from a value of 62 to < 60. Similarly, it is 
intuitively likely (though not at all certain) that a subject with a history of rapid loss of eGFR 
in the past will have more rapid progression in the future. But with a Markov model, all 
history is lost, and only the current stage, and not the prior history is taken into account. 
Given the huge amount of information available for this analysis, the inefficiency of the 
hidden Markov model may be overcome in the analysis of the overall community estimates 
of rate of progression. But these results will be of almost no use in prediction of the 
progression of kidney disease in the individual patient. And it is the individual patient's 
progress, not the average rate of progression in the community, that we are trying to clarify 
in recommending individual testing eGFR and setting repeat testing intervals. 
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Authors: The Reviewer is correct in stating that the Markov assumption means that each 
subject’s transition to a more severe eGFR stage depends only upon their current stage. We 
agree that this assumption may be an oversimplification of reality, as it would be likely that 
an individual who has progressed rapidly through previous stages will continue to do so, 
and vice versa. As for the reviewers point about likelihood of progression being different if 
eGFR was 100 vs 62 ml/min/1.73m2, we do not disagree that progression to a next stage 
would be different, but we would emphasise the problem of knowing what true eGFR is. For 
example, someone in whom true eGFR is 80 ml/min/1.73m2, their observed eGFR could be 
anywhere between 70 and 90 ml/min/1.73m2. So, by categorising eGFR into six levels there 
is some loss in information, but we have a more robust inference. We strongly disagree that 
these models will be almost of no use. Our models provide average progression times 
conditional on eGFR stage and presence of albuminuria, and other co-morbidities, e.g., 
heart failure. The same problem would exist for mixed effect models in as much as you can 
only provide aggregated rates of decline. We have added the following paragraph to the 
Discussion section: 
 
“We could be criticised for using an approach that categorises kidney function rather than a 
method that models continuous eGFR, such as generalised linear mixed models. This is because 
categorisation can lead to loss of information and reduced statistical power. However, such 
information loss is typically small when the number of categories is large [Altman D and Royston 
P, 2006], as was the case in our study. Furthermore, the use of categories that naturally aligned 
with clinically meaningful eGFR stages added to the interpretability of our findings. In addition, 
HMMs assume that all individuals within a state are interchangeable, and that the chance of 
progression to subsequent states depends only on the current state. This assumption may not 
hold if a patient whose kidney function has previously rapidly declined continues along this 
trajectory. To mitigate this, we have included updated risk factor information in our model and 
stratified by baseline albuminuria status. Further research could include assessing the impact of 
the Markov assumption on predicting kidney function decline using HMMs.” 
 
Reviewer: An alternative approach would have been to use a hierarchical ("mixed") analytic 
method (or perhaps even better, joint analysis combining the hierarchical analysis with a 
time to event analysis for ESRD and death) to evaluate the overall community rate of 
progression while estimating the distribution of individual rates of progression. Mixed 
models deal automatically with the problem that eGFR is measured with error (whether due 
to variability of the underlying "true" GFR, error due to the misestimation of GFR by eGFR -- 
up to 35% CKD Stage misclassification using the CKD-Epi formula: Levey et al. (2009)1, error 
due to the underlying determination of serum creatinine (Scr) which is increased at low 
levels of Scr because of its inverse relationship with eGFR, or variability in timing of the 
underlying measurements of serum creatinine). Mixed methods also permit specification of 
alternative models of change over time, permitting exploration of the hypotheses that 
progression is not linear. They would also facilitate development of time dependent models, 
allowing input of changes to patient's diabetes, hypertension, and cancer status over time, 
rather than limiting those variables to the baseline analysis. Most important, this sort of 
analysis might permit identification of the subset of individuals for whom the risk of 
progression is the highest -- that might be most benefited by careful follow-up of eGFR and 
might give better guidance as to cost-effective testing intervals. 
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Authors: The reviewer is correct, there are alternative statistical models to the approach we 
led with in this paper. Our initial intention was to model eGFR (or log eGFR) using mixed 
effect models, but we decided against it for two reasons: the trajectories of eGFR are not 
linear or necessarily even monotonic in time; more flexible modelling is limited by the fact 
that for many people only a few eGFR measurements existed in their health record. The 
models that we did fit did not meet the assumptions of normality implicit in the random 
effects approach and this, we believe, led to poor predictive performance of these models. 
It is possible that in an alternative data set, it would be possible to fit these models, but this 
was not our experience using routinely collected GP data. We would like to stress that we 
used updated covariates in all the HMMs used in this study and did not condition on only 
the baseline values of these. 
 
Reviewer: The authors' choice of analytic methods in this analysis should be put into 
perspective. The authors were evidently motivated to undertake this analysis so that cost-
effectiveness studies could be done specifically in terms of the KDOQI/KDIGO CKD staging 
mechanism -- presumably to make it easier to develop easily followed guidelines for testing 
frequency. (See the authors' comment and reference 29 in their final Conclusion.) If the 
authors felt constrained by these requirements, they have performed a reasonable, if 
inefficient, analysis. But they and the authors of reference 29 might have done better to 
request and perform a more efficient analysis using the underlying eGFR data rather than 
the derived CKD Stages to develop their model, and then abstracted stage specific 
recommendations from the more efficient model, rather than the other way around. 
 
Authors: The reviewer is not entirely correct. This model was one part of a larger funded 
project which included a cost-effectiveness study using the outputs from this model, but it is 
not true that we felt or were constrained by this. Our initial plan was to model eGFR as a 
continuous measure, but we did not for reasons explained in the previous response. We feel 
the objective of our work is quite the opposite to the reviewer and we would prioritise 
models than fit clinical practice over and above statistical efficiency. 
 
Reviewer: In sum, the analysis as performed using the specified analytic model was 
competently done, and the overall conclusions are justified - that the rate of progression of 
renal insufficiency is slow on average, and that dependence on this model would be 
associated with potentially significant error. But these limited conclusions don't exclude the 
possibility that more clinically reliable and useful data might be obtained by use of a 
method that didn't throw away so much of the available data. 
 
Authors: We disagree with the assertion made by the reviewer that our method “threw so 
much of the data away”. We agree that categorisation can result in loss of information, but 
this is most likely to occur when continuous measures are split in two (dichotomisation) and 
applied to small data sets. The thresholds for categorisation should also not be defined 
post-hoc. Neither of these are true in our case. To cite Altman and Royston “using multiple 
categories (to create an “ordinal” variable) is generally preferable to dichotomising. With 
four or five groups the loss of information can be quite small, but there are complexities in 
analysis” (see https://doi.org/10.1136/bmj.332.7549.1080). Moreover, we have provided 
calibration plots in Figures S1–4 that demonstrate the accuracy of the predictions made by 
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the models.  
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The authors used CPRD records to inform a multistate model on progression of kidney disease. 
They appropriately considered that there could be measurement error and allowed for this to 
some extent.  
 
They used outcome variables that have not been validated for incident analyses in 
CPRD(dialysis/transplantation). 
 
The underlying model for 'true' but unobserved kidney disease assumed that kidney disease could 
only get worse over time but not better - but this is not supported by actual data which suggest 
that transient decreases can improve over time and may not necessarily need to be permanent 
(though such changes may be a risk marker for later decline). Here the authors should discuss 
more about the chronicity assumption within the CKD definition and how they parametrised this in 
their data. 
 
Then there was a model for measurement error, but this seems to be a static model, i.e. assuming 
that measurement error does not vary over time - did I understand this correctly? Because over 
time in the UK the way creatinine gets measured and reported has changed dramatically during 
the study period. This change in reporting of calibrated creatinines in effect hides progression 
over time when crude analyses are used as different labs shifted to calibration and reporting of 
creatinine to IDMS at different points in time - thereby shifting the entire creatinine distribution 
down by 5% over the years prior to 2014 (i.e. hiding a decrease in kidney function over time). 
 
Did the authors recalculate eGFR from the creatinines (which then requires some thought about 
time-dependent measurement error which varies by lab and time) - or use reported eGFRs (which 
then means they lost a lot of measurements based on thresholds with informative missingness as 
eGFR does not get reported uniformly - some labs only report values in a range of >15 and <60, 
others report up to 90ml/min/1.73m2)? Dependent on whether the authors used creatinine or 
eGFR they have discussed further biases in their design and explicitly allow for such biases in their 
model. 
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Then there is the overall study design which is a somewhat odd cohort as it is dependent on 
having three or more eGFR (or creatinine?) tests and that is not representative of the general 
population - the survey and CPRD validated prevalence of reduced eGFR in the UK population is 
about 6% and here the numbers are much higher (3-7 fold depending on albuminuria category) 
simply because these represent an enriched sample as GPs had a reason to test more than once 
but indeed three times. Does this enriched sample really represent 'a model for kidney disease 
progression'? The authors should discuss this and whether people who should have been tested 
but weren't tested may be a high risk group. The sample here represents a group of patients who 
engage with the health service but the people who progress in truth may be not fully captured. 
This needs to be discussed more. 
 
There were real financial reasons for testing e.g. annual testing for diabetes (started in 2004), and 
less so for other illnesses, but risk factors for CKD determine testing rates and especially repeat 
testing as reported by the UK National CKD Audit, and there is some understanding from this 
audit how testing schemes are carried out. So I would disagree with "A major strength of this 
study is that we have taken a very large and unselected sample of patients from a database that 
has been shown to be representative of the wider UK population" as stated in the discussion - this 
is a selected sample and not representative of what happens overall in terms of kidney function 
decline as not all are tested the same way. I would have stratified by underlying comorbidity and 
not simply adjusted for it. 
 
I totally agree with the authors about the selective loss to follow-up with loss of people who are 
managed by other specialities including renal in secondary care.  
 
Overall this is an interesting analysis, but more work is needed to convince me that this model 
should be used for economic modelling.
 
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
No

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
No

Are the conclusions drawn adequately supported by the results?
Partly
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Reviewer Expertise: Renal epidemiology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 27 Jul 2022
Benjamin Feakins, University of Oxford, Oxford, UK 

Reviewer: They used outcome variables that have not been validated for incident analyses 
in CPRD (dialysis/transplantation). 
 
Authors: We did not model or attempt to estimate the incidence of dialysis or 
transplantation. We have included patients who would be candidate for dialysis or 
transplantation (patients with stage 4/5 CKD), but we censored patients at the first code 
relating to dialysis or transplantation from hospital or GP records. Moreover, we excluded 
patients with history of renal replacement therapy. It is unlikely that a significant number of 
patients would have received either dialysis or renal replacement therapy without there 
being a code to identify it in the data. 
 
Reviewer: The underlying model for 'true' but unobserved kidney disease assumed that 
kidney disease could only get worse over time but not better - but this is not supported by 
actual data which suggest that transient decreases can improve over time and may not 
necessarily need to be permanent (though such changes may be a risk marker for later 
decline). Here the authors should discuss more about the chronicity assumption within the 
CKD definition and how they parametrised this in their data. 
 
Authors: It is true that kidney function, albeit measured by an imperfect test (e.g., eGFR) 
has been observed to improve and whilst this might be true, observed improvements in 
kidney function could also be as a result of measurement error or intervention. For 
simplicity, and with the agreement of the clinicians on the paper (DL and CO’C), we thought 
the unidirectional model for true underlying kidney function to be biologically plausible. We 
did perform a sensitivity analysis in which we allowed underlying kidney function to 
spontaneously (without intervention) improve. We concluded that this model did not fit the 
data as well as the progression only model. We have added the following text to the eighth 
paragraph of the Discussion section: 
 
“The assumption that true underlying kidney function only deteriorates with age is a fundamental 
part of the model and further research could investigate alternative models for underlying kidney 
progression and their impact monitoring recommendations.” 
 
Reviewer: Then there was a model for measurement error, but this seems to be a static 
model, i.e. assuming that measurement error does not vary over time - did I understand 
this correctly? Because over time in the UK the way creatinine gets measured and reported 
has changed dramatically during the study period. This change in reporting of calibrated 
creatinines in effect hides progression over time when crude analyses are used as different 
labs shifted to calibration and reporting of creatinine to IDMS at different points in time - 
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thereby shifting the entire creatinine distribution down by 5% over the years prior to 2014 
(i.e. hiding a decrease in kidney function over time). 
 
Authors: This is a valid point, relating to a problem we have encountered in routine health 
record data sets. However, we feel that this issue is likely to have minimal impact to our 
study, as apart from the last 3.25 years, our data pre-dates the use of IDMS as the changes 
took place in 2010. Furthermore, we conducted this study in an open cohort (CRPD-Vision) 
that has been decreasing in size (https://doi.org/10.1136/bmjopen-2017-020738), further 
attenuating the pool of potentially affected tests. 
 
Reviewer: Did the authors recalculate eGFR from the creatinines (which then requires some 
thought about time-dependent measurement error which varies by lab and time) - or use 
reported eGFRs (which then means they lost a lot of measurements based on thresholds 
with informative missingness as eGFR does not get reported uniformly - some labs only 
report values in a range of >15 and <60, others report up to 90ml/min/1.73m2)? Dependent 
on whether the authors used creatinine or eGFR they have discussed further biases in their 
design and explicitly allow for such biases in their model. 
 
Authors: In this study, we used all testing sources available to obtain eGFR, including pre-
derived eGFR values. Unfortunately, the data source used provides no information on the 
techniques used to measure serum creatinine levels or to estimate eGFR. We also no longer 
have access to this data. Hence, we cannot say whether the calculation of a particular eGFR 
value was performed using laboratory methods or via an estimating equation in a GP 
practice. However, we estimated the overwhelming majority of eGFR values from raw serum 
creatinine values. Hence, any bias present from the use of pre-derived eGFR values is likely 
to be minimal. The method we used to calculate eGFR from serum creatinine was the CKD-
EPI equation. We are aware that better method for the calculation of eGFR exist, however, 
the one we used would have been the one predominantly in use in UK clinical practice 
throughout the study period. 
 
Reviewer: Then there is the overall study design which is a somewhat odd cohort as it is 
dependent on having three or more eGFR (or creatinine?) tests and that is not 
representative of the general population - the survey and CPRD validated prevalence of 
reduced eGFR in the UK population is about 6% and here the numbers are much higher (3-7 
fold depending on albuminuria category) simply because these represent an enriched 
sample as GPs had a reason to test more than once but indeed three times. Does this 
enriched sample really represent 'a model for kidney disease progression'? The authors 
should discuss this and whether people who should have been tested but weren't tested 
may be a high risk group. The sample here represents a group of patients who engage with 
the health service but the people who progress in truth may be not fully captured. This 
needs to be discussed more. 
 
Authors: The requirement of three serum creatinine tests was imposed to establish a 
reliable baseline eGFR status (requiring two tests) and to estimate change over time. We 
concede that the population present in this sample is not representative of a general UK 
population so much as a UK general practice population, and we have amended the 
wording of the fourth paragraph of the Discussion section of the manuscript to reflect this. 
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This reads: 
 
“Inclusion into the study was conditional upon having three or more serum creatinine 
measurements, but creatinine is commonly measured in UK general and not necessarily for the 
purpose of monitoring kidney function or diagnosing kidney disease.” 
 
… and later in the eighth paragraph of the Discussion section: 
 
“Our study design means that we would also miss patients with ESRD who had not engaged in 
primary care.” 
 
The degree to which this could bias our results is open to some conjecture, and we have 
also made such comments in the Discussion section of the manuscript. Furthermore, others 
[Gruger J et al., 1991] who have studied the underlying mechanisms for requesting kidney 
function testing have concluded that the only mechanism by which testing may bias 
estimates of transition rates is that of patient-driven testing, which we feel is possible, but 
unlikely. 
 
Reviewer: There were real financial reasons for testing e.g. annual testing for diabetes 
(started in 2004), and less so for other illnesses, but risk factors for CKD determine testing 
rates and especially repeat testing as reported by the UK National CKD Audit, and there is 
some understanding from this audit how testing schemes are carried out. So I would 
disagree with "A major strength of this study is that we have taken a very large and 
unselected sample of patients from a database that has been shown to be representative of 
the wider UK population" as stated in the discussion – this is a selected sample and not 
representative of what happens overall in terms of kidney function decline as not all are 
tested the same way. I would have stratified by underlying comorbidity and not simply 
adjusted for it. 
 
Authors: When we wrote the section of text in question, we were referring to the non-
selected nature of any one individual appearing in the dataset, i.e., their presence was only 
determined through virtue of their general practice opting into the database. However, as 
per our previous response, the population used in this study is still representative of a GP 
patient cohort, which is the setting in which we anticipate these results to be generalised. 
We have endeavoured to ensure that our study population was as non-specific as possible, 
but he nature of our study meant that patients needed to have creatinine measures present 
in their medical history for us to draw any kind of inference on their kidney function decline. 
 
We would also add that, contrary to the reviewer’s comments, we have stratified our 
analysis by the factors most important in determining the rate of kidney function decline, 
being the initial albuminuria stage. This is in line with the findings of other studies in this 
area [Chang WX et al., 2016; Inaguma D et al., 2017; Coresh J et al., 2019].  
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