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Abstract: Sepsis is a devastating disease that carries an enormous toll in terms of human suffering
and lives lost. Over 100 novel pharmacologic agents that targeted specific molecules or pathways
have failed to improve the outcome of sepsis. Preliminary data suggests that the combination of
Hydrocortisone, Ascorbic Acid and Thiamine (HAT therapy) may reduce organ failure and mortality
in patients with sepsis and septic shock. HAT therapy is based on the concept that a combination of
readily available, safe and cheap agents, which target multiple components of the host’s response
to an infectious agent, will synergistically restore the dysregulated immune response and thereby
prevent organ failure and death. This paper reviews the rationale for HAT therapy with a focus on
vitamin C.
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1. Introduction

The global burden of sepsis is substantial with an estimated 32 million cases and 5.3 million
deaths per year per year with most of these cases occurring in low-income countries [1]. Data from
the U.S. and Australia demonstrates that over the last two decades the annual incidence of sepsis
has increased by approximately 13% with a decrease in in-hospital mortality from about 35% to
20% [2–4]. In 2013, over 1.3 million patients were hospitalized in the U.S. with a diagnosis of
sepsis, of which over 300,000 died [5]. In addition to short-term mortality, septic patients suffer
from numerous long-term complications with a reduced quality of life and an increased risk of
death up to five years following the acute event [6–10]. Approximately 50% of sepsis survivors
develop post-sepsis syndrome characterized by the development of new psychiatric and cognitive
deficits [11]. Post sepsis-syndrome is similar in many respects to post-traumatic stress disorder
(PTSD); patients suffer memory impairment, abnormalities of higher executive function, nightmares,
anxiety disorders and depression [12]. Apart from the enormous financial costs of sepsis, the human
toll of this disease is staggering and new interventions that limit the ravages of this disease are
urgently required.

In patients with sepsis organ failure and death, it is usually a result of the host’s response to the
infecting pathogen rather than from the infecting pathogen itself. This was first recognized by Sir
William Osler, who commented that “except on few occasions, the patient appears to die from the body’s
response to infection rather than from the infection” [13]. Sepsis is fundamentally an inflammatory disease
mediated by the activation of the innate immune system by both pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Calvano et al. demonstrated
that exposure of blood leukocytes to bacterial endotoxin (LPS) altered the expression of 3714 genes [14].
These include genes for pro- and anti-inflammatory cytokines, chemokines, adhesion molecules,
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transcription factors, enzymes, clotting factors, stress proteins and anti-apoptotic molecules [15].
These inflammatory mediators have widespread pathophysiologic consequences, including vasoplegic
shock, myocardial dysfunction, altered microvascular flow and diffuse endothelial injury [16,17].
However, fundamentally, sepsis is characterized by the excessive production of reactive oxygen species
(ROS) by the induction of enzymes such as nicotinamide adenine dinucleotide phosphate-oxidase
(NOX) and the uncoupling of mitochondrial oxidative phosphorylation (see Figure 1) [18]. In addition,
ROS are produced by xanthine oxidase, lipoxygenase and cyclooxygenase. Important ROS in
sepsis pathogenesis includes hydrogen peroxide (H2O2), superoxide (O2

−), hydroxyl radicals (HO·),
peroxynitrite (ONOO−) and hypochlorous acid (HOCl).
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Figure 1. Multiple and overlapping effects of hydrocortisone, vitamin C, and thiamine in the setting
of bacterial sepsis. Vitamin C and thiamine scavenge free radicals from superoxide (O2

−) and inhibit
activation of xanthine oxidase and NADPH oxidase. Vitamin C protects the mitochondria from
oxidative stress caused by increased leakage of electrons from the dysfunctional electron transport
chain and recovers tetrahydrobiopterin (BH4) from dihydrobiopterin (BH2), restoring endothelial nitric
oxide synthase (eNOS) activity and increasing eNO bioavailability. Vitamin C inhibits inducible NOS
(iNOS) activation, preventing profuse iNO production and peroxynitrite (ONOO−) generation. Vitamin
C scavenges ONOO−, preventing loosening of the tight junctions of the endothelium. Vitamin C and
hydrocortisone decrease the activation of nuclear factor κB (NF-κB), thereby decreasing the release
of proinflammatory mediators. They restore endothelial tight junctions and increase adrenergic
receptor function. Thiamine increases the activity of pyruvate dehydrogenase and alpha ketoglutarate
dehydrogenase. These actions act in concert to restore cellular adenosine tri-phosphate (ATP)
levels. ↑—increased levels/activity; ↓—decreased levels/activity. Figure adapted from Spoelstra-de
Man et al. [19].
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The excess production of ROS underlie many of the pathological processes characteristic of
sepsis [20]. ROS has been shown to modulate the lipopolysaccharide-Toll like receptor 4 (LPS-TLR4)
signaling pathway. ROS activate nuclear factor kappa-B (NF-κB) by activation of inhibitory kappa-B
kinase (IκB kinase). NF-κB increase the transcription of multiple pro-inflammatory mediators
(see Figure 1). When the hosts antioxidant defenses are overwhelmed, ROS can induce injury to lipids,
proteins and nucleic acids, thereby resulting in widespread endothelial dysfunction, mitochondrial
dysfunction, cellular injury, and multiple organ dysfunction [20]. Isoprostanes are products of lipid
peroxidation that are formed non-enzymatically and can be measured in blood, urine, or tissues.
Because of their stability and high specificity, the F2-isoprostanes are currently considered to be the
most reliable biomarkers of in vivo oxidative stress and lipid peroxidation. In a cohort of patients with
sepsis, Ware et al. demonstrated that F2-isoprostane levels were higher in patients who developed
organ failure and in those who died [21]. Similarly, Kumar et al. reported augmented levels of
oxidants in patients with sepsis, as demonstrated by DMPO nitrone adduct formation and plasma
myeloperoxidase (MPO) level activity [22]. In this study, the SOFA and APACHE II scores correlated
linearly with the MPO levels and inversely with the levels of antioxidants. This study supports the
concept that the imbalance between oxidant and antioxidants plays a key role in the pathophysiology
of organ failure in sepsis.

The unbalanced production of mitochondrial ROS impairs mitochondrial structure,
enzymatic function, and biogenesis. Mitochondria are both the target and source of ROS in sepsis. In an
in vitro model of sepsis-induced kidney injury, Quoilin et al. demonstrated that LPS induces NADPH
oxidase and inducible nitric oxide synthetase (iNOS) expression. Following this, uncoupling of
the mitochondrial respiratory chain due to the inhibition of complex IV and reduction in ATP
levels were observed [23]. Mitochondrial dysfunction was associated with cytochrome c release
and the loss of mitochondrial membrane potential. Alterations in fatty acid metabolism with
decreased beta-oxidation and abnormalities of the citric acid cycle appear to be a characteristic
feature of the mitochondrial dysfunction in sepsis [24,25]. These changes lead to decreased ATP
production. In the heart, myocyte oxidative injury is accompanied by increased proteolysis,
mitochondrial damage, dysregulated nitric oxide metabolism, β-adrenoceptor down-regulation
and calcium mishandling [26–28]. The unbalanced production of mitochondrial ROS impairs
mitochondrial structure, enzymatic function and biogenesis, and plays a role in the metabolic
failure of sepsis. These data suggest that excessive production of ROS plays a pivotal role in the
pathophysiology of sepsis and that interventions that neutralize oxidants would have a protective role
in sepsis. Furthermore, proinflammatory mediators increase the expression of pyruvate dehydrogenase
kinase isoenzymes (PDK4), which inactivate the pyruvate dehydrogenase complex (PDC) [29,30].
Inactivation of the PDC prevents pyruvate entering the Krebs cycle potentiating the metabolic failure
caused by mitochondrial dysfunction. This phenomenon is compounded by thiamine deficiency and
cytokine-mediated down regulation of expression of the PDC [29].

Over the last three decades, over 100 phase II and phase III clinical trials have been performed
testing various novel pharmacologic agents and therapeutic interventions in an attempt to improve
the outcome of patients with severe sepsis and septic shock; all of these efforts ultimately failed to
produce a novel pharmacologic agent that reduced organ failure and improved the survival of patients
with sepsis [31]. All these studies used a single agent that targeted a specific molecule or pathway;
due to the thousands of mediators involved and the redundancy of the multiple pathways, such an
approach was doomed to fail. Furthermore, the central role of ROS was ignored. Dr Aird commented
that “the best hope for therapeutic advances [in sepsis] will depend on broad-base targeting, in which multiple
components are targeted at the same time” [32]. We believe that the combination of Hydrocortisone,
Ascorbic Acid and Thiamine (HAT therapy) achieves these goals. The premise behind HAT therapy is
the use of a combination of readily available, safe and cheap agents that target multiple components
of the host’s response to an infectious agent such that they synergistically restore the dysregulated
host immune response, neutralize damaging oxidants, and restore mitochondrial function. We believe
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this unique and novel approach has the potential to reduce the global burden of sepsis, reduce the
post-sepsis syndrome without side-effects, and be highly cost-effective. A cost analysis indicates
that HAT therapy has the potential to save billions of dollars and millions of life-years in the United
States [33]. This paper reviews the rationale for HAT therapy with a focus on vitamin C.

2. Vitamin C

It has been known for over 20 years that in acutely-ill patients [34–36] as well as in experimental
models of sepsis that an acute deficiency of vitamin C develops, characterized by low serum and
intracellular levels of the vitamin [37–41]. Critically ill septic patients typically have very low
or undetectable serum levels of vitamin C, resulting in an acute scorbutic condition [35,42–44].
Recently Carr and co-authors demonstrated that 100% of septic patients had low vitamin C levels,
88% had hypovitaminosis C (<23 µmol/L), while 38% had a severe deficiency (<11 µmol/L) [45].
Low vitamin C levels in critically ill patients are associated with increased vasopressor requirements,
kidney injury, multiple organ dysfunction (higher SOFA scores) and increased mortality [35,44].
The underlying cause of vitamin C deficiency is likely due to increased oxidation (metabolic
consumption), decreased absorption, and increased urinary losses of the vitamin. In a murine
caecal-ligation and perforation model (CLP), Armour et al. reported that the plasma ascorbate level fell
rapidly by 50% and this was associated with a 1000% increase in the urine ascorbate concentration [38].
Sepsis induced glomerular hyperfiltration and/or tubular dysfunction results in decreased tubular
reabsorption of filtered vitamin C with increased urinary losses [46].

Vitamin C is a potent antioxidant, which directly scavenges oxygen free radicals, restores other
cellular antioxidants including tetrahydrobiopterin and α-tocopherol and is an essential co-factor
for iron and copper containing enzymes [18,47]. Vitamin C is a key cellular antioxidant,
detoxifying exogenous oxidants radical species that have entered cells or which have arisen within
cells due to excess superoxide generation by mitochondrial metabolism, by NADPH oxidase,
xanthine oxidase or by uncoupled nitric oxide synthase (NOS) [18,48]. The low electron reduction
potential of both vitamin C and its one-electron oxidation product, the ascorbyl radical, enable them to
reduce most clinically important radicals and oxidants.

Dehydroascorbic acid, the two-electron oxidation product of ascorbic acid, is transported
via the GLUT1 transporter into mitochondria, where it converted to ascorbic acid and acts as a
potent antioxidant limiting mitochondrial oxidant injury [49,50]. Considering that the mitochondrial
respiratory chain is a main source of ROS in live cells and mitochondrial dysfunction plays a prominent
role in sepsis pathogenesis, antioxidants targeting the intra-mitochondrial environment could be
pivotal role in the treatment of sepsis. Furthermore, ascorbic acid is required for the synthesis of
carnitine, which is required for the transport of fatty acids into the mitochondrial matrix and for
beta-oxidation [24,49]. Carnitine deficiency may occur in the context of sepsis and preliminary
data suggests that an infusion of L-carnitine may be beneficial in patients with septic shock [51].
In an experimental model, Dhar-Mascareno and colleagues demonstrated that oxidant induced
mitochondrial damage and apoptosis in human endothelial cells were inhibited by vitamin C [52].
In a CLP sepsis model, Kim et al. administered 100 mg/kg ascorbic acid immediately after sepsis
induction [53]. In this study, vitamin C attenuated the elevation in serum aminotransferase and hepatic
lipid peroxide levels. Studies using N-acetylcysteine (a synthetic anti-oxidant) have proven to be
ineffective and potentially harmful in patients with sepsis, possibly due to the limited ability of this
drug to enter into the mitochondria and its inability to regenerate BH4 [18,54,55].

Vitamin C suppresses activation of NF-κB by inhibiting tumor necrosis factor-α (TNFα) induced
phosphorylation of inhibitory kappa-B kinase (IκB kinase) [56]. Ascorbic acid decreases high mobility
group box 1(HMGB1) secretion [57]; HMGB1 is an important late pro-inflammatory cytokine. Vitamin
C may decrease the synthesis and inactivate histamine [58]; histamine has been shown to play an
important role in sepsis [59]. Vitamin C is an essential co-factor for the synthesis of norepinephrine,
epinephrine and vasopressin; in addition vitamin C increases adrenergic transmission [60]. Vitamin C
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may decrease the immunosuppression associated with sepsis. It has been known for over 60 years that
vitamin C has immune-enhancing properties. In 1949, Dr Fred Klenner from Reidsville, North Carolina,
reported on the use of intravenous vitamin C in the treatment of polio and other viral illnesses [61].
It was initially assumed that vitamin C was directly viricidal (in vivo) and this mistaken belief underlies
the recommendations of Linus Pauling who promoted the use of large doses of oral vitamin C (up to
18 g/day) for the prevention and treatment of the common cold [62]. A number of RCTs have reported
that vitamin C supplementation had no effect on the incidence of the common cold [63]. However,
vitamin C has been shown to decrease the incidence of the common cold if the person is under
enhanced stress, e.g., cold temperatures and/or physical stress [64]. While high dose vitamin C has
in-vitro viricidal properties [65,66], there is no data or physiologic rationale to suggest that this occurs
in vivo. Rather, the “anti-viral” effect of vitamin C are likely due to that fact that vitamin C has specific
immune-enhancing effects. Vitamin C is concentrated in leucocytes, lymphocytes and macrophages,
reaching high concentrations in these cells [67]. Vitamin C improves chemotaxis, enhances neutrophil
phagocytic capacity and oxidative killing, stimulates interferon production, and supports lymphocyte
proliferation [68–70]. The major presumed beneficial effects of vitamin C in patients with sepsis are
outlined in Table 1.

Table 1. Summary of key roles of Vitamin C in sepsis.

Key Role Mechanism

Antioxidant Scavenges extracellular, intracellular and mitochondrial ROS; limits oxidation
of mitochondrial proteins, enzymes, lipoproteins, cell membrane, etc.

Anti-inflammatory Inhibits activation of NFκB, decreases HMGB1, inhibits histamine, prevents
NETosis, inactivates HIF-1α

Microcirculation Increases eNOS, decreases iNOS, preserves tight junctions

Immune function
Supports lymphocyte proliferation, increases neutrophil bacteriocidal action,
improves chemotaxis, stimulates interferon production, decreases T
regulatory cells (Tregs)

Anti-thrombotic Decreases platelet activation and tissue factor expression, increases
thrombomodulin

Synthesis of catecholamines Acts as a cofactor in synthesis of epinephrine, dopamine and
vasopressin.Increases adrenergic sensitivity

Wound Healing Hydroxylation of procollagen, increased expression of collagen mRNA

ROS = reactive oxygen species; NFκB = nuclear factor κB; HIF-1α = hypoxia-inducible transcription factor-1α;
HMGB1 = high mobility group box 1; eNOS endothelial nitric oxide synthetase; iNOS = inducible nitric oxide
synthetase; HO-1 = heme oxygenase-1; HIF-1α = hypoxia-inducible transcription factor-1α2. Vitamin C: Dose
response and pro-oxidant effect.

While vitamin C is the most potent and important anti-oxidant in mammals, in the presence of
transition metals (iron and copper), vitamin C may paradoxically be associated with a pro-oxidant
effect [71]. In the presence of free iron, vitamin C may reduce free ferric iron to the ferrous form.
The ferrous form then undergoes a Fenton-type reaction with hydrogen peroxide yielding hydroxyl
or hydroxyl-like reactions. Vitamin C may generate ROS in in-vitro, cell culture or tissue incubation
experiments, where free metal ions might exist [71–73]. Normally, iron is tightly bound to protein
and does not exist in the free form. However, in conditions such as hypoxia (ischemia/reperfusion)
and sepsis, free iron may be released from ferritin. Furthermore, sepsis is associated with hemolysis
and the release of free heme. Free heme can be highly cytotoxic in the presence of proinflammatory
mediators [74,75]. The divalent iron atom contained within its protoporphyrin IX ring can promote the
production of free radicals. In the presence of free iron or free heme and depending on the dose of
vitamin C and the timing of the administration of the dose in relationship to inciting event, vitamin C
may either act as an anti-oxidant or pro-oxidant. This concept was elegantly demonstrated in a hepatic
ischemia/reperfusion model where Seo and Lee demonstrated that an infusion of 30 mg/kg and
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100 mg/kg of vitamin C decreased markers of oxidative injury, whereas these markers were increased
with a dose of 300 mg/kg and 1000 mg/kg [76]. Similarly, in a hepatic ischemia/reperfusion model,
Park and colleagues demonstrated that oxidative injury was attenuated at ascorbic acid concentrations
of 0.25 mM and 0.5 mM, however they were augmented at a concentration of 2 mM [77]. This concept
is further supported by a number of studies using a cardiac arrest ischemia/reperfusion model.
In two murine studies, vitamin C in a dose of 50 mg/kg and 100 mg/kg IV decreased myocardial
damage, improved neurological outcome and the survival rate [68,69]. However, using a similar
model, Motl and colleagues reported that a 250 mg/kg dose was harmful [78]. In a murine CLP model,
Tyml et al. demonstrated that the delayed (24 h) administration of vitamin C (in a dose of 76 mg/kg)
restored blood pressure and microvascular perfusion [41]. Using human umbilical vein endothelial
cells Kuck and colleagues demonstrated that cell free hemoglobin increased endothelial permeability
in part through depletion of intracellular ascorbate [79]. In this study the addition of ascorbate up
to a concentration of 60 µmol/L (physiologic concentrations) attenuated the increase in permeability
mediated by cell free hemoglobin [79]. This study reaffirms that low dose vitamin C may reduce the
toxicity of cell free hemoglobin.

In the absence of free iron or heme, vitamin C acts as an oxidant only in extremely high
pharmacologic doses (>100 g) when used as adjunctive treatment in patients with cancer [80–83].
Repeated intravenous injection of 750–7500 mg/day of vitamin C for six days in healthy volunteers did
not induce a pro-oxidant change in plasma markers [84]. Furthermore, intravenous infusion of very
high-dose ascorbate (1584 mg/kg over 24 h) lowered serum malondialdehyde concentration (a marker
of oxidative stress) in severely burned patients [85]. When used prophylactically (before the inciting
event) prior to the oxidant injury with release of free iron, it is likely that a lower dose of vitamin C may
act as a powerful antioxidant. Basili et al. demonstrated that a single 1 g infusion of vitamin C prior
to the performance of percutaneous coronory reperfusion significantly improved microcirculatory
perfusion with a marked reduction in the markers of oxidant injury [86]. Similarly, Wang and colleagues
demonstrated that 3 g vitamin C IV prior to elective percutaneous coronory reperfusion was associated
with less myocardial injury [87]. A metaanalysis, which included 8 randomized controlled trials,
demonstrated that vitamin C up to a dose of 2 g IV given pre-operatively significantly reduced the risk
of atrial fibrillation in patients undergoing cardiac surgery [88]. Oxidant injury is postulated to play a
role in contrast-induced renal dysfunction. A systematic review by Xu and colleagues demonstrated
that prophylactic vitamin C (oral and IV up to a total dose of 7 g) significantly reduced the risk of renal
impairment [89].

These data suggest that in the setting of sepsis and ischemia/reperfusion, a narrow dose response
curve exists. In preliminary observational data in patients with severe sepsis and septic shock and using
procalcitonin as a biomarker, we have similarly observed a narrow dose response curve; the optimal
daily dose appears to be approximately 6 g/day with an attenuated effect at a dose of 2 g and 10
g, respectively (personal observations). In treating over 800 patients with a 6 g/day dose, we are
unaware of any patient who had a pro-oxidant effect (as reflected by the procalcitonin trajectory),
even when the treatment was delayed. It is possible that delayed treatment with a higher dose may
have a pro-oxidant deleterious effect. It should be recognized that there is a delicate balance between
protective oxidant signaling and the detrimental effects of ROS. Additional studies are required to
further elucidate the dose response of vitamin C in various clinical situations. Furthermore, we endorse
the recommendation of Spoelstra-de Man and colleagues who suggest administering “high-dose vitamin
C for a short course of four days only, e.g., during the overwhelming oxidative stress when organ damage
occurs. After four days, plasma concentrations will be supranormal and vitamin C can be continued in a
low (nutritional) dose to allow generation of low concentrations of ROS, which are essential for physiological
signaling and repair.” [19].
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3. Hydrocortisone

Glucocorticoids have diverse anti-inflammatory properties. These are briefly reviewed here;
the reader is referred to recent publications for a more comprehensive review of this topic [90–93].
Classically, glucocorticoid binding to the glucocorticoid receptor (GR) activates or represses gene
transcription, with glucocorticoids regulating up to 20% of the genome [94]. Glucocorticoids
affect nearly every cell of the immune system. Glucocorticoids suppress inflammation by
multiple mechanisms that impact both the innate and adaptive immune responses. The primary
anti-inflammatory action of glucocorticoids is to repress a large number of pro-inflammatory genes,
which encode cytokines, chemokines, inflammatory enzymes, cell adhesion molecules coagulation
factors and receptors. GR-mediated repression of the transcriptional activity of NF-κB and AP-1
play a major role in mediating the anti-inflammatory actions of glucocorticoids. In addition to
attenuating the pro-inflammatory response, low-dose glucocorticoids have immune-stimulating effects,
which may limit the anti-inflammatory immunosuppressive state [95]. The immune-enhancing effects
of glucocorticoids and the balance between the immune suppressing and enhancing effects of the
drug are critically dependent on the dose and duration of treatment as well as the state of immune
activation of the host.

Over the last 40 years, 22 randomized controlled trail have been conducted investigating the
benefits of glucocorticoids in patients with septic shock [96]. Many of these studies are limited by their
small sample size, high degree of bias, and the fact that they were conducted over a 40-year period
during which the treatment for sepsis has improved and the mortality from sepsis and septic shock
has decreased significantly [2,4]. The earlier studies used a short course of high-dose corticosteroid
(30 mg/kg methylprednisone for up to 4 doses); this approach increased mortality and complications
and was abandoned [97]. This was followed by numerous studies using a prolonged course
(5–7 days) of physiologic “stress-doses” of glucocorticoids (typically 200–300 mg hydrocortisone/day).
The results of these studies were mixed with some demonstrating a survival benefit, while other did
not [98,99]. In 2018, two large randomized controlled trials (RCTs) were published evaluating the role
of hydrocortisone in patients with septic shock [100,101]. The Activated Protein C and Corticosteroids
for Human Septic Shock (APROCCHSS) study demonstrated a reduction in 90-day mortality whereas
the Adjunctive Corticosteroid Treatment in Critically Ill Patients with Septic Shock (ADRENAL) study
demonstrated no mortality benefit. Both studies, however, demonstrated a reduction in vasopressor
dependency, duration of mechanical ventilation and ICU stay with no increased risk of complications.
These studies indicate that while glucocorticoids (alone) have a biological effect in patients with septic
shock, their effect on patient centered outcomes is limited. However, as indicated below, we believe
that glucocorticoids act synergistically with both vitamin C and thiamine to reduce the complications
and mortality associated with sepsis.

4. Thiamine

Thiamine is the precursor of thiamine pyrophosphate (TPP), the essential coenzyme of
several decarboxylases required for glucose metabolism, the Krebs cycle, the generation of ATP,
the pentose phosphate pathway, and the production of NADPH. TPP is a critical co-enzyme for the
pyruvate dehydrogenase complex, the rate-limiting step in the citric acid cycle [102]. Thiamine
plays an important role in many enzymatic processes involved in brain function, maintenance,
and interneuronal communication [103]. Thiamine is involved in nerve tissue repair, myelin synthesis
and nerve signal modulation. It plays a role in the uptake of serotonin, which in turns affects the
activity of the cerebellum, the hypothalamus, and hippocampus [103]. In addition, thiamine has
anti-inflammatory effects, suppressing the oxidative stress-induced activation of NF-κB [103].

Thiamine deficiency is common among septic patients, with a range in prevalence between 20%
and 70%, depending on measurement techniques and inclusion criteria [104–106]. A deficiency in
thiamine leads to decreased activity of thiamine-dependent enzymes, which triggers a sequence of
metabolic events leading to energy compromise and decreased ATP production. Thiamine deficiency
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is associated with excitotoxic-mediated neuronal cell death [107]. Furthermore, thiamine deficiency is
associated with an increased production of ROS, as well as increased expression of heme oxygenase
(HO-1) and eNOS [107–109]. Thiamine can reverse oxidative stress that is not related to thiamine
deficiency, suggesting that thiamine may act as a site-directed antioxidant [108]. It is therefore likely
that thiamine deficiency compounds the oxidative mitochondrial injury and bioenergetic failure caused
by vitamin C depletion.

In a pilot randomized controlled trial, Donnino et al. randomized 88 patients with septic shock
to receive 200 mg thiamine twice daily for seven days [106]. In the predefined subgroup of patients
with thiamine deficiency, those in the thiamine treatment group had statistically significantly lower
lactate levels at 24 h and a lower mortality at 30 days. Furthermore, in a secondary analysis of
this study, the need for renal replacement therapy and serum creatinine were greater in the placebo
group [110]. Similarly, in a propensity matched observational study in patients with septic shock,
Woolum et al. demonstrated that thiamine supplementation increased lactate clearance and decreased
28-day mortality [111].

5. Hydrocortisone, Ascorbic Acid, and Thiamine (HAT) in Combination

The overlapping anti-inflammatory properties of glucocorticoids and vitamin C reduce the
production of pro-inflammatory mediators and ROS, which are associated with endothelial injury,
mitochondrial damage, and organ failure characteristic of sepsis (see Figure 1). Furthermore,
both agents have immuno-enhancing effects, which limit the immunosuppression that occurs in
patients with prolonged sepsis. These agents may synergistically restore the dysregulated immune
system which characterizes sepsis (see Figure 2) [112]. Thiamine may act synergistically with
glucocorticoids and vitamin C to limit mitochondrial oxidative injury and restore mitochondrial
function and energy production. The anti-inflammatory properties of these agents likely restore the
activity of the PDC, thereby improving ATP production. However, the interaction between thiamine
and ascorbic acid is complex, and likely dependent on the clinical context and ascorbic acid dosing.
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The synergy between glucocorticoids and vitamin C has been established in experimental studies.
Barabutis et al. have demonstrated that hydrocortisone together with vitamin C protects the vascular
endothelium from damage by endotoxin, while neither agent alone had this effect [113]. Azari et al.
compared the protective effects of Vitamin C (in a dose of 50 mg/kg), vitamin E and hydrocortisone
alone and in combination, in a murine renal and intestinal ischemia-reperfusion model [114,115].
In these studies, both vitamin C and hydrocortisone reduced the ischemia-reperfusion injury with
the combination having synergistic protective effects. In a small, retrospective, before-after-study,
we demonstrated that the combination of hydrocortisone, ascorbic acid (6 g/day) and thiamine
(HAT Rx) improved organ function (as reflected by the SOFA score) with a significant reduction
in mortality [43]. In a similar before-after, propensity adjusted observational study, Kim et al.
demonstrated a significant reduction of mortality in patients with severe pneumonia using the
same treatment strategy (HAT Rx) [116]. According to the U.S. National Library of Medicine’s
ClinicalTrials.gov website (https://clinicaltrials.gov/), in excess of 12 randomized controlled trials are
currently underway testing vitamin C alone and in combination with hydrocortisone and thiamine in
patients with severe sepsis and or septic shock. The results of these studies should provide definite
information on the role of this treatment strategy in the management of patients with severe sepsis
and septic shock.

6. Conclusions

Glucocorticoids, vitamin C and thiamine have important biological effects in patients with
sepsis and septic shock. Due to the overlapping and synergistic effects of these remarkably safe and
inexpensive drugs, the combination of these agents (HAT therapy) likely restores the dysregulated
immune system and bioenergetic failure that characterizes sepsis. We, therefore, propose that HAT
therapy will improve both the short-term (mortality) and long-term (post-sepsis syndrome) outcome
of patients with sepsis and septic shock. Multiple randomized controlled trials are currently underway
to test this hypothesis.
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