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Abstract
Recently, several human monoclonal antibodies that targetBackground: 

conserved epitopes on the stalk region of influenza hemagglutinin (HA) have
shown broad reactivity to influenza A subtypes. Also, vaccination with
recombinant chimeric HA or stem fragments from H3 influenza viruses induce
broad immune protection in mice and humans. However, it is unclear whether
stalk-binding antibodies can be induced in human memory B cells by seasonal
H3N2 viruses.

 In this study, we recruited 13 donors previously exposed to H3Methods:
viruses, the majority (12 of 13) of which had been immunized with seasonal
influenza vaccines. We evaluated plasma baseline strain-specific and
stalk-reactive anti-HA antibodies and B cell recall responses to inactivated
H3N2 A/Victoria/361/2011 virus   using a high throughput multiplexin vitro
(mPlex-Flu) assay.

Stalk-reactive IgG was detected in the plasma of 7 of the subjects.Results: 
Inactivated H3 viral particles rapidly induced clade cross-reactive antibodies in
B cell cultures derived from all 13 donors. In addition, H3 stalk-reactive
antibodies were detected in culture supernatants from 7 of the 13 donors
(53.8%).  H3 stalk-reactive antibodies were also induced by H1 and H7
subtypes. Interestingly, broadly cross-reactive antibody recall responses to H3
strains were also enhanced by stimulating B cells with CpG ODN in in vitro 
the presence of IL-15. H3 stalk-reactive antibodies were detected in  CpG
ODN + IL-15 stimulated B cell cultures derived from 12 of the 13 donors
(92.3%), with high levels detected in cultures from 7 of the 13 donors.

 Our results demonstrate that stalk-reactive antibody recallConclusions:
responses induced by seasonal H3 viruses and CpG  ODN can be
enhanced by IL-15.

1 2 2 2

2

1

2

   Referee Status:

  Invited Referees

 version 1
published
15 Nov 2017

 1 2

report report

, University of Liverpool, UKQibo Zhang1

, Indian Institute ofRaghavan Varadarajan

Science, India
, Indian Institute ofPoorigali R. Sowmya

Science, India

2

 15 Nov 2017,  :2015 (doi:  )First published: 6 10.12688/f1000research.12999.1
 15 Nov 2017,  :2015 (doi:  )Latest published: 6 10.12688/f1000research.12999.1

v1

2006 
2006

2006

Page 1 of 17

F1000Research 2017, 6:2015 Last updated: 02 FEB 2018

https://f1000research.com/articles/6-2015/v1
https://f1000research.com/articles/6-2015/v1
https://orcid.org/0000-0001-6526-4179
https://orcid.org/0000-0002-7095-8682
https://f1000research.com/articles/6-2015/v1
http://dx.doi.org/10.12688/f1000research.12999.1
http://dx.doi.org/10.12688/f1000research.12999.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.12999.1&domain=pdf&date_stamp=2017-11-15


 

 Martin S. Zand ( )Corresponding author: martin_zand@urmc.rochester.edu
  : Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Validation,Author roles: Huang J

Visualization, Writing – Original Draft Preparation, Writing – Review & Editing;  : Conceptualization, Investigation, Methodology,Hilchey SP
Supervision, Writing – Review & Editing;  : Conceptualization, Formal Analysis, Investigation, Methodology, Supervision, Visualization,Wang J
Writing – Review & Editing;  : Investigation, Validation, Visualization;  : Conceptualization, Formal Analysis, Funding Acquisition,Gerigan J Zand MS
Resources, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing

 No competing interests were disclosed.Competing interests:
 Huang J, Hilchey SP, Wang J   How to cite this article: et al. IL-15 enhances cross-reactive antibody recall responses to seasonal H3

   2017,  :2015 (doi:  )influenza viruses  [version 1; referees: 2 approved]in vitro F1000Research 6 10.12688/f1000research.12999.1
 © 2017 Huang J  . This is an open access article distributed under the terms of the  , whichCopyright: et al Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 This research was supported by the China Scholarship Council and the Zunyi Medical University Visiting Scholar GrantGrant information:

(201408525075; JH), the National Institutes of Health, National Institute of Allergy, Immunology and Infectious Diseases (grants
HHSN272201000055C, HHSN272201400008C, AI098112, AI069351, AI109946; JW, SH, MSZ, JG), and the University of Rochester Medical
Center, Clinical and Translational Science Institute (CTSI) (grant UL1TR00042; JW, MSZ).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 15 Nov 2017,  :2015 (doi:  ) First published: 6 10.12688/f1000research.12999.1

Page 2 of 17

F1000Research 2017, 6:2015 Last updated: 02 FEB 2018

http://dx.doi.org/10.12688/f1000research.12999.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.12999.1


Introduction
Worldwide, annual influenza epidemics are estimated to result in 
about 3 to 5 million cases of severe illness, and about 250,000 to 
500,000 deaths1,2. Preventive vaccination is the major intervention 
currently used to prevent influenza infections3,4, and is designed 
to elicit IgG antibodies directed against the hemagglutinin viral 
surface protein (HA). Current vaccine formulations elicit a potent 
immune response against viruses that are closely matched to the 
vaccine strain, largely through targeting epitopes on the globular 
head of HAs of influenza A H1N1 and H3N2 subtypes and influ-
enza B strains. However, antigenic drift of influenza virus, which 
is caused by an accumulation of point mutations within the HA 
sequences, frequently occurs in influenza A strains and this is par-
ticularly true for H3 influenza A strains5–7. Individuals who were 
infected by or vaccinated against H3 influenza viruses circulating in 
prior years may thus be susceptible to new viral strains.

Since jumping species to humans in 1968, H3N2 swine flu viruses 
have been responsible for several seasonal pandemics, resulting 
in both prolonged duration of the influenza season and greater  
disease severity8,9. Under the selective pressure of host immu-
nity, H3N2 influenza virus HAs have undergone progressive 
antigenic drift. This became particularly problematic during the  
2014–2015 influenza season, when H3N2 strains became pre-
dominant and were antigenically and genetically distinct from the  
A/Texas/50/2012 (A/Tex12) vaccine strain10,11. The resulting  
antigenic mismatch between the vaccine strain and circulating  
H3 viruses, lead to extremely low vaccine effectiveness in the 
northern hemisphere12.

In contrast to the variable HA head domain, epitopes within 
the HA stalk domain are highly conserved and have become a 
main target for development of novel treatments using either  
antibody-based vaccine design or passive immunotherapy. Sev-
eral human monoclonal antibodies that target highly conserved 
epitopes on the stalk region of influenza HA display broad reactiv-
ity with group 1 and/or group 2 viruses and protect against lethal  
challenge with influenza viruses in vivo13–16. Animals immu-
nized against H3 stalk elicited broadly cross-reactive antibodies,  
resulting in protection from challenges with viruses that are of 
the same HA subtype and/or group17–19. Others have found that  
vaccination with a divergent hemagglutinin can increase the 
frequency of B cells encoding broad influenza A-neutralizing  
antibodies20. However, stalk-reactive antibodies are rarely found 
in individuals vaccinated with traditional in-activated influenza 
virus seasonal vaccines21–23. Recent studies have detected broadly 
cross-reactive, anti-stalk IgG antibodies in people vaccinated 
with the pandemic H1N1 A/California/07/09 (pdm A/Cali09)  
strain24,25. Recombinant chimeric HA from H3 viruses have also  
been shown to elicit broad immune protection in mice and 
humans26,27. However, it is unclear whether stalk-binding  
antibodies can be induced in human memory B cells using seasonal 
H3N2 viruses.

Several strategies have been employed in an attempt to improve 
broadly cross-reactive IgG production by application of a  
non-specific stimulus, the most common of which is the addition 
of various adjuvants to promote increased antibody secretion. In 

addition, the application of various cytokines has also been stud-
ied to increase antibody production, including IL-15. IL-15, a 
member of the 4-α-helix bundle family of cytokines, signals via  
hetero-trimeric receptors involving the IL-2 receptor β chain  
(IL2Rβ ), a common γ chain (IL2Rγ c), which is also required for  
signaling by IL-2, IL-4, IL-7, IL-9 and IL-21, and a unique  
α subunit (IL-15Rα) that confers receptor specificity to IL-1528. 
Some cytokines that signal through the common IL-2Rγ chain  
have been shown to increase activated naive and memory B cell  
IgG secretion rates29. IL-15 signals through the activation of  
JAK2, p38 and ERK1/2 MAPK, SYK kinase and the NF-kB  
transcriptional factor30. Due to the common γ c and β chain,  
IL-15 shares certain functions with IL-2, including T cell prolifera-
tion, the generation of cytotoxic T cells, immunoglobulin synthesis  
by B cells and the generation and persistence of NK cells31,32.  
IL-15 has been shown to play an essential role in the proliferation 
of memory B cells and Ig production in vivo33.

In addition to promoting the proliferation, differentiation, and 
IgG secretion of germinal center B cells, IL-15 is also involved 
in the generation and maintenance of long-term serologic  
memory29,34,35. IL-15 adjuvant has been reported to increase IgG 
production in animals immunized with influenza vaccines36, and 
DIII antigens of Japanese encephalitis virus and West Nile virus37.  
IL-15 adjuvanted immunization with a DNA vaccine comprised 
of the N1 and NP genes from the H5N1 influenza virus induced 
early and high antibody response in chickens38. In addition, IL-15  
participates in the homing of immature B cells and maintenance 
of the B cell repertoire39. Finally, IL-15 signaling appears to be  
essential to CD4 T cell and B cell activation by CpG ODN signal-
ing through TLR940, suggesting further synergy between existing  
vaccine adjuvants and IL-15.

As a vaccine adjuvant, IL-15 has been used for the HIV vac-
cine and cancer trails (www.clinicaltrials.gov: NCT00775424, 
NCT00115960, NCT00528489 and NCT01021059). Previous 
studies have shown that IL-15 promotes the survival, prolifera-
tion and Ig production of memory B cells41,42. In the current study, 
we examine human memory B cell IgG recall responses to H3N2  
influenza virus in the presence of CpG

2006
 ODN activation with 

IL-15 co-stimulation in vitro. Our results demonstrate that stalk- 
reactive IgG antibodies induced by B cell exposure to H3 viruses 
in vitro, in the presence of CpG

2006
 ODN, are enhanced by  

IL-15 co-administration. In addition, IgG antibodies elicited by H3 
viruses and/or IL-15 broadly bound to influenza HAs from both 
group 1 and group 2 influenza strains, which suggests potential use 
of CpG adjuvants and/or IL-15 agonists in influenza vaccination 
strategies.

Methods
Study subjects
This study was approved by the Institutional Review Board at 
the University of Rochester Medical Center (RSRB protocol 
RSRB00066522). Subjects were recruited at the University of 
Rochester through local advertisement, and signed a written state-
ment of informed consent prior to phlebotomy for the study. A 
total of 13 adults with an age range of 26 to 63 years (mean 43.7 
years) were included in the study. Twelve study subjects (S1–S3,  
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S5–S13) gave a history of being previously vaccinated with sea-
sonal influenza vaccines, while one subject (S4) indicated that  
they had never received any influenza vaccine. Peripheral blood  
was obtained from all subjects as part of the study for B cell stimu-
lation and analysis of baseline influenza-specific antibodies.

mPlex-Flu assay
The levels of HA-reactive IgG were measured in plasma  
and in vitro stimulated B cell culture supernatants using the  

mPlex-Flu assay, as previously described43. The assay panels  
included whole HA or the head segments of influenza group 1, 
group 2, B strain and chimeric HA, as listed in Table 1. Briefly, 
25µL of plasma dilution (1:5000) or undiluted culture supernatants 
were incubated with 25µL of a panel of beads coupled with HAs 
at room temperature for two hours on a rotary shaker (500 rpm) 
in the dark. Then 150µL of phycoerythrin (PE) conjugated goat 
anti-human IgG (Southern Biotech, Birmingham, Al) was added 
and incubated at room temperature for 2 hours on a rotary shaker  

Table 1. mPLEX-Flu Hemagglutinin Panel.

Strain Gene Bank 
Accession 

Full Strain Name Abbreviation

H1N1 AF117241.1 A/South Carolina/1/18 A/SC18

H1N1 CY148243.1 A/Puerto Rico/8/1934 A/PR8

H1N1 DQ508897.1 A/USSR/90/1977 A/USSR77

H1N1 DQ508889.1 A/Texas/36/1991 A/Tex91

H1N1 CY125100.1 A/New Caledonia/20/1999 A/NewCal99

H1N1 FJ966974.1 A/California/07/2009 pdm A/Cali09†

H2N2 L20407.1 A/Japan/305-/1957 A/Jap57

H3N2 CY112249.1 A/Hong Kong/1/1968 A/HK68

H3N2 CY009348.1 A/Port Chalmers/1/1973 A/PC73

H3N2 M57630.1 A/Alabama/1/1981 A/Ala81

H3N2 GQ293081.1 A/Perth/16/2009 A/Perth09

H3N2 DQ508865 A/Panama/2007/1999 A/Pan99

H3N2 KM821347 A/Victoria/361/2011 A/Vic11†

H3N2 KC892248.1 A/Texas/50/2012 A/Tex12

H3N1 EPI_ISL_164719Ê‡ A/Switzerland/9715293/2013 A/Swi13

H5N1 EF541403.1 A/Viet Nam/1203/2004 A/Viet04

H6N1 KJ162860.1 A/chicken/Taiwan/67/2013 A/TW13

H7N1 EF470586 A/rhea/North Carolina/39482/1993 A/rheaNC93

H7N1 KF695239 A/mallard/Netherlands/12/2000 A/malNeth00

H7N1 KF021597 A/Shanghai/1/2013 A/SH13†

H9N2 AY206676.1 A/guinea fowl/Hong Kong/WF10/1999 A/gfHK99

H9N2 ADC41843.1 A/Hong Kong/33982/2009 A/HK09*

B CY115343 B/Brisbane/60/2008 B/Bris08

B KF752446.1 B/Massachusetts/2/2012 B/Mass12

B EPI_ISL_165882‡ B/Phuket/3027/2013 B/Phu13

H5 Head Head (C52-C277) of A/Indonesia/5/05 H5 head

cH5/3 Chimera Head of A/Indonesia/5/05, stalk of 
A/A/Perth/16/2009

cH5/3

cH5/1 Chimera Head of A/Indonesia/5/05, stalk of 
A/California/07/2009

cH5/1Cal09

cH5/1 Chimera Head of A/Indonesia/5/05, stalk of 
A/Puerto Rico/8/1934

cH5/1PR8

cH4/7 Chimera Head of A/duck/Czech/1956(H4), 
stalk of A/Shanghai/1/2013

cH4/7

H9 Head Head (C52-C277) of A/guinea fowl/
Hong Kong/WF10/1999

H9 head

*BPL inactivated virus used for in vitro stimulation only
† Recombinant HA used in mPlex-Flu and BPL inactivated virus for in vitro stimulation
‡GISAID accession number
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(500 rpm) in the dark. After wells were washed twice with PBS 
(pH 7.2) containing 0.1% BSA (MP Biomedical, LLC, France)  
and 0.1% Brij-35 (Thermo Scientific, Waltham, MA), IgG levels 
were analyzed on Magpix Multiplex Reader (Luminex, Austin, 
TX). All samples were measured in duplicate.

In vitro activation of memory B cells
Primary human B cells were isolated and activated with  
CpG

2006
 ODN, as previously described29,44. Cells were negatively 

enriched from peripheral blood by treatment with an EasySep 
Human B Cell Enrichment Kit (STEMCELL Technologies,  
Cambridge, MA), followed by magnetic separation according  
to the manufacturer’s instructions. B cells were resuspended in  
complete medium (RPMI 1640 supplemented with 10% heat- 
inactivated fetal bovine serum, 100 units/mL penicillin G, and 
100µg/mL streptomycin) and were cultured (5x105/well, 1 mL/ 
well) with 6 µg/mL CpG

2006
 (Integrated DNA Technologies, San 

Diego, CA) alone or together with 10 µg/mL of BPL inactivated  
A/Victoria/361/2011 (A/Vic11, H3N2, IRR catalog No: FR-1041), 
A/Shanghai/1/2013 (A/SH13, H7N9, IRR catalog No: FR-1281), 
A/Hong Kong/33982/2009 (A/HK68, H9N2, IRR catalog No:  
FR-775) and pH1N1 viruses (H1N1, IRR catalog No: FR-187), 
or/and 50 ng/mL IL-15 (BD Pharmingen, San Diego, CA). Six  
days after incubation at 37°C 5% CO2, supernatant and B cells  
were collected for detection of anti-HA antibodies and ASCs, 
respectively.

ELISpot assays
ELISpot assay of memory B cell IgG secretion was performed 
as previously described25. Immobilon P membrane-based 96-well 
plates (Millipore, Billerica, MA) were coated overnight at 4°C 
with 10µg/mL H3N2 HA in phosphate-buffered saline (PBS)  
(40 µl/well). PBS only was added to the negative-control wells. 
Plates were blocked with complete PRMI 1640 medium. Cells were 
plated at a density of 106 per well in U-bottom plates and stimu-
lated with CpG

2006
 ODN, six days after stimulation with A/Vic11 

(H3N2, IRR catalog No: FR-1041). B cells were resuspended in  
complete medium containing either alkaline phosphatase- 
conjugated goat anti-human IgG (H-L) (KPL, Gaithersburg, MD) 
at 0.2µg/mL and incubated for 5h at 37°C in 5% CO

2
. The plates  

were washed, and then HA antibody secreting cell spots were 
developed with an alkaline phosphatase substrate kit (Vector  
Laboratories, Burlingame, CA). Spots were counted using a  
CTL ImmunoSpot plate reader and counting software (Cellular 
Technology Limited, Cleveland, OH).

Statistical analysis
For multiple comparison of H3N2-specific IgG between-group 
(CpG

2006
 ODN alone or together with H3N2 or H7N9 viruses),  

one-way ANOVA was performed. Correlations between  
H3-specific antibodies and stalk-reactive antibodies, or A/Vic11- 
specific antibodies between plasma and CpG

2006
 ODN ± memory 

B cells, were evaluated using the Pearson’s χ-squared test.  
Statistical analysis was performed using SPSS11.5 statistical  
software, as well as Prism 5 software. For all the statistical tests 
performed, p<0.05 was accepted as significant.

Results
Prevalence of H3-specific and stalk-reactive IgG
To evaluate the anti-influenza antibodies in plasma from 13  
subjects and further infer influenza-specific memory B cells in  
their peripheral blood, we examined H3 HA-specific IgG levels 
using our mPlex-Flu assay. Six H3N2 strains, accommodating  
45 years of antigenic drift of the swine origin influenza viruses 
(1968 to 2013), were selected to monitor the anti-H3 anti-
bodies, including A/Hong Kong/1/1968 (A/HK68), A/Port 
Chalmers/1/1973 (A/PC73), A/Perth/16/2009 (A/Perth09), A/
Victoria/361/2011(A/Vic11), A/Texas/50/2012 (A/Tex12) and 
A/Switzerland/9715293/2013 (A/Swi13). Antibodies against H3 
strains were detected in all subjects. Of these, eight displayed 
high levels of H3-specific antibodies, while the other five had 
lower plasma baseline H3-reactive antibodies. Antibodies directed  
against A/Vic11 were high among all H3-specific IgG in 12 of 
the subjects. Only one subject displayed antibodies targeting the 
historical outbreak H3N2 strains, A/HK68 and A/PC73, which 
were higher than those against the more recent seasonal strains, 
A/Perth09, A/Vic11, A/Tex12 and A/Swi13 (Figure 1). The  
emergence of H3N2-specific antibodies indicates that all subjects 
likely had prior exposure to H3 influenza viral antigen.

In order to determine the degree of H3 stalk-reactive antibod-
ies induced by inactivated A/Vic11 viruses, cH5/3, a soluble 
HA construction that contains the stalk of H3 virus and the head 
of H5 virus, was used in our mPlex-flu assay. This recombinant 
HA protein allows for the direct detection of stalk-reactive IgG  
antibodies in polyclonal sera or plasma. As shown in Figure 1B, 
H3 stalk-reactive IgG was detected in plasma (dilution of 1:5,000) 
from 11 donors, with 4 to 11-fold lower than H3 strain-specific  
antibodies. For 4 of them, MFI values were greater than 3,000.  
Since most donors had a history of receiving seasonal influenza 
vaccines, we also examined the H1N1 stalk-reactive antibodies. 
Consistent with H3 stalk results, H1 stalk-binding IgG was detected 
in all subjects (Figure 1C).

H3N2 clade cross-reactive IgG secretion stimulated by 
inactivated A/Vic11 virus and CPG2006

To evaluate memory B cell response to H3N2 viruses, purified 
B cells were stimulated with CpG

2006
 ODN and BPL inactivated 

A/Vic11 virus. Six days after stimulation, ASCs for H3 HA from 
A/Vic11 were detected in both CpG

2006
 ODN with and without 

H3 virus (CpG-H3) groups. As shown in Figure 2A, the number 
of ASCs was greater in CpG-H3 group than in CpG alone group. 
H3N2 strain-specific antibodies in supernatants were assessed 
by mPlex-Flu assay. B cells from all donors displayed rapid  
antibody responses to inactivated A/Vic11 viruses. Stimulation with 
CpG

2006
 ODN and H3 viruses resulted in a significant increase in 

antigen-specific IgG production, compared with H3, CpG and CpG 
with A/Shanghai/1/2013 (A/SH13) (CpG-H7) groups (Figure 2B). 
We also analyzed the relationship between the levels of A/Vic11-
specific antibodies in plasma and IgG production by activated B 
cells. No correlation between antibody recall responses and plasma 
baseline IgG against A/Vic11 was detected (r=0.124, P=0.687) 
(Figure 2C).
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Figure 1. Anti-H3 stalk-reactive IgG antibodies in human plasma. Plasma was obtained from 13 donors, 12 of which (S1–S3, S5–S13) had 
been previously vaccinated within the past 5 years with trivalent or quadrivalent seasonal influenza vaccines. Plasma baseline anti-influenza 
IgG was measured by mPlex-Flu assay. (A) Levels of IgG against distinct H3N2 strains. Each column depicts median fluorescence intensity 
(MFI), representing an individual donor. (B) Levels of H3 stalk-reactive IgG. Each symbol and line represents one donor. (C) IgG-binding to 
chimeric cH5/1 and cH5/3 proteins. This analysis was performed at a 1:5,000 dilution. Data can be found in Dataset 145.

We next measured clade cross-reactive IgG induced by A/Vic11 
viruses against selected recombinant HAs from seven heterov-
ariant H3N2 strains spanning 45 years (1968–2013), A/HK68, 
A/PC73, A/Alabama/1/1981 (A/Ala81), A/Panama/1/2007/1999 
(A/Pan99), A/Perth09, A/Tex12, and A/Swi13. Following stimu-
lation with recent seasonal virus A/Vic11, activated B cells from 
all donors showed increased production of IgG targeting recent  
seasonal strains (A/Perth09, A/Vic11, A/Tex12 and A/Swi13), 
while increases in IgG against historical strains (A/HK68,  
A/PC73, A/Ala81 and A/Pan99) were detected in 11 donors (84.6%). 
One subject who had low baseline A/Vic11-specific antibodies  
showed much weaker antibody recall responses to A/Pan99, 

A/Perth09, A/Vic11, A/Tex12 and A/Swi13 strains than to the  
historical strains, A/HK68, A/PC73 and A/Ala81. In another sub-
ject, low levels of anti-A/HK68, A/PC73, A/Ala81 and A/Pan99, 
but high levels of anti-A/Perth09, A/Vic11, A/Tex12 and A/Swi13 
were present after in vitro B cell stimulation (Figure 2D). Interest-
ingly, antibodies against the most recent seasonal strain A/Swi13 
were lower than those against A/Vic11 (Figure 2E).

A/Vic11 stimulation induced cross-reactive IgG
We then tested the IgG induced by inactivated H3N2 viruses bind-
ing to recombinant HAs from influenza A strains, H1, H2, H5, 
H6, H7, H9, and B strains. For H1, six strains accommodating 
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Figure 2. Secretion of H3 clade cross-reactive antibodies by B cells stimulated with inactivated A/Victoria/361/2011. Purified B cells 
were obtained by negative selection and stimulated with CpG2006 ODN alone or together with A/Vic11 (H3) or A/SH13 (H7) control BPL 
inactivated virus for 6 days in vitro. (A) ASCs for H3 HA were examined by ELISpot assay. H3-binding antibodies in supernatants of activated 
B cells were monitored using beads bound with HA from H3N2 strains. (B) A/Vic11-specific IgG. Each symbol represents an individual 
donor. One-way AVONA was used to evaluate the difference among different groups (* P<0.05; ** P<0.01). Results were verified by ELISpot 
after stimulation with A/Vic11. The values represent the number of anti-HA IgG specific antibody-secreting cells in 1.25x105 stimulated  
B cells/donor. (C) Correlation between anti-A/Vic11 IgG levels in plasma and secretion of A/Vic11-specific IgG by activated B cells.  
(D) Antibodies binding to H3 clades. (E) Comparison of A/Vic11-specific IgG and A/Swi13-reactive IgG. Data from Dataset 246.

89 years of antigenic drift of H1N1 influenza viruses from 1918 
to 2009 were selected, including A/South Carolina/01/1918 
(A/SC18), A/Puerto Rico/8/1934 (A/PR8), A/USSR/90/1977  
(A/USSR77), A/Texas/36/1991 (A/Tex91), A/New Caledonia/ 
20/1999 (A/NewCal99) and A/California/07/2009 (pdm A/Cali09).  
A/Japan/305/1957 (A/Jap57), A/Vietnam/1204/2004 
(A/Viet04), A/Taiwan/2/2013 (A/TW13), A/TW13 and  
A/gf/HK99 represent H2, H5, H6 and H9 respectively, which are 
members of group 1. For group 2 influenza viruses, A/rhea/North  
Carolina/39482/1993 (A/rheaNC93), A/mallard/Netherlands/ 
12/2000 (A/malNeth00) and A/SH13 represent three heterov-
ariants of H7N9. B/Brisbane/60/2008 (B/Bris08), B/Mass/02/2012  
(B/Mas12) and B/Phuket/2013 (B/Phu13) were selected for  
monitoring the cross reactivity to influenza B strains.

As shown in Figure 3A, antibodies binding to group 1 and B strains,  
induced by the group 2 subtype, H3 viruses, were detected in 
supernatants derived from 8 and 4 donors, respectively, with 
increases of median of 3.6 to 166.4-fold. IgG in supernatants 
derived from 8 donors displayed broad cross-reactivity to HAs  
from 6 different H1N1 strains. Anti-A/Jap57 IgG was detected 
in supernatants of activated B cells from 3 donors, while anti-
A/Viet04, anti-A/TW13 and anti-A/gfHK99 IgG were detected 
in B cells from 2 donors. For group 2, increases in levels of IgG  
against H7N9 strains, A/rheaNC93, were detected in 4 donors. 
For influenza B strains, B cells from 4 donors showed increases 
in yield of cross-reactive antibodies. Increases in anti-B/Bris08 
IgG were shown in 3 donors, while two donors demonstrated 
an increase in anti-B/Phu13. Increases in anti-B/Wis10 and  
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Figure 3. CpG2006 ODN + inactivated H3 virus boosts antigen-specific anti-H3 IgG antibody recall responses in vitro. B cells were 
obtained by negative selection, and then stimulated with CpG2006 ODN alone or together with A/Vic11 for 6 days. Cross-reactive antibodies 
binding to H1, H2, H5, H6, H7 and B influenza subtypes in B cell culture were measured by mPlex-Flu assay43. (A) Fold change in cross-
reactive antibodies. All values of IgG levels (MFI) were subtracted from those of medium before calculating fold change. Only those values 
of IgG induced by CpG2006 ODN plus A/Vic11 viruses, which were greater than 100, were selected to calculate fold change. Each symbol 
represents the median of fold change in levels of IgG induced by CpG2006 ODN with H3 to IgG stimulated by CpG2006 ODN alone. (B) CpG2006 
ODN with H3 antigen induces a broad recall response to H3 influenza strains. Increases anti-HA IgG production to other non-H3 strains also 
occurred, but to a much lower extent. Data can be found in Dataset 347.
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anti-B/Mass12 were not detected. As shown in Figure 3B, the  
largest response was enhancement of anti-H3 B cell recall responses, 
and a broad, but lower, increase in responses to other more  
molecularly distant strains also occurred. Notably, significant 
increases in IgG binding to chimeric HAs containing the H3, 
H1, and H7 HA stalk segments, but not the H7 or H5 head seg-
ments, were observed, strongly suggesting the presence of broadly- 
cross-reactive stalk antibodies targeting the conserved stalk regions 
(Figure 3B).

Stalk-reactive antibodies were induced by inactivated H3N2 
A/Vic11 viruses
H3 stalk-reactive antibodies were detected in activated B 
cells from 7 donors (53.8% of 13) after A/Vic11 stimulation  
(Figure 4A). IgG against historical outbreak strains (e.g. A/HK68, 
A/PC7), which have divergent head domains but conserved stalk 
domains with the recent seasonal H3N2 strains, was detected in 
most donors (12 of 13). Therefore, we analyzed the relationship 
between stalk-reactive and A/HK68 or A/Vic11 strain-specific  
antibodies. There was a strong correlation between cross- 
reactive stalk antibodies and A/HK68 strain-specific IgG produc-
tion (r=0.945, P<0.001). Interestingly, anti-A/Vic11 displays a 
significant but weaker correlation with cH5/3 stalk antibodies 
(r=0.758, p=0.03) than those against A/HK68(Figure 4B). To fur-
ther investigate the reactivity of cross-reactive stalk antibodies 

induced by influenza A subtype strains to H3 stalk, B cells from 
were stimulated with HA proteins from A/SH13 (H7; group 2) 
and pandemic A/California/07/2009 (pdm A/Cali09, H1; group 1) 
and A/Hong Kong/33982/2009 (A/HK09) (H9; group 1). Positive 
correlations between anti-cH5/3 and anti-HK68 IgG induced by 
A/SH13 (r=0.563, p=0.045) and pdm A/Cali09 (r=0.917, p=0.001) 
were detected (Figure 4C).

IL-15 enhanced cross-reactive IgG secretion to H2N2 
A/Victoria/361/2011 + CpG2006 stimulation
To assess if IL-15 has an influence on B cell recall responses to 
H3N2 viruses, we added IL-15 to cell cultures with CpG

2006
 ODN 

and BPL inactivated A/Vic11 influenza virus, or with CpG
2006

 ODN 
alone. The supernatants at day 6 were measured for IgG production 
against influenza A strains, including group 1 and group 2, B strains 
and chimeric HA proteins by mPlex-Flu assay. Fold change values 
were calculated as described in Figure 3. As shown in Figure 5A, 
cross-reactive antibody responses to the specific A/Vic11 viruses 
were enhanced in cell culture derived from all donors upon IL-15 
stimulation.

First we analyzed the influence of exogenous IL-15 on the in vitro  
B cell recall production of A/Vic11-specific IgG from all subjects.  
All subjects showed increased B cell secretion of A/Vic11  
HA-specific antibodies after IL-15 treatment (median 13.1). 

Figure 4. Induction of HA stalk-reactive antibodies by H3 viruses. B cells from healthy donors were stimulated with CpG2006 ODN alone 
or together with inactivated A/Vic11 (H3N2), A/SH13 (H7N9), A/Hong Kong/33982/2009 (A/HK09) (H9N2) or pdm A/Cali09 H1N1 viruses. 
The levels of IgG against H3 HA, H5 head and chimeric HA cH5/3 (H5 head and H3 stalk) are shown for individual subjects. (A) Nine of 13 
subjects displayed increases in stalk-reactive IgG after A/Vic11 (H3) stimulation. (B, C) A correlation model assuming different coefficients for 
different anti-H3 strain-specific antibodies were fitted to evaluate the relationship between HA stalk-reactive and strain-specific IgG. Ordinate 
and abscissa units are mean fluorescence intensity (MFI). Data can be found in Dataset 448.
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Figure 5. IL-15 increases cross-reactive antibody responses to H3N2 viruses. (A) B cells from healthy donors were co-stimulated with 
CpG2006 ODN, inactivated A/Vic11 viruses and IL-15. Strain-specific and HA stalk-reactive IgG in supernatants of activated B cells were 
detected after 6 days. (B) Fold change in cross-reactive antibodies. (C) Correlation between influenza specific antibodies and HA antigenic 
sequence. IL-15 increased the concentration of anti-HA reactive IgG, but does not alter the distribution of cross-strain specificity. Data can 
be found in Dataset 549.

Increases in cross-reactive antibodies binding to H3N2 heterov-
ariant, A/HK68, A/PC73, A/Perth09, A/Tex12 and A/Swi13 were 
detected in all subjects, with median of 7.3, 9.4, 6.9, 8.2, 15, respec-
tively. For influenza A subtype strains, IL-15 showed strong upreg-
ulation, with fold change in IgG against A/SC18 (median 16.6), 
A/PR8 (median 8.2), A/USSR77 (median 23), A/Tex91 (17.5), 
A/NewCal99 (20.3) and pdm A/Cali09 (14.3), A/Jap57 (42.6), A/
Viet04 (28.3), A/TW13 (35.6), A/rheaNC93 (21.4) and A/gfHK99 
(21.1). Ten donors displayed increases in IgG against B subtypes, 
B/Bris08 (median 44.6), B/Mass12 (17.8) and B/Phu13 (11.6) (Fig-
ure 5B). We next analyzed the relationship between strain-reactive 
IgG and HA stalk types, which revealed increases in stalk-reactive 
IgG against H1, H3, and H7 stalk regions that increased greatly 
with IL-15 + CpG

2006
 ODN stimulation in vitro. (Figure 5C).

IL-15 increased secretion of stalk-reactive IgG
Although stalk-reactive antibodies induced by seasonal H3N2 
viruses were detected in this study, these antibodies were lower than 
those against entire H3 HA. To assess whether H3 stalk-reactive 
antibodies can be enhanced by IL-15, we measured IgG binding 
to cH5/3. As shown in Figure 6A, anti-cH5/3 IgG increased after 
costimulation with CpG

2006
 ODN, H3 viruses and IL-15, compared 

with CpG-H3 and CpG groups. Since most influenza subtypes, 
either influenza A, including group 1 and group 2 subtypes, or 
influenza B strains, share conserved stalk epitopes, we also evalu-
ated IgG against H7 and H1 stalk using cH5/1 (containing H5 head 
and H1 stalk) and cH4/7 (containing H4 head and H7 stalk). Anti-
cH5/1(Figure 6B) and anti-cH4/7 (Figure 6C) IgG were higher in 
CpG-H3-IL-15 groups than in CpG-H3 and CpG alone groups. H7 
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Figure 6. Stalk-reactive antibody responses to H3 viruses are enhanced by IL-15. Purified B cells were costimulated with CpG2006 ODN, 
A/Victoria/361/2011 viruses and IL-15. Stalk-reactive IgG in supernatants was detected at day 6. Chimeric molecules cH5/3, cH4/7 and cH5/1 
were used to measure antibodies against the H3, H7, and H1 stalks, respectively. Each symbol and line represents an individual donor. (A) H3 
stalk-reactive antibodies. (B) H7 Stalk-reactive antibodies. (C) H1 stalk-reactive antibodies. Data can be found in Dataset 650.
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and H1 stalk-reactive antibodies were upregulated along with H3 
stalk-reactive antibodies.

Discussion
The majority of adults possess pre-existing IgG antibodies against 
influenza viruses from prior infection and/or vaccination51, prima-
rily directed against the immunodominant globular head domain of 
the HAs. Antibodies against the conserved, immuno-subdominant  
HA stalk domain are generally detectable at very low levels, if 
at all, despite being broadly protective against multiple influenza 
strains and subtypes52. In this study, we analyzed strain-specific 
and H3 stalk-reactive antibodies in plasma from donors, and found 
high levels of anti-H3 specific IgG in all donors. Of these, 12 sub-
jects had high IgG levels against the recent seasonal H3N2 strain 
A/Vic11, likely by vaccination or infection. One donor, who had 
never received a seasonal influenza vaccine, showed much lower 
IgG binding to A/Vic11, but higher anti-A/HK68 IgG levels. Inter-
estingly, 11 of 13 subjects had detectable H3 stalk-reactive IgG at 
levels only 4–11 fold lower than H3 strain-specific IgG antibod-
ies. The presence of pre-existing stalk-reactive antibodies suggests 
that stalk-specific memory B cells exist in memory B cell pool, a 
hypothesis supported by the results from the in vitro B cell stimula-
tion ELISpot experiments.

Immunological memory against influenza following immunization 
is the corner-stone for prophylactic vaccination programs53. Most 
adults possess a low (0.1–1.0% of total IgG memory B cells) but 
consistent base line of influenza virus-specific memory B cells25.  
Stalk-reactive memory B cells have generally been reported at very 
low frequencies, suggesting minimal effective protection16,20,54. 
Interestingly, broad cross-reactive antibodies have been detected 
in participants who received the pdm A/Cali09 vaccine24, which 
is distinct from the prior seasonal H1N1 strain. Competition of  
memory B cells responding to either common or rare antigens is 
hypothesized to regulate the appearance of cross-reactive IgG 
against influenza HA20,24. Repeat exposure to common influenza 
strains primarily boosts head-reactive responses and limits the 
expansion of B cells secreting broadly neutralizing antibodies. 
In contrast, repeated exposure to diverse influenza strains boosts 
antibodies against highly conserved influenza HA regions, such as 
the the stalk24 or a conserved Ca2+-binding region55 on the globular 
head.

In this study, we focused on enhancing the memory B cell recall 
response to H3N2 subtype influenza viruses following H3 stimu-
lation in vitro in the presence of CpG

2006
 ODN ± IL-15. Class 

switched IgG antibodies against a panel of H3 strains spanning  
45 years from 1968 to 2013 were analyzed. Increases in antibodies 
against recent seasonal strains were present in all subjects, while 
induction of IgG antibodies binding to historical H3 strains (prior 
to the birth year of the subjects) only occurred in 11 subjects. This 
is consistent with the prevailing hypothesis that antigenic drift leads 
to low vaccine efficacy5–7,10. Decreases in responses to Anti-A/
Swi13 also explain the low vaccine efficacy in 2014–2015 influenza  
season. Moreover, we found that antibodies induced by H3 viruses, 
especially in the presence of IL-15, broadly bound to group 1 HAs, 
with moderate reactivity against group 2 and B influenza subtypes. 

These results are consistent with findings by other groups of cross- 
reactive IgG that react against both H1 and H3 influenza strains, 
primarily against epitopes on the HA stalk regions19,21.

CpG
2006

 ODN stimulation has been shown to drive in vitro differ-
entiation of both CD27− and CD27+ human B cells to the plasma 
cell phenotype29,44. Antibody production rates after CpG

2006
 

ODN stimulation appear to be modulated by IL2Rγ signaling  
cytokines29. In vivo, mouse vaccine studies have noted that CpG 
adjuvanted influenza vaccination increases anti-HA IgG titers in 
young, but not older mice56. Our results suggest that the stimula-
tion of B cells in vitro with inactivated H3 influenza in combina-
tion with CpG

2006
 ODN and IL-15 not only stimulate increased  

anti-HA IgG, but appears to increase levels of secreted cross- 
reactive IgG compared with CpG alone. IL-15 has been reported 
to overcome immundominance of antigens in CD8 T cell  
activation57. Further work will need to be done to determine  
if the addition of IL-15 to CpG adjuvanted influenza vaccines  
would boost protective anti-HA IgG production in vivo in older 
individuals.

Prior characterization of broadly neutralizing IgG antibodies by 
other groups has demonstrated that cross-activity results from 
stalk-reactive antibodies26,58. Using the mPlex-Flu assay, we found 
that moderate to high levels of H3 stalk-reactive antibodies could 
be induced in vitro after CpG

2006
 ODN stimulation of memory  

B cells from 8 subjects (53.3%). These H3 stalk-reactive antibod-
ies emerged along with IgG that bound the stalk regions of H1 and 
H7 subtypes, which share conserved epitopes with H3 viruses. 
Using a liner correlation model, we found that levels of antibod-
ies binding to A/HK68 were positively related to H3 stalk-reactive 
antibodies, suggesting that clade cross-reactivity was likely due to 
the conserved epitopes in H3 stalk. This correlation also strongly 
existed between IgG antibodies binding to the H3 stalk and anti-
A/HK68 antibodies responding to inactivated H7N9 viruses, sug-
gesting that H3 stalk-specific memory B cells responded to H7N9 
subtypes. Interestingly, stalk-specific IgG recall responses were not 
seen in memory B cells from the infected/un-vaccinated participant 
(S4), although they had detectable IgG antibodies against historical  
outbreak H3 strains after in vitro CpG

2006
 ODN + IL-15 stimulation.

Although the production of stalk-reactive antibodies indicated 
activation of stalk-specific memory B cells, we found both strain 
cross-reactive and stalk-reactive IgG antibodies present at much 
lower levels than H3 strain-specific anti-HA IgG antibodies. Given 
the desirability of inducing broadly cross-reactive anti-HA stalk- 
reactive IgG antibodies, vaccination strategies to achieve this goal 
need to be developed. In this study, we evaluated the effect of sup-
plemental IL-15 on B cell recall responses to inactivated A/Vic11 
viruses. We demonstrated that the B cell recall responses to H3 
viruses were enhanced by CpG

2006
 ODN + IL-15, with increases 

of 6.9 to 15-fold in IgG production. Broadly cross-reactive IgG 
antibodies were observed to bind to group 1, group 2 and B strain 
influenza HA subtypes following CpG

2006
 ODN + IL-15 stimu-

lation, with median of increase of 22.3-fold for group 1, 21.4-
fold for both group 2 and 17.6-fold for B subtypes compared to 
CpG

2006
 ODN stimulation alone. This demonstrated IL-15 greatly  
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augmented recall secretion of broadly cross-reactive anti-influenza 
HA IgG antibodies. Not surprisingly, there was a negative corre-
lation between antigenic sequence dissimilarity of the stimulating 
influenza strain and recall IgG antibody levels.

Conclusions
In conclusion, broadly cross-reactive anti-influenza stalk-binding 
IgG antibodies exist in individuals exposed to influenza strains. 
Seasonal H3N2 virus exposure, through vaccination or infection, 
can induce memory B cells that bind to the conserved stalk region 
of HAs. In vitro recall responses to these stalk-reactive antibodies 
can be enhanced by IL-15. These results suggest the potential for 
IL-15 augmentation of adjuvant to overcome immunodominance of 
influenza HA head region epitopes as a potential vaccine boosting 
strategy to increase levels of broadly cross-reactive anti-influenza 
HA IgG antibodies.
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