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We recently developed a multiresolution PDE-based deformable surface whose deformation behavior is governed by partial dif-
ferential equations (PDEs) such as the weighted minimal surface flow. Comparing with the level-set approach, our new model has
better control of the mesh quality and model resolution, and is much simpler to implement since all the computations are local.
The new deformable model is very useful for a variety of medical imaging applications including boundary reconstruction, sur-
face visualization, data segmentation, and topology discovery. In this paper, we demonstrate both the accuracy and robustness of
our model on areas such as medical image segmentation through a number of experiments on both real (MRI/CT) and synthetic
volumetric datasets.
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1. INTRODUCTION

Since the seminal work of the snake model proposed by
Kass et al. [1] in 1988, deformable models have significantly
gained popularity in medical imaging analysis and related
fields. Conventional deformable models are essentially para-
metric models [2–4]. In general, they have concise repre-
sentation and it is easy to incorporate user constraints in
them. However, it is very difficult for parameterized de-
formable models to represent shapes of arbitrary topology.
Recently, implicit snakes were proposed by Malladi et al. [5]
and Caselles et al. [6] with the ability to handle topology
changes. Their schemes are based on the modeling of prop-
agating fronts which are the level set of certain scalar func-
tions. Nonetheless, the topological flexibility is accompanied
by a time-consuming integration method that must be ap-
plied to a higher-dimensional space, and the desirable shape
must be explicitly evaluated using the marching-cube-like
[3] techniques in a separate postprocessing stage.

In order to bridge the divide between explicit paramet-
ric models and implicit level-set models [7, 8], most re-
cently, researchers have proposed a new kind of deformable
model—topology-adaptive explicit deformable models such
as the topology-adaptive snake proposed by McInerney and

Terzopoulos [9, 10] and the discrete triangle model of
Lachaud and Montanvert [11]. Following the similar re-
search direction, we had also developed a new topology-
adaptive explicit deformable model. Our new model is a
multiresolution PDE-based deformable surface whose defor-
mation behavior is governed by PDEs such as the weighted
minimal surface flow. The new model can either grow from
the inside or shrink from the outside. Furthermore, our
new model supports different LODs through the use of both
global subdivision and local/adaptive subdivision. Compar-
ing with existing topology-adaptive explicit models [9–11],
our new model has better control of the mesh quality and
model resolution, and is much simpler to implement since all
the computations are local. The new deformable model will
be very useful for a variety of medical image applications in-
cluding boundary reconstruction, surface visualization, data
segmentation, and topology discovery. In this paper, we il-
lustrate some of the experimental results of our new model
on medical image segmentation for both real (MRI/CT) and
synthetic volumetric datasets.

Since the proposed deformation framework is quite gen-
eral, it can also be applied to other application domains
that are outside the scope of biomedical imaging. For exam-
ple, it can be applied for 3D shape reconstruction from 2D
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multiple-view images and unorganized point clouds [12]. It
can also be applied for interactive mesh editing, sketching,
morphing, as well as shape warping [13].

2. ALGORITHM

The entire algorithmic pipeline of our new deformable mod-
el consists of the following major steps:

(1) model initialization;
(2) model growing;
(3) model relaxation;
(4) topology modification;
(5) model refinement.

2.1. Model initialization

The model can be initialized either interactively by the user
as a small seed model that can grow from the inside, or au-
tomatically by the system as a bounding box that will shrink
from the outside. Any closed polyhedron can be used as a
seed model. If the model is initialized as a simple bounding
box shrink-wrapping from the outside, several iterations of
global refinement are usually needed to increase the model
resolution so as to correctly capture the geometry and topol-
ogy of the shape. In this paper, we use Loop’s subdivision
scheme [14] for the purpose of global refinement.

2.2. Model growing

After the model is initialized, the model will grow (or shrink)
and deform. The deformation of the model is governed by
a PDE called weighted minimal surface flow proposed by
Caselles et al. [6]:

∂S

∂t
=
(

(v + H)g −∇g ·
ρ

N
) ρ

N ,

S(0) = S0.
(1)

S = S(t) is the 3D deformable surface, t is the time param-
eter, and S0 is the initial shape of the surface. H is the mean

curvature value of the surface,
ρ

N is the unit normal vector
of the surface, and v is a constant speed that will enable the
convex initial shape to capture nonconvex, arbitrary compli-
cated shapes. The nonzero constant velocity is also useful to
avoid the model getting stuck into the local minimum dur-
ing the evolution process. g is the monotonic, nonincreasing,
nonnegative weight function that enables the model to inter-
act with the datasets, and will stop the deformation of the
model when it reaches the object boundary. In this paper, g
is defined as the commonly used 3D edge detector:

g(S) = 1

1 +
∣∣∇(Gσ ∗ I(S)

)∣∣2 . (2)

Here, I is the volumetric density function, and Gσ ∗ I is
the smoothed density function by convoluting with a Gaus-
sian filter with variance σ . The surface evolution process is

approximated using an explicit iterative equation:

S(p, t + Δt) = S(p, t) + F(p, t)Δt, (3)

where F(p, t) is the evolution speed of the surface at the cur-
rent position p and at the current time t, and is calculated by
the right-hand side of (1). To calculate the mean curvature of
the surface, we employ the discrete curvature estimator pro-
posed by Desbrun et al. [15]:

H = 1∑
j∈N1(i)

(
cotαj + cotβj

)

×
∑

j∈N1(i)

(
cotαj + cotβj

)(
xi − xj

)
.

(4)

Here xj is one of the vertices at the one-neighborhood of xi.
αj and βj are the two angles opposite to the edge connect-
ing the two vertices xi and xj , and H is the mean curvature
vector at vertex xi. In essence, (1) controls how each point
in the deformable surface should move in order to minimize
the weighted surface area. The detected object is then recon-
structed by the steady-state solution of the equation St = 0
(i.e., the velocity is zero).

In order to control both the smoothness of the model
and the size of each triangle during the model-deformation
phase, we must allow the model to be able to dynamically
change its degrees of freedom during the deformation pro-
cess. This is achieved using the local subdivision. If the area
of an active face (on the model) is larger than a certain user-
defined threshold, then this face will be subdivided into four
smaller triangles by splitting the middle positions of its three
edges.

2.3. Model relaxation

To ensure that the numerical simulation of the deformation
process proceeds smoothly, we must maintain the regularity
of the mesh such that the mesh has a good node distribu-
tion, a proper node density, and a good aspect ratio of the
triangles. This is achieved by the incorporation of the tan-
gential Laplacian operator, and three mesh operations: edge
split, edge collapse, and edge swap. Laplacian operator, in its
simplest form, moves repeatedly each mesh vertex by a dis-
placement equal to a positive scale factor times the average
of the neighboring vertices. Consider a mesh vertex P and its
neighbors Q1,Λ,Qn, the Laplacian operator U is

U(p) = 1
n

n∑
i=1

Qi − P. (5)

The tangential Laplacian operator is used to maintain a good
node distribution and is defined as

T(p) = C
[
U − (U • n)n

]
, (6)

where n is the mesh normal at vertex P and C is a positive
constant.

Edge split and edge collapse are used to keep an appropri-
ate node density. An edge split is triggered if the edge length
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is bigger than the maximum edge length threshold. Similarly,
an edge will be collapsed if its length is smaller than the mini-
mum edge length threshold. Edge swapping is used to ensure
a good aspect ratio of the triangles. As suggested by Kobbelt
et al. [16], this can be achieved by forcing the average valence
to be as close to 6 as possible. An edge is swapped if and only
if the quantity

∑
p∈Δ (valence(p)− 6)2 is minimized after the

swapping.

2.4. Topology modification

In order to recover a shape of arbitrary, unknown topol-
ogy, the model must be able to modify its topology prop-
erly whenever necessary. In general, there are two kinds of
topology operations: (1) topology merging, and (2) topology
splitting. We will explain these two operations in the follow-
ing two subsections, respectively.

2.4.1. Topology merging

We propose a novel method called “lazy merging” to han-
dle topology merging. The basic idea is that whenever two
nonneighboring vertices are too close to each other, they will
be deactivated (i.e., not allowed to move). Topology merging
will happen only after the deformation of the model stops
and all the vertices become nonactive. There are three steps
in the topology merging operation: (1) collision detection, (2)
merging-vertices clustering, and (3) multiple-contours stitch-
ing.

Collision detection

Collision detection is done hierarchically in two different lev-
els: coarser-level and finer-level. Coarser-level collision de-
tection is mainly for the purpose of collision exclusion. For
each active vertex V , we will calculate its distance to all other
nonneighboring active vertices. Vertices whose distance to
the current vertex V is bigger enough so that no collision
will happen between them will be excluded from collision
detection in the next level. Otherwise, they will be passed
to the finer-level collision detection. For each face f with
three corner points (u, v,w) that is adjacent to one of the ver-
tices being passed into the finer level of collision detection,
we will calculate the distance between a number of sample
points αu + βv + γw of the face f with barycentric coor-
dinates α + β + γ = 1 and the current vertex V . If at least
one of these distances is smaller than the collision threshold,
the two corresponding vertices will be marked as merging
vertices and will be deactivated. To further speed the per-
formance, a uniform occupancy grid can be superimposed
on the domain space for faster collision detection. Each ver-
tex of the object will belong to a grid cell, and each grid cell
will store the index/pointer of the vertices that belong to the
current grid cell. At the beginning of each deformation step,
the occupancy grid needs to update its vertices information.
This can be done locally since only a few vertices will move
at each deformation step, and it usually takes constant time,
or at most O(n).

Merging-vertices clustering

After all the merging vertices have been deactivated, we need
to divide them into several connected clusters. We randomly
pick any merging vertex and find all of its connected merging
vertices by a breadth-first search. We recursively do this un-
til all the merging vertices belong to certain merging vertex
clusters. Then for each cluster, we will remove all its interior
vertices, and put all its boundary vertices into a linked list.
We called this algorithm “lazy merging,” and is based on the
following observation: when two or more propagating fronts
are merging with each other, only the boundary regions will re-
main, all the interior regions will disappear (i.e., removed).

Multiple-contours stitching

After the merging-vertex linked lists have been created,
we need to stitch them together. We propose a “multiple-
contours stitching” algorithm that is based on the proxim-
ity information between merging vertices. The algorithm
iteratively connects each vertex in the linked list with its cor-
responding merging vertex in another linked list, and cre-
ates triangle strips that connect the two contours. If there are
more than two contours that need to be stitched together,
then there may be holes generated in the center of multiple
contours. A hole-filling operation is conducted by inserting
a new vertex in the center of the gap and connecting it with
all the vertices in the gap. Figure 1 illustrates the three steps
involved in the “multiple-contours stitching” algorithm.

(1) For each vertex in the linked lists, find its closest vertex
in other linked lists.

(2) Based on the proximity information obtained from the
previous step, find a pair of vertices A and B such that
they are adjacent to each other in the linked list L (see
Figure 1(a)), and their closest merging vertices A′ and
B′ are also adjacent to each other in the correspond-
ing linked list L′, in addition, the closest merging ver-
tices of A′ and B′ are A and B, respectively. Start from
this pair of vertices A and B, iteratively go through the
linked lists and if possible, connect each pair of adja-
cent vertices in one linked list to a corresponding ver-
tex in another linked list and create a new triangle.
Alternatively, we can search through all pairs of ver-
tices that are adjacent to each other in their respec-
tive link lists, and find the closest two pairs of adjacent
vertices A and B, and A′ and B′, whose summation
‖A − A′‖2 + ‖B − B′‖2 of the square of distance be-
tween the corresponding vertices (A,B) and (A′,B′) is
the minimum.

(3) If there are more than two linked lists to be stitched
together, then after stitching all the corresponding ver-
tices, there may be some in-between gaps that need to
be filled in. For example, in Figure 1(a), there is a gap
between the linked lists L, L′, and L′′ that consists of
vertices B, C, C′′, C′, and B′. We filled in the gap by
creating a new vertex E at the center and by connect-
ing the new vertex E with all the other vertices in the
loop (see Figure 1(b)).
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Figure 1: Multiple-contours stitching. (a) New triangles are created by connecting corresponding vertices between different linked lists. A
gap that consists of vertices B, C, C′′, C′, and B′ is generated and need to be filled in. (b) The gap is filled in by creating a new vertex E in the
center and connecting it with all other vertices in the gap.

2.4.2. Topology splitting

Topology splitting occurs when a part of the surface becomes
too narrow and intends to shrink itself to a single point. In
this scenario, the surface has to split up into two parts pre-
cisely at that location. In this paper, we use a method sim-
ilar to the one proposed by Kass et al. [1]. In particular,
if there exist three neighboring vertices which are intercon-
nected to each other, but the face consisting of these three
vertices does not belong to the model (i.e., a virtual face),
then if the length of any of the three edges of the virtual face
is smaller than the minimum edge length threshold and thus
needs to be collapsed, a split operation is triggered. For ex-
ample, in Figure 2, face ABC represents a virtual face that
needs to be split because the length of the edge BC is smaller
than the threshold. To properly handle the split operation,
we divide the surface exactly at this location by cutting it into
two open sub-surfaces. Then we close the two split-in-two
surfaces using two faces A1B1C1 and A2C2B2 whose orien-
tations are opposite to each other. Finally, we reorganize the
neighborhood around the new faces A1B1C1 and A2B2C2,
while removing the old vertices A, B, and C from the model.

2.5. Model refinement

Once an initial shape of the object is recovered, the model
can be further refined several times to improve the fitting
accuracy. In this paper, we have implemented two kinds of
model refinement: global refinement and local/adaptive re-
finement. The decision of which method to be employed
can be made either interactively by the user (whether he/she
prefers a more uniformed mesh or an adaptively sampled
mesh), or automatically by the system. The system can make
a technically sound decision by calculating the variance of
the fitting accuracy of the current model. If the variance
of the fitting accuracy is very low, then the underlying ob-
ject must be relatively smooth and global refinement will
be a good choice. Otherwise, adaptive refinement will be
used to recover the fine details embedded in the underlying
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Figure 2: Topology splitting by splitting the virtual face ABC into
two faces A1B1C1 and A2C2B2 whose orientations are opposite to
each other.

object. Global refinement is conducted by Loop’s subdivision
scheme [14].

Adaptive refinement is guided by the fitting accuracy.
Various kinds of metrics can be used to evaluate the fit-
ting accuracy over each triangle. For example, if the object
boundary is well defined, then the fitting accuracy can be de-
fined as the maximum or average distance of the triangle to
the object boundary. However, for most of the medical im-
age datasets including those obtained from image modalities
such as CT or MRI, the object boundary is unknown; in this
case, the curvature of the triangle can serve as the fitting ac-
curacy. The curvature of the triangle can be defined as the
summation of the mean curvature of its three vertices, which
can be calculated by the aforementioned discrete curvature
estimator of (4) in Section 2.2. At each level of adaptive re-
finement, all the triangles whose fitting accuracy is below the
user-specified threshold will be quadrisected. The deforma-
tion of the model will resume only among those newly re-
fined regions. Several levels of adaptive refinement can be
applied until a user-specified fitting accuracy has been met.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Reconstruction and segmentation of an MRI volumetric dataset of a human brain.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Segmentation of a CT volumetric dataset of a human vertebra.

3. RESULTS

In this section, we will show some experimental results ob-
tained from our new model on both real and synthetic volu-
metric datasets in medical imaging applications. Note that
in all the following figures, red regions represent parts of
the model that are still active and deforming, blue region
represent parts of the model that have already reached the
boundary of the object and are not active anymore. The in-
put dataset of Figure 3 is an MRI brain dataset of size 91 by
109 by 91 voxels. Figure 3(a) is the seed model (shown as
green lines) enclosing the volumetric dataset (shown as cyan

points). Figure 3(b) to Figure 3(d) are the three snapshots
during the deformation process. Figure 3(e) is the wireframe
view of the initial recovered shape. Figure 3(f) is the shape
after one level of global refinement. Figure 3(g) is the shape
after another level of adaptive refinement. Figure 3(h) is the
rendered view of the same model of Figure 3(g). The in-
put dataset of Figure 4 is obtained from CT scanning of a
phantom of the vertebra. The data size is 128 by 120 by 52
voxels. Figure 4(a) is the model initialization stage with the
seed model enclosing the volumetric dataset. The four fig-
ures Figure 4(b) to Figure 4(e) are the snapshots of the model
while they are still deforming, we can see that the topology
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Segmentation of a CT volumetric dataset of a lobster.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6: Segmentation of a synthetic volumetric dataset of the union of two disjoint tori.

of the model has been correctly modified. Figure 4(f) is
the wireframe view of initial recovered shape of the model.
Figure 4(g) is the refined shape after one level of global re-
finement. Figure 4(h) is the rendered view of the same shape
in Figure 4(g). The input dataset of Figure 5 is a lobster
dataset generated by CT scan with 128 by 128 by 128 vox-
els. Figure 5(a) shows the initial seed model (shown as tiny
red dot) inside the volumetric dataset. This illustrates that
the new model cannot only shrink from the outside of the
dataset, but can also grow from the inside of the dataset.
The middle two figures Figure 5(b) and 5(c) are the two
snapshots of the model before and after the topology modi-
fication. Figure 5(d) is the wireframe view of initially recov-
ered shape. Figure 5(f) is the wireframe view of the shape af-
ter one level of global refinement. Figure 5(g) is the shape
after another level of adaptive refinement. Highly detailed
features such as the tails are well represented. Figure 5(h)
is the rendered view of the same model of Figure 5(g). The
input of Figure 6 is a synthetic volumetric dataset gener-
ated by the union of two disjoint tori with 100 by 100
by 100 voxels. Just like previous examples, Figure 6(a) is

the model initialization stage. Figure 6(b) to Figure 6(c) are
the two snapshots of the model deformation process. The
topology modification process is illustrated in Figure 6(d) to
Figure 6(e). Figure 6(f) is the wireframe view of the initial re-
covered shape. Figure 6(g) is the refined shape after one level
of global refinement. Figure 6(h) is the rendered view of the
same model in Figure 6(g). Table 1 summarizes the informa-
tion of the recovered shape, including the number of vertices,
edges, and faces for each model, and the running time. The
running time is measured on an Intel Pentium 4 M 1.6 GHz
Notebook PC with 384 MB internal memory.

4. CONCLUSION

We have proposed a topology-adaptive multiresolution
deformable surface that is very useful for medical image ap-
plications such as boundary reconstruction, surface visual-
ization, data segmentation, and topology discovery. The de-
formation of the new model is governed by PDEs such as the
weighted minimal surface flow. In comparison with existing
topology-adaptive explicit models, our model is natural and
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Table 1: Running time information.

Figure no. Vertices no. Faces no. Edges no. Time (s)

3(e) 436 868 1302 21
3(f) 1666 3328 4992 79
3(g) 4762 9520 16280 468
4(f) 759 1518 2277 58
4(g) 3082 6164 9246 141
5(e) 362 724 1086 26
5(f) 1693 3386 5079 96
5(g) 5591 11182 16773 367
6(f) 493 986 1479 28
6(g) 1989 3978 5967 23

intuitive, easy to use and implement, hierarchically flexible,
and has much better control of the model quality and res-
olution. Significantly different from the level-set approach,
our new model always maintains the explicit representation
of the geometry and topology, making it a powerful tool for
topology interrogation and geometric recovery. More im-
portantly, our model is uniquely suited for modeling time-
varying datasets (because of its PDE relevance) such as 3D
motion tracking for medical imaging analysis. We are cur-
rently exploring research topics along this direction.
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