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Abstract

Declines in period life expectancy at birth (PLEB) provide seemingly intuitive indicators of the

impact of a cause of death on the individual lifespan. Derived under the assumption that future

mortality conditions will remain indefinitely those observed during a reference period, however,

their intuitive interpretation becomes problematic when period conditions reflect a temporary

mortality “shock”, resulting from a natural disaster or the diffusion of a new epidemic in the pop-

ulation for instance. Rather than to make assumptions about future mortality, I propose mea-

suring the difference between a period average age at death and the average expected age at

death of the same individuals (death cohort): the Mean Unfulfilled Lifespan (MUL). For fine-

grained tracking of the mortality impact of an epidemic, I also provide an empirical shortcut to

MUL estimation for small areas or short periods. For illustration, quarterly MUL values in 2020

are derived from estimates of COVID-19 deaths that might substantially underestimate overall

mortality change in affected populations. These results nonetheless illustrate how MUL tracks

the mortality impact of the pandemic in several national and sub-national populations. Using a

seven-day rolling window, the empirical shortcut suggests MUL peaked at 6.43 years in Lom-

bardy, 8.91 years in New Jersey, and 6.24 years in Mexico City for instance. Sensitivity analy-

ses are presented, but in the case of COVID-19, the main uncertainty remains the potential

gap between reported COVID-19 deaths and actual increases in the number of deaths induced

by the pandemic in some of the most affected countries. Using actual number of deaths rather

than reported COVID-19 deaths may increase seven-day MUL from 6.24 to 8.96 years in

Mexico City and from 2.67 to 5.49 years in Lima for instance. In Guayas (Ecuador), MUL is esti-

mated to have reached 12.7 years for the entire month of April 2020.

Introduction

For months, the numbers of deaths from the novel coronavirus disease 2019 (COVID-19)

have become part of the daily news cycle the world over. Even when related to the population

size in deaths per capita ratios, however, these numbers do not really provide any intuition for
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the magnitude nor the dynamics of the pandemic. Quite useful for between-population com-

parisons, the age standardization of these ratios does not make them more easily interpretable.

The period life expectancy at birth (PLEB) is probably the most readily interpretable of the

period indicators mortality. Translating a number of deaths from a given cause into its impact

on PLEB involves multiple steps but is fairly straightforward [1, 2]. Unfortunately, the intuitive

appeal of the PLEB, its interpretation as a measure of the individual lifespan, derives from the

assumption that period mortality conditions will continue to prevail indefinitely. Mortality

conditions are always changing, but when these changes are relatively steady, changes in PLEB

remain interpretable as changes in individual longevity [3]. When declines in PLEB are

induced by a relatively rapid and likely temporary increase in mortality, such as currently

experienced with the COVID-19 pandemic, however, they become hardly interpretable as

indicators of changes in the individual lifespan [4].

The interpretation is even more problematic when PLEB or changes therein are estimated

for smaller populations and shorter periods of time. Tracking the pandemic at a finer-grained

geographical and temporal scale undoubtedly provides better insights on the pandemic than

annual, national averages [5–7]. But while the assumption underlying an annual PLEB esti-

mate—that mortality conditions of a given year will be repeated year after year in the future—

may seem unlikely, the seasonality of mortality makes the indefinite repetition of the mortality

conditions in any fraction of a year plainly impossible. Referring to mortality conditions not

only in a short period but also in a small area, these “pseudo” PLEB estimates [8] build on

assumptions akin to a Groundhog-Day [9] time loop repeating itself in a small area from

which individuals are unable to leave.

Aware of the pitfalls of interpreting changes in PLEB at the individual level, demographers

may only provide them as macro-level measures of mortality shocks across time and place, but

their widespread misinterpretation during the COVID-19 pandemic reveals the lack of a both

interpretable and scalable, over space and time, measure of what changing mortality conditions

mean for the individual lifespan. This article proposes such a measure, the Mean Unfulfilled

Lifespan (MUL). Making no assumption about future mortality, the MUL translates past

changes in mortality into an average difference in the length of lived lives. That difference is

obtained by comparing the actual average age at death during a given period and the expected

ages at death of the same individuals (death cohort) in the absence of mortality changes, whether

induced by a specific cause of death or by an event affecting multiple causes of death. The MUL

remains interpretable for populations of any size and for periods of any length, and can be esti-

mated from data on excess deaths or cause-specific deaths, as illustrated here with quarterly

COVID-19 mortality data. The MUL also equals the product of (1) the proportion of deaths in a

population and given period from a cause or due to an event of interest and (2) a weighted aver-

age of counterfactual life expectancies by age and sex in the absence of that cause or event of

interest, with weights provided by the distribution of deaths from that cause or due to that event

of interest in the population and given period. In the case of COVID-19, I show that for a given

population the value of that weighted average only changes very slowly over time, providing an

easy short-cut for fine-grained tracking of the impact of pandemic on the individual lifespan.

Conceptual detour

Assessing PLEB reductions induced by a specific cause or event requires two period life tables,

one representing the prevailing mortality conditions and another one representing the coun-

terfactual mortality conditions expected in the absence of that cause or event. The assessment

involves a relatively copious amount of life table manipulations, but decades ago Nathan Key-

fitz provided most useful insights as to what these manipulations boil down to. Considering
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the related issue of estimating the increase in PLEB brought by the permanent elimination of a

cause of death, he summarized that the increase “depends on the average time that elapses

before the persons rescued will die of some other cause” [10]. Conversely, the decrease induced

by a new cause of death depends on the average time that would have elapsed before the per-

sons who died from the new cause would have died from other causes.

This average time can be derived from the synthetic cohort approach modelled in the

period life table where each death at age a from a cause C, dC(a), reduces the number of per-

son-years lived by the life expectancy at age a in the absence of that new cause, eo-C(a). This

commonly assumes that persons dying from the new cause would have had the same life

expectancy in the absence of that cause as same-age persons who survived that cause. This

common assumption may appear unlikely, and interactions between causes of death can be

incorporated instead, but the data requirements are substantial. Under the common assump-

tion, the difference in PLEB is thus the average over all members of the synthetic cohort, l0 (the

radix of the life table), of the difference in person-years lived by cohort members:

DPLEB ¼
1

l0
:
R o

0
ðdCðaÞ:eo� CðaÞÞda ð1Þ

Keyfitz’ insight relates to the concept of “potential years of life lost” [11] developed a couple

of decades earlier still. The initial approach, designed to measure premature mortality, com-

pared ages at death to a fixed value (70 or 75 years) [12]. This approach is not suited to study

cause of deaths at older ages since deaths at ages above the fixed value are not considered [13].

In burden-of-disease assessments, it has become customary to estimate Years of Life Lost

(YLL) as:

YLL ¼
R o

0
ðDCðaÞ:eo�ðaÞÞda ð2Þ

where DC(a) is the number of deaths from a certain cause C at age a observed in the population

during a reference period and eo
�

(a) is life expectancy at age a in a counterfactual life table.

YLL to COVID-19 have been estimated using this approach [14–16].

Three differences between the two above equations can be observed. First, YLL are esti-

mated from actual numbers of deaths by age rather than from numbers of life table decre-

ments. This implies that the YLL estimate is sensitive to the age distribution of the population,

as in turn it affects the distribution of deaths by age. While the PLEB is not properly speaking

an age-standardized measure [17], it equals the inverse of the “stationary” death rate, that is, a

weighted average of the period age-specific death rates with weights derived from these death

rates through life table construction. Using these internally derived weights rather than an

external, standard age distribution, the stationary death rate and PLEB are independent of the

actual age composition of the population. This relative advantage of the difference in PLEB

comes at the cost of using a “stationary” age distribution of deaths, however, represented by

the life table decrements that result from indefinitely subjecting the population to the mortality

conditions of the period. As discussed in the introduction, this assumption is precisely what is

problematic for studying the impact of a mortality shock or an emerging disease such as

COVID-19. Moreover, the actual distribution of deaths can be used in a population of any size

and periods of any length, allowing for the mortality impact to be tracked on short temporal

and small spatial scales for which interpreting differences in PLEB hardly makes sense.

The second difference refers to the counterfactual life expectancies. In global burden-of-dis-

ease assessments, a universal life table representing optimal survival conditions is typically

used. This has the advantage of making YLL for different populations additive—allowing for

the derivation of a global estimate of YLL due to a cause by simple summation. However,
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using a universal life table may misrepresent the actual gains from averting a death in a specific

population.

The last difference concerns the denominator, or lack thereof in YLL. Unnecessary for com-

parisons between different causes of death in the same population, for which YLL was initially

intended, the introduction of a denominator is required for meaningful comparisons across

populations [18]. At least three denominators for the YLL can be found in the literature. The

first one is the total number of years that can be expected to be lived by members of the popu-

lation, of which YLL is a fraction. That fraction is thus a ratio of death over population size,

with both deaths and population members weighted by life expectancies at their respective

ages. This yields a coherent measure with potential years lived in both the numerator and the

denominator, but not one that can be interpreted in terms of individual longevity (in years per

person). Another denominator is the total population size, which yields a ratio in years person.

The corresponding ratio is a less coherent measure, however, as it includes in the denominator

all the individuals in the population, including many that survived the mortality shock and do

not contribute to YLL in the numerator. In turn, this complicates providing a precise interpre-

tation for the value of YLL per capita. A third denominator is the number of deaths from the

cause of interest in the population during the reference period. This yields an average YLL

(AYLL) per such deaths, DC:

AYLL ¼
R o

0
ðDCðaÞ:eo�ðaÞÞda

DC
¼
R o

0

DCðaÞ
R o

0
DCðaÞda

 !

:eo�ðaÞda ð3Þ

The AYLL thus represents the average (universal) life expectancy of the population mem-

bers who died from the specific cause during a given period. On the one hand, it is a coherent

measure as its denominator now includes only the population members who died and contrib-

uted to lost years in the numerator. On the other hand, it is only a function of the distribution

of deaths by age, irrespective of the prevalence of that cause of death. The AYLL thus cannot

provide a measure of the intensity of a mortality shock.

Considering the advantages and limitations of the extant measures, I propose to add one

measure of the mortality impact of a cause of death or an event on the individual lifespan. This

measure, the Mean Unfulfilled Lifespan (MUL), is intended for situations where the underly-

ing assumptions of PLEB might be implausible, and thus based, as the estimate of YLL, on

actual numbers of deaths in a population during a period rather than on life table decrements.

To retain its intuitive interpretation, however, the MUL is structured like the difference in

PLEB as summarized by Keyfitz and, using counterfactual life expectancies representing the

mortality conditions in the population of interest, similarly expressed as an average difference

in person-years lived per person. Since the life table radix, l0, equals the sum of all decrements

at all ages, the structural equivalence is maintained by defining the MUL as:

MUL≝
1

D
:
R o

0
ðDCðaÞ:eo� CðaÞÞda ð4Þ

where D is the total number of deaths (from all causes at all ages) during the reference period.

This intuitive interpretation of the MUL can be derived by rewriting this defining equation

as:

MUL ¼
R o

0
ððDCðaÞ:ðaþ eo� CðaÞ � aÞÞ þ ðD� CðaÞ:ða � aÞÞÞda

R o
0
ðDCðaÞ þ D� CðaÞÞda

¼

R o
0
ððDCðaÞ:ðaþ eo� CðaÞÞÞ þ ðD� CðaÞ:aÞÞda

R o
0
ðDCðaÞ þ D� CðaÞÞda

�

R o
0
ððDCðaÞ þ D� CðaÞÞ:aÞda
R o

0
ðDCðaÞ þ D� CðaÞÞda

ð5Þ
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where D-C(a) is the number of deaths from all causes but C at age a observed in the population

during the reference period. The second term represents the average age at death in a given

period. If we assume that individuals who die of other causes than C die at the same age as they

would have in the absence of cause C (no indirect effect of cause C on other causes of death),

and that individuals who die of cause C at age a would have otherwise lived to age a+e(a), the

first term represents the average expected age at death of the same individuals in the absence

of cause C. The difference between the average age at death in the population during a given

period and the average expected age at death of the same individuals in the absence of cause C,

the MUL can thus be interpreted as a measure of premature mortality for an average person

dying in a population and during a period of interest.

The assumption that cause C has no indirect effect on other causes of death is actually not

required. As will be shown below, one can also derive the MUL from data on all deaths, and dis-

tinguishing between deaths that, based on counterfactual “benchmark” mortality conditions, were

expected to occur in that period and those that were not, use the latter number of “excess” deaths

instead of deaths from a specific cause. Finally, note that the MUL differs from changes in average

ages at death across periods, which can be readily measured but may actually be positive with the

emergence of a new cause of death if that cause affects people who are older on average that those

dying from other causes. To sum up this conceptual detour, the MUL complements existing indi-

cators of the impact on the individual lifespan of a cause of death by providing a measure of the

average potential years of life lost to a specific cause of death, or to any mortality shock, for all pop-

ulation members dying in a certain period, regardless of their cause of death.

Empirical shortcut

Calculating the MUL for small geographical areas and short periods is not conceptually prob-

lematic since it captures the actual length of lives that ended there and then, unlike differences

in life expectancies whose interpretation in terms of reduced longevity requires assumptions

about future conditions. The demand on data (including a separate counterfactual life table for

each population of interest) is substantial, however, and the life table manipulations are not

particularly straightforward.

To simplify the estimation, the MUL can be rewritten as:

MUL ¼
DC

D
:

R o
0
DCðaÞ:eo� CðaÞda

DC
¼

DC

D
:PAYLL ð6Þ

The second term is similar to the AYLL in Eq (3), but again based on population-specific,

counterfactual life expectancies instead of a universal one, and is termed here the Population

AYLL (PAYLL) to underscore that difference. In a given population, the PAYLL is a weighted

average of counterfactual life expectancies that are estimated from prior conditions. While

these do not change over time., their weights are the ratios:

DCðaÞ
DC

¼
MCðaÞ:NðaÞ

MC:N
¼

MCðaÞ
MC

:
NðaÞ
N

ð7Þ

where MC and MC(a) are the all-age death rate and the death rate at age a from a specific

cause, and N and N(a) are the total population size and number of individuals at age a in the

population. These weights should also be expected to vary little within short periods because

their values depend on the population composition, N(a)/N, and on the age pattern of cause-

specific death rates, MC(a)/MC, both of which should vary little within short periods.

This suggests that the value of PAYLL can be expected to only change slowly over time and

to be relatively close across populations with similar life expectancies and population
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compositions. MUL values for a sub-population or during a sub-period can then be approxi-

mated as the product of the PAYLL for the whole population or the entire period and the

time-varying all-age ratio of deaths from a specific cause to all deaths, DC/D, in the sub-popula-

tion or during that sub-period. As noted above, this can be readily extended to any mortality

shock, with data on excess deaths and all-cause deaths.

Materials and methods

Methods

The equations defining YLL and the MUL appear deceivingly simple. To implement them, one

has to apply estimates of life expectancies, which refer to exact ages, to numbers of deaths that

are available or can be estimated only for age intervals. The varying value of life expectancy on

a closed age interval is typically approximated by linear interpolation [19], in which case the

contribution of the closed age interval between ages x and x+n to the MUL equals:

R n
0
DCðxþ aÞ:eo� Cðxþ aÞda

D
¼ nDC

x

D
:eo� Cðxþ na

C
x Þ ð8Þ

where nDx
C is the number of individuals between ages x and x+n who died of cause C during

the reference period and naxC is the average number of years lived after age x by these individu-

als. In turn, life expectancy at exact age x+naxC can be derived by linear interpolation between

the values of life expectancy at ages x and x+n.

The linear interpolation is more problematic for wider the age intervals and for older age

groups. In the 2018 US life table for males for instance [20], life expectancy declines by 2.9

years between ages 75 and 80 and by 2.4 years between ages 80 and 85. In this case, the linear

approximation over-estimate life expectancy in the interval. The average number of years lived

after age 75 by individuals dying between ages 75 and 85 is 5.4 years, and linear interpolation

would yield a life expectancy at age 80.4 years of 8.5 years, whereas life expectancy has already

dropped to 8.4 years at age 80.

This upward bias is particularly undesirable if individuals dying of the cause(s) of interest

might be expected to suffer from other long-term conditions that would increase their risk of

mortality from other causes. For COVID-19 victims, for instance, a correctly estimated life

expectancy for their exact age would already over-estimate their potential years of life lost by

ignoring well-documented “co-morbidities”. As for the open-ended interval, linear approxi-

mation requires setting a somewhat arbitrary upper age limit. Relatively minor for premature

mortality at relatively young ages, these issues make linear approximation more problematic to

apply when the cause(s) of interest affect older individuals. In the case of COVID-19 deaths for

instance, close to 60% of these deaths were above age 75 years (Fig 1) and reported in just one

ten-year closed interval (75 to 84 years) and one open age interval (over 85 years).

In this respect, working with all deaths in a given period rather than with deaths from a spe-

cific cause of interest presents an important empirical advantage in addition to the benefit of

assessing both the direct and the indirect effects of that cause of death. Using all deaths in a

closed age interval between ages x and x+n, nDx, one may first calculate the contribution to the

MUL of the deaths that were expected to occur under the counterfactual mortality conditions,

nDx
-C. For these deaths, the difference in length of life averages to the difference between the

average number of years lived in the age interval under the prevailing conditions, nax, and

under the counterfactual conditions, nax-C. The advantage of this approach is that setting an

arbitrary upper value for the open-ended age interval becomes unnecessary. Having already

reached age N, all the individuals who died in the open age interval in the period would all

have been expected to die in the same open-ended age interval under the counterfactual
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mortality conditions, albeit not necessarily in that same period. For all the open-interval deaths

over age N, DN+, the difference in length of life thus averages to the difference between life

expectancy at age N under the prevailing conditions, eo(N), and under the counterfactual con-

ditions, eo-C(N). With this approach, only the issue of estimating the average reduction in

length of lived lives on closed age intervals from values of life expectancies that vary on these

age intervals remains, and pertains to “excess” deaths, nDx—nDx
-C.

An alternative to linear interpolation derives from the fact that an individual’s expected

length of life (eo(x)+x) gradually increases with age x. Life expectancy at any age is thus larger

than the difference between life expectancy at an earlier age and the difference between the

two ages:

R n
0
Dðx þ aÞ:eoðxþ aÞda >

R n
0
Dðxþ aÞ:ðeoðxÞ � aÞda ¼ nDx:ðe

oðxÞ � naxÞ ð9Þ

Applying this approximation to excess deaths on any closed age interval will induce some

underestimation of the average life expectancy of individuals dying on the interval. As dis-

cussed above, however, this may be preferable to the overestimation induced by linear interpo-

lation in situations where ignoring co-morbidities is likely to already entail some over-

estimation of potential years of life lost.

Adding the contributions of the different types of deaths yields:

MUL ffi
1

D
:
PN� n

x¼0;n nD
� C
x :ðna

� C
x � naxÞ þ ðDNþ:ðe

o� CðNÞ � eoðNÞÞÞ þ
PN� n

x¼0;nðnDx � nD� cx Þ:ðe
o� c
x � naxÞ

� �
ð10Þ

Fig 1. Distribution of provisional COVID-19 death counts, by sex- and age-groups, USA as of 5/13 (54,860 deaths), 7/1 (112,223 deaths), 9/30

(194,087 deaths) and 12/30 (301,671 deaths). Source: Centers for Disease Control and Prevention (CDC).

https://doi.org/10.1371/journal.pone.0254925.g001
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Rearranging the sums corresponding to the closed age intervals and using the multiple-dec-

rement life table relationship eo(N)/ eo-C(N) = D-C
N+/DN+, this can be rewritten as:

MUL ffi
1

D

XN� n

x¼0;n

ðnDx:ðna
� C
x � naxÞ þ ðnDx � nD

� C
x Þ:ðe

o� C
x � na

� C
x ÞÞ þ ððDNþ � D� CNþÞ:e

o� C
N Þ

 !

ð11Þ

Materials

To illustrate the alternative approximation in Eq (11), I estimate quarterly MUL in the last

three quarters of 2020 and the first quarter of 2021 in different national and sub-national pop-

ulations. This requires for each of these populations life table values of exo-C and nax-C corre-

sponding to survival conditions in the absence of COVID-19 whose. Combined with the

number of individuals by sex and age-group, the life table values of age-specific death rates,

nmx
-C, then provide the expected numbers of deaths nDx

-C in the absence of COVID-19.

National population by age and sex as of July 1, 2020 and life table functions for 2015–20 and

2020–25 were obtained from the UN Population Division [21]. From these, linear and expo-

nential interpolation yielded counterfactual nmx
-C and npx-C values, from which exo-C and nax-C

were then derived using life table relationships. Population data and life tables for sub-national

populations in Italy, Mexico, Peru and the US were obtained from national statistical agencies

[22–27].

New population exposure and life tables representing actual mortality conditions (with

COVID-19) were derived for each quarter to provide the corresponding values of nax. The

construction of these life tables requires quarterly numbers of deaths by sex and age-group,

nDx [28]. In countries where vital statistics are incomplete not available yet, but estimates of

COVID-19 deaths are available, these numbers, nDx, can be obtained by adding estimates of

COVID-19 deaths to the counterfactual number of deaths in the absence of COVID-19, nDx
-C,

through a multi-decrement life table to adjust for competing risks of deaths. When estimates

of COVID-19 deaths are not broken down by sex and age-group, an alternative is to use a ref-

erence set of age-and-sex death rates from COVID-19 from another population for which

these rates are deemed reliable [29]. Centers for Disease Control and Prevention (CDC) data

for the USA in 2020, the country with the largest number of COVID-19 deaths in 2020, were

used here as the reference set of age-and-sex death rates from COVID-19 [30]. Data on

COVID-19 deaths by sex and age-group from Brazil [31] and the Netherlands [32] were used

to investigate the results sensitivity to this assumption and to the CDC’s age groupings.

Quarterly MUL and PAYLL were estimated from number of COVID-19 deaths by March

31, June 30, September 30 and December 31, 2020, and March 31, 2021 for national and sub-

national populations provided by the John Hopkins’ Coronavirus Resource Center [33]. Daily

values from the same source were also used to illustrate the short-cut in Eq (6). Another appli-

cation of Eq (6) for small-area populations used data on the monthly number of deaths by

province in Ecuador [34].

All of these data are publicly available and were downloaded from institutional websites.

Full results and sensitivity analyses are provided in Excel spreadsheets in the Supplementary

Files. R routines and intermediate data files (e.g., counterfactual life tables) are available on a

Github repository (heuveline/ind-comp-mort).

Results

Fig 2 shows quarterly MUL for both sexes combined in four selected sub-national populations:

Lombardy (Italian Region), New Jersey (US State), Mexico City (Mexican State), and Lima

(Peruvian Department). These populations were selected to illustrate trends in MUL because

PLOS ONE The Mean Unfulfilled Lifespan: A new indicator of the impact of mortality shocks on the individual lifespan

PLOS ONE | https://doi.org/10.1371/journal.pone.0254925 July 27, 2021 8 / 16

https://doi.org/10.1371/journal.pone.0254925


they have comparable population sizes (in the of order of 10 million) and belong to regions of

the world that the pandemic reached at different times. Quarterly MUL illustrate the peaking

of a first wave of COVID-19 deaths in Lombardy, New Jersey and Mexico during the second

quarter of 2020. While in the third and fourth quarter a decline and rebound are clear in Lom-

bardy and New Jersey, the trend was comparatively flat in Mexico City. A second wave peaked

in the last quarter of 2020 in Lombardy, but continued to develop into the first quarter of 2021

in New Jersey and Mexico City. As measured by MUL, the two waves had comparable impact

on the individual lifespan in Lombardy, but the second wave was less impactful than the first

in New Jersey whereas it was the opposite in Mexico City. In Lima, the trend appears to be the

reverse of that of Lombardy. The first wave peaked in the third quarter of 2020 and the second

wave began in the first quarter of 2021.

For a finer-grained representation of the temporal trend within a time period, Eq (6) can be

used with the assumption that PAYLL are population specific but invariant over that period.

The estimated quarterly PAYLL (see S1 Table) confirm the variations across populations, from

a low of 9.6 years in Bulgaria to a high of 26.1 years in Qatar. These differences can be explained

by different age compositions, with younger compositions giving more weight to remaining life

expectancies at younger ages, which are higher. As expected, however, in any given population,

PAYLL changes relatively little from one quarter to the next. Building on this, Fig 3 shows MUL

for a rolling seven-day period, derived from daily numbers of COVID-19 deaths and second-

quarter PAYLL in Lombardy, New Jersey and Mexico City, from mid-March to mid-July 2020.

First-wave peak MUL were reached at the end of March in Lombardy (6.43 years), three weeks

later in New Jersey (8.91 years) and not until early June in Mexico City (6.24 years).

Fig 2. Quarterly Mean Unfulfilled Lifespan (MUL) for both sexes, in years, selected populations.

https://doi.org/10.1371/journal.pone.0254925.g002
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Eq (6) can also be used to approximate MUL for small populations for which life table func-

tions might not be available, by “borrowing” the PAYLL from a larger population. This can be

illustrated for the province of Guayas, Ecuador, where the monthly numbers of deaths show a

marked increase in March, April and May. From a baseline of 1,700–2,000 per month in Janu-

ary, February and again in June, the number of deaths in April reached 12,425. This indicates

that 85.2% of deaths in that month might be considered “excess” death. Based on this ratio and

the second-quarter PAYLL derived for Ecuador (14.9 years, S1 Table), Eq (6) suggests that

individuals died 12.7 years younger, on average, that their expected age at death in April in the

province of Guayas. Illustrating the intensity of the mortality shock in Guayas, this monthly

MUL is substantially larger than even the peak seven-day MUL shown in Fig 3 for Lombardy,

New Jersey and Mexico City. It should be noted, however, that the Guayas estimate was

derived from excess deaths, whereas those in Fig 3 were derived from COVID-19 deaths only

—a difference discussed in the next section.

Discussion

The MUL is proposed here as an alternative to induced changes in PLEB to assess the impact

of a cause of death on the individual lifespan for situations where the assumptions underlying

life table construction are implausible, invalidating the usual interpretation of the PLEB. Com-

plementing existing measures based on YLL, MUL is similarly based on estimating the number

of potential years of life lost corresponding to deaths from a specific cause or excess deaths

from a specific event in a given period. As directly comparing Eqs (1) and (4) shows, by averag-

ing estimated potential years of life lost over the total number of deaths in the period, MUL is

structured like a difference in PLEB. The MUL retains the intuitive interpretation of a differ-

ence in PLEB as a change in average length of life, but for an actual cohort of individuals

(those dying in the period) subjected to prevailing mortality conditions rather than for a syn-

thetic cohort subjected to indefinitely constant conditions.

Fig 3. Seven-day Mean Unfulfilled Lifespan (MUL) for both sexes, in years, selected populations.

https://doi.org/10.1371/journal.pone.0254925.g003

PLOS ONE The Mean Unfulfilled Lifespan: A new indicator of the impact of mortality shocks on the individual lifespan

PLOS ONE | https://doi.org/10.1371/journal.pone.0254925 July 27, 2021 10 / 16

https://doi.org/10.1371/journal.pone.0254925.g003
https://doi.org/10.1371/journal.pone.0254925


To illustrate the derivation and interpretation of the MUL in the context of COVID-19

mortality, quarterly and seven-day MUL values were derived for different populations. As

argued above, the MUL is best calculated from estimates of excess deaths by age and sex

derived from period data on all-cause mortality by age and sex. In the case of COVID-19, a

number of countries with good vital statistics were affected early on and considerable effort

went into producing excess mortality estimates for these countries in a remarkably short time

[35]. In the majority of the affected countries, however, the absence of reliable civil registration

statistics precludes the indirect estimation of excess mortality—a limitation that can be

expected to be relatively typical on other instances of mortality shocks. Moreover, even in

countries with good vital statistics, data might not be available at the sub-national levels. To

illustrate MUL derivation with these data limitations, quarterly MUL values were calculated

instead from quarterly numbers of total (all-age) COVID-19 deaths in the population. This

involved four assumptions: (1) COVID-19 deaths are properly accounted for in each popula-

tion (unbiased “total” estimate), (2) all populations share an age-and-sex COVID-19 mortality

“pattern” (i.e., the same ratio of a given age-and-sex-specific death rate to the all-age, both-sex

death rate), (3) death rates from other causes are unchanged (the number of deaths from other

causes is only reduced to the extent that COVID-19 deaths reduce exposure to other causes of

deaths), and (4) individuals who died from COVID-19 would have faced the same risk of

death from other causes as any individual of the same age and sex.

As discussed above, the last one is a standard assumption of YLL-based measures, but none-

theless problematic in the case of COVID-19 due to the higher proportion of several underly-

ing long-term conditions (e.g., obesity) observed among COVID-19 victims. Adjusting for

differences in long-term conditions prevalence is very data demanding, however, and the

impact might not be as large as expected. A study performing this adjustment found that it

reduced the AYLL from COVID-19 in the United Kingdom from 13 to 12 years (average for

both sex) [36]. An alternative strategy was proposed here that underestimates the value of

potential years of life lost over an age interval by estimating its value at the beginning of the

age interval. As shown in the supplementary files, this yields quarterly PAYLL values for the

United Kingdom that vary between 11.9 and 12.0 years (S1 Table), values thus quite close to

what the adjustment for underlying long-term conditions might have provided. While there is

of course no guarantee that this strategy would apply equally well to causes of death other than

COVID-19, ignoring comorbidities will likely lead to some overestimation of AYLL for most

causes of death, and purposely underestimating the number of potential years of life lost will

likely be preferable in other situations as well.

With respect to the second assumption, age patterns of COVID-19 death rates are becom-

ing available for an increasing number of nations [37], and do appear to share exhibit strong

regularities with only modest variation in their slope except at the oldest ages [38]. The latter

seems to reflect higher infection rates in nursing homes in some European countries and the

USA [39]. There is also evidence of limited shifts in the age and sex patterns over time that

might be related to policies implemented to mitigate fatality rates among the most vulnerable

[40]. As shown in Fig 1 comparing the distribution of provisional COVID-19 death counts in

the USA at four points in 2020 (May 13, one of the earliest dates for which this distribution is

available, July 1st, September 30th and December 30th), death rates in the oldest age groups

might have declined relative to the death rates at other ages, but the changes were quite

modest.

Two sensitivity analyses were conducted to assess the effects of potential deviations from

the second assumption (see Supplementary Files). The first one substituted the actual sex and

age pattern in Brazil, the country with the second largest number of COVID-19 deaths in

2020, to the one derived by assuming the same COVID-19 mortality pattern as in the USA. As
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the slope of the Brazilian age pattern is a little less steep its US counterpart, the substitution

makes the distribution of the COVID-19 deaths younger, increasing quarterly MUL estimates

by about 8 to 9% (e.g., from 2.75 to 2.92 years at its peak, which in Brazil is reached in the third

quarter of 2020, as shown in Fig 2 for Peru). This suggests that using population-specific data

on COVID-19 mortality by age and sex might would improve MUL estimates, but not drasti-

cally so.

The second sensitivity analyses focused on the limitation of having data categorized as by

the CDC, in 10-year closed age groups and for an oldest age group of 85 years and over. This

open age-group may include a substantial share of COVID-19 victims (see Fig 1 for the USA),

with substantial differences in YLL within this group. This was investigated with data for the

Netherlands, as the country provides data for 5-year closed age groups and the open age group

95 years and over, estimating quarterly MUL with this age breakdown and after regrouping

deaths as categorized by CDC. MUL values estimated with the original breakdown were about

8% smaller than with CDC age intervals, with the open-ended interval accounting for a little

less than half of the difference. As shown for Lombardy in Fig 2, quarterly MUL in the Nether-

lands were larger in the second and fourth quarter, reaching .95-.96 years. With the open age

interval starting at 85 years, the quarterly estimates increase to .98 years, and additionally, with

10-year closed age intervals, to 1.04 years. The overestimation induced by coarse age grouping

is consistent with the fact that the age-pattern of COVID-19 mortality is a little steeper than

the age-pattern of overall mortality [41] but again the overestimation is relatively modest.

In the case of COVID-19, the main concerns with respect to MUL estimation relates to the

first assumption, namely, the proper reporting of COVID-19 deaths (first assumption). The

potential biases discussed above with respect to the second and fourth assumption amounted

to less than 10% changes in one direction or the other, but the ratios of excess deaths to

reported COVID-19 deaths estimated for some countries (e.g., 2.2 in Mexico or 2.7 in Peru)

[42] indicate that less than half of their COVID-19 deaths might have been accounted. If the

discrepancy between excess mortality estimates and reported COVID-19 mortality correspond

to under-reported COVID-19 deaths, Eq (6) can be used with an adjusted ratio DC/D. (If k is

the ratio DC/D derived from reported COVID-19 deaths and α is the ratio of excess to reported

COVID-19 deaths, the initial value of k should be multiplied by α.k/(1+(k.(α -1)) to obtain the

ratio of excess to total deaths and, based on Eq (6), so should the initial MUL value). With

ratios of 2.2 in Mexico and 2.7 in Peru for instance, the peak 7-day MUL values would increase

from 6.24 to 8.96 years for Mexico City and from 2.67 to 5.49 years for Lima.

Adjusting MUL values in this manner should perform well when excess deaths do not also

include excess deaths from other causes. Data from countries with good vital statistics, how-

ever, provides evidence against the assumption that death rates from other causes did not

change (third assumption). In a number of high-income nations, declines in death rates from

other causes are suggested by fewer excess deaths than reported COVID-19 deaths alone [43],

whereas US death rates from heart disease and unintentional injuries have increased markedly

during the pandemic [44]. In situations where a substantial portion of the discrepancy between

estimates of excess deaths and official numbers of COVID-19 deaths originates in changes in

other causes of deaths, the above adjustment of the MUL value through Eq (6) will not perform

as well. In the case of other death rates that increased during the COVID-19 pandemic, such as

unintentional injuries, because they tend to be at younger ages than COVID-19 deaths, equat-

ing excess deaths to unreported COVID-19 would lead to some underestimation of years of

lost life and, as a result, MUL. A similar gap can be observed considering estimates of changes

in PLEB that are now available in a number of nations [45] and that differ more from initial

estimates based on reported COVID-19 deaths only [46] than excess to COVID-19 death ratio

would have suggested.
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Overall, MUL is not only structurally similar to a difference in PLEB, but its computation is

also similar to that of a change in PLEB induced by incorporating additional deaths in a multi-

ple-decrement life table framework. Similar assumptions are required, and both estimates are

likely sensitive to a similar degree to the data quality issues discussed above, from the total

number of additional deaths to their age distribution. The main difference between the two

indicators is that, like YLL-based measures, MUL is not sex- or age-standardized and MUL

comparisons across populations that differ markedly in age composition will be biased. On the

one hand, all else equal, a younger population composition yields a younger distribution of

deaths and a higher PAYLL value. On the other hand, when the cause of interest is one that

affects older individuals more than all-cause mortality, as is the case for COVID-19, an older

population distribution contributes to a higher proportion of excess deaths relative to all

deaths. The two, opposite age-composition effects may partially off-set each other, but unlike

differences in PLEB, MUL remains dependent on population distribution. This advantage of

differences in PLEB over MUL comes at a substantial cost, however, since the internal deriva-

tion that rids differences in PLEB of the influence of population distribution assumes that

period mortality conditions will become permanent. Almost by definition, this assumption is

not tenable in the case of a mortality “shock.”

In such situations, MUL provides an unstandardized alternative to differences in PLEB,

more readily interpretable as an average difference in length of lives lived per person. Related

to other unstandardized measures such as the AYLL or YLL per capita, the MUL’s interpreta-

tion pertains to an actual death cohort, that is, population members who died during a certain

period rather than to a synthetic cohort as represented in the life table. To reiterate, the MUL

indicates the difference between their average age at death and their average expected age at

death had a temporary mortality shock not occurred. This interpretation does not build on

any assumption that these temporary conditions will either pass entirely or extend indefinitely

into the future. Moreover, MUL remains interpretable regardless of its temporal and geo-

graphical scale, pertaining to deaths in a given population and period, and can serve as a short-

term, micro-level indicator. As long as PAYLL can be assumed to be almost constant on a

period, MUL values can easily be approximated as the product of the corresponding PAYLL

and the ratio of excess to total deaths in the population during the period. In the specific case

of COVID-19 mortality, quarterly values were found indeed to change little from one quarter

to the next (S1 Table). This approximation can also be used for sub-area populations for which

the necessary data are only provided of the whole-area population, as long as the age composi-

tions of the sub- and whole-area populations can be held as relatively similar.

Supporting information

S1 Table. Full results. MUL and related indicators for all national and first-level sub-national

populations in Brazil, China, Italy, Mexico, Peru, Spain, and the United States of America.

(XLSX)

S1 File. Shortcuts. Estimation of MUL values for sub-periods or sub-populations in Lom-

bardy, New Jersey and Mexico City (Fig 3) and in Guayas, Ecuador.
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S2 File. Sensitivity Brazil. Sensitivity analysis using actual age distribution for Brazil.
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S3 File. Sensitivity Netherlands. Sensitivity analysis using actual age distribution for the

Netherlands.
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