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Introduction
Economic choice, the selection of options based on their value, is 
a core process in the repertoire of intelligent organisms (Hayden, 
2018; Pearson et al., 2014; Rangel and Hare, 2010; Rushworth 
et al., 2011). Neuroeconomic research has successfully identified 
some of the major brain regions associated with valuation and 
choice, especially the orbitofrontal cortex (OFC), ventromedial 
prefrontal cortex (vmPFC), dorsal anterior cingulate cortex 
(dACC), and ventral striatum (VS). These regions are activated 
by the values of offers and outcomes and show correlations with 
comparison-related processes (Bartra et al., 2013; Ebitz and 
Hayden, 2016; Haber and Behrens, 2014; Heilbronner and 
Hayden, 2016; Rushworth et al., 2011; Wallis, 2007). Lesion 
studies support the idea that these regions have a direct causative 
role in choice (e.g. Camille et al., 2011; Kennerley et al., 2006; 
Noonan et al., 2010). All measures point to some degree of spe-
cialisation within these regions, although their respective roles 
remain debated (Rushworth et al., 2011). While the locations of 
value-related processing are now established, the mechanisms of 
choice are not. Nonetheless, we believe that a series of recent 
studies have begun to limn something of a consensus view – if 
not a model, at least a framework for one.

A common proposal is that value comparison is implemented 
by direct competition, via mutual inhibition, between discrete 
sets of neurons whose responses correspond to the value of par-
ticular options (e.g. Chau et al., 2014; Hunt et al., 2012, 2015; 

Louie et al., 2011; Padoa-Schioppa, 2011; Rustichini and Padoa-
Schioppa, 2015; Soltani et al., 2006). From this perspective, 
value representations are aligned to neuron identity by a labelled 
line code: a neuron’s firing rate indicates a value and its identity 
(its notional label) indicates which option has that value. This 
stable relationship makes implementing choice straightforward: 
the two populations compete for control of a third set of neurons 
and whichever set of neurons wins the competition determines 
the chosen option. However, this approach introduces several 
problems. First, it necessitates redundant reduplication of 
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circuitry for computing value for each offer. Second, it requires 
precise wiring to implement it (or else a well-informed supervi-
sory system that dynamically creates that wiring.) Third, it does 
not readily scale up to situations with many offers (such as choos-
ing cereal at the grocery store) because it would require a dozens 
of discrete populations and precise wiring to resolve their compe-
tition. Fourth, it nor does it deal well with newly introduced 
novel offers because such offers would need to be rapidly added 
to the network which would then need to be appropriately wired. 
Fifth, it introduces the need to coordinate a flexible linkage 
between offers, values, actions, and positions in space; we call 
these problems the neuroeconomic binding problems. While 
these problems are undoubtedly surmountable, we wondered 
instead whether an alternative approach could provide a better 
framework for models of economic choice.

Several recent findings have, in our view, begun to bring into 
focus an alternative picture of how choice works. Here, we first 
review that evidence, with a focus on primate single-unit record-
ing studies. First, we describe six major research trends that, 
together, point towards our integrated framework. Second, we 
describe that framework. This framework is also directly moti-
vated by principles of foraging theory that, in our view, construc-
tively interact with the principles of neuroeconomics to guide our 
understanding of reward-based choice (Hayden, 2018; Pearson 
et al., 2014). Finally, we describe how or framework can resolve 
the neuroeconomic binding problems.

Part I: review of empirical findings

We evaluate only one option at a time

When multiple stimuli appear in our visual world, attention 
selects one at a time and then moves to the next one in a serial 
manner, like a roving spotlight (Egeth and Yantis, 1997; Treisman 
and Gelade, 1980). While some features can be analysed in paral-
lel, complex feature extraction requires unitary focal attention. 
Economic value seems likely to the kind of feature that requires 
attention. It is not surprising, then, that when two options are 

presented in the visual field, our eyes naturally shift back and 
forth between them to evaluate them (Krajbich et al., 2010; 
Orquin and Mueller Loose, 2013). When gaze is held fixed by the 
experimenter, or when options are not presented visually, deci-
sion-makers may still covertly shift mental focus between options 
serially.

The idea that evaluation is serial is supported by studies of the 
relationship between fixation patterns and choices (Krajbich 
et al., 2010; Krajbich and Rangel, 2011). Neural evidence sup-
ports, or is consistent with, the idea that the core value regions, 
vmPFC, OFC, and VS encode the value of the single attended 
option (Blanchard et al., 2015a; Lim et al., 2011; McGinty et al., 
2016; Rudebeck et al., 2013; Strait et al., 2014, 2015; Xie et al., 
2017). In a recent study of the OFC, ensembles of neurons alter-
nated between encoding only one of the two available options 
rather than encoding both at the same time (Rich and Wallis, 
2016). Notably, these coding states did not track the locus of 
gaze, but presumably tracked the focus of attention, suggesting 
that it is attention, not gaze direction per se, that determines 
which option is evaluated.

The idea of a single-option limit is also consistent with the 
foraging theory–derived idea that choice naturally occurs in 
an accept–reject manner (Hayden, 2018; Kacelnik et al., 2011; 
Kolling et al., 2012; Shapiro et al., 2008; Stephens and Krebs, 
1986). The underlying foraging models that support these 
ideas have also proven quite useful in explaining a great deal 
of brain activity (Blanchard and Hayden, 2014; Boorman 
et al., 2009, 2011, 2013; Hayden, 2018; Kolling et al., 2012, 
2014).

Implications for the framework. If we can only attend one 
offer at a time, then processing of the two offers in a binary 
choice must occur serially, not in parallel (Figure 1). (The same 
is true for choices with more than two offers, see below.) Relative 
to parallel models, serial processing poses a new problem and 
solves an old one. The new problem is that it requires a working 
memory buffer so that the value of a previously attended option 
can be maintained in order for any comparison to occur. The 

Figure 1. Illustration of basic framework of models. (a) In simultaneous choice (‘tug of war’), there is one decision variable that drifts between 
two bounds, corresponding to choice of options 1 and 2, respectively. (b) In independent choice (‘sequential choice’ or horse race) models, there 
are two decision variables drifting between two potentially similar sets of bounds. They may interact or they may not; generally one threshold 
hit stops the deliberation process and the second one is halted. (c) Some recent evidence is consistent with a pair of single diffusion processes, 
only one of which occurs at a time, as determined by the focus of attention. The threshold in the single diffusion process is likely influenced by 
the background value (estimate of the value of rejecting), which in turn can be determined by the value of the other option and by the value of 
further exploration.
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solved problem is the option-value binding problem. Because 
attention is limited to one option, there is no ambiguity about the 
reference of value-related neural responses. As long as the 
decoder knows where the focus of attention is, the referent of the 
value signal is unambiguous (again, that focus need not be spa-
tial; it may be abstract and conceptual).

We decide whether to accept or reject that 
option

If only one option is attended at a time, it is natural that the 
decision will be simply to accept or reject that one. Rejection 
would be favoured, even for very good options, when the cost 
of inspecting the next one is low and there is no cost to return-
ing to the first one (as in most laboratory binary choice tasks, 
although not necessarily in natural contexts). In the laboratory, 
then, we would therefore expect a period of multiple inspec-
tions before a period of choice. As noted, foraging theory has 
long emphasised the idea that preys are naturally encountered 
alone, and thus, our brain’s evolved choice strategy is to either 
accept or reject a single offer (Blanchard and Hayden, 2015; 
Charnov, 1976; Hayden, 2018; Krebs et al., 1977; Stephens and 
Krebs, 1986). This decision is made relative to an estimate of 
the value of rejection (i.e. the opportunity cost of accepting), 
known as the background value.

From this accept-reject perspective, ostensibly binary 
choices involve two largely distinct accept–reject decisions, 
one for each offer (Freidin et al., 2009; Kacelnik et al., 2011; 
Shapiro et al., 2008). These two decisions may be implemented 
by separate, possibly interacting, diffusion-to-bound pro-
cesses. Another implication of this idea is that in choice, 

options are given special status: default (the currently attended 
one) and alternative (the other one). A good deal of evidence 
supports the idea that cortical choice processes adopt this fram-
ing (Azab and Hayden, 2017; Boorman et al., 2009, 2013; 
Kolling et al., 2012, 2014).

Implications for the framework. If we attend single offers in 
turn and accept or reject each one, direct comparison of values 
per se need not occur (Kacelnik et al., 2011). Comparison may 
instead result indirectly from the fact that we cannot choose both 
options, even if both options are favoured. As a consequence, we 
do not need special value comparison neurons; motor gating pro-
cesses perform that role. Moreover, if valuation of the attended 
option is performed relative to the value of the alternative, then 
we do not need separate pools of neurons for representing the two 
offers. One will suffice (Figure 2).

Getting rid of comparator neurons avoids the difficult binding 
problem by which the offer-selective neurons are dynamically 
configured to converge on specific comparator neurons. Getting 
rid of distinct pools for the two options lets the brain use all its 
resources to the difficult problem of value estimation rather than 
using redundant anatomically separate computational resources 
for every option that is (or even that can be) available. The disad-
vantages are that serial value estimation is slow and requires 
working memory.

Attention, not labelled lines, determines how 
value is bound to options

When attention shifts from one option to another, value-coding 
neurons in several regions switch from encoding the value of the 

Figure 2. Illustration of core ideas of one- and two-pool models. (a) Left: One approach to modelling choice is the labelled line approach. Each neuron 
is associated with a specific option and these neurons compete, typically through mutual inhibition, for control of behaviour. Centre: Another take 
on the labelled line approach has three classes of neurons, one for each option and a third for comparison. Right: An alternative attentionally aligned 
approach (supported by recent work reviewed here) eschews labelled lines, but instead involves alternations between states corresponding to just 
one offer. When attention shifts, the inputs to the value neurons change to reflect the attended option. Because only one option is attended, value-
sensitive neurons do not need to have information about which option their value signals. (b) When attention shifts from one option to another, a 
labelled line system will switch which neurons are strongly activated; an attentionally aligned system does not. Nor will tuning functions change. Thus, 
measuring which neurons are involved in signalling the values of the two offers, and their tuning, can test between two-pool and one-pool models.
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first option to encoding the value of the second. Often, neuronal 
responses are consistent with use of the same format to encode 
offer values across shifts in attention. That is, a neuron positively 
tuned for the value of the first considered offer will remain posi-
tively tuned for the value of the second and vice versa. We intro-
duce the term attentionally aligned coding to refer to this 
response pattern, which can be distinguished from labelled line 
coding, where a neuron’s firing rate refers stably to a single 
option regardless of the locus of attention (Azab and Hayden, 
2017). The term attentionally aligned means that the referent of a 
value neuron’s firing rate is not consistently aligned to a single 
option, but rather is aligned to the value of any option within the 
focus of attention. (In the form vision pathway, the analogous 
idea is known as biased competition (Desimone and Duncan, 
1995; Pastor-Bernier and Cisek, 2011).) Attentionally aligned 
coding is convenient if attention is limited to a single option at a 
time, but becomes unwieldy if multiple options can be attended 
at once.

Attentional alignment is consistent with neuroimaging studies 
(Lim et al., 2011), and in careful studies of behaviour (Krajbich 
et al., 2010). It has been reported in neurons in vmPFC, VS, OFC, 
dACC, and subgenual anterior cingulate cortex (sgACC) (Azab 
and Hayden, 2017, 2018; Blanchard et al., 2015; Rich and Wallis, 
2016; Rudebeck et al., 2013; Strait et al., 2014, 2015; Xie et al., 
2017) and is consistent with another recent OFC study (McGinty 
et al., 2016). Evidence for attentional alignment is illustrated in 
Figure 3.

Implications for the framework. If value coding is attention-
ally aligned, then the framework can have a set of value-sensitive 
units that are ignorant of the details of the input stimuli. Specific 
value-sensitive units in the network have an organisational 
advantage: they will not need to be precisely wired with 

offer-layer neurons. This arrangement gives the system much 
more flexibility to deal with rapidly changing options, new 
options, and more than two options. One disadvantage is that if 
an ensemble of attentionally aligned neurons uses the same for-
mat to encode the value of two different options, a decoder can-
not know, without some additional information (specifically, 
which option is attended), to which option a neuron firing rate 
refers. By contrast, in a labelled line coding system, there is no 
ambiguity about which option a neuron’s firing rate indicates: 
after all, the line is labelled. On the other hand, if the decoder 
knows the status of attention, then the referent of the neuron’s 
firing rate is unambiguous. Thus, the option-value binding prob-
lem can be solved without need for any supervisory system other 
than the one that controls attention.

One pool of neurons, not two

When attention shifts, and the value code shifts with it, a good 
deal of evidence indicates (or at least is consistent with the idea) 
that it is the same neurons activated for the previous option that 
are activated for the next one (Azab and Hayden, 2017, 2018; 
Blanchard et al., 2015, 2018; Rich and Wallis, 2016; Rudebeck 
et al., 2013; Xie et al., 2017). In other words, the brain may use 
only one pool of neurons to encode the two different values at 
different times, not two separate ones. At least one study indi-
cates that some of these regions use a single pool of neurons to 
encode offered and chosen values as well (Blanchard and 
Hayden, 2018).

A simple test for separate populations is to compare unsigned 
regression coefficients (this is similar to, but more statistically 
sensitive than, performing a Venn Diagram analysis, Figure 4). 
This method reveals evidence in favour of a single population in 
OFC, vmPFC, VS, and dACC (Azab and Hayden, 2018; 
Blanchard et al., 2015; Straight et al., 2015; Strait et al., 2015; 
Wang and Hayden, 2017). A more sensitive method uses Bayesian 
statistics to ask whether information derived from the tuning 
functions for the two variables can be used to support purported 
clusters (Blanchard and Hayden, 2018). This method rejects any 
option-specific clustering in any of four brain regions (VS, 
vmPFC, OFC, and dACC). It also rejects clustering for offer and 
chosen values.

Note that the case here is not definitive; there is a good deal of 
ostensibly contradictory empirical support for two pools, and 
several papers for data consistent with a two-pool model (Padoa-
Schioppa, 2011) The question of how many pools there are is 
difficult to answer because the brain may in principle divide up 
the two offers in any of a number of ways, perhaps arbitrarily and 
perhaps randomly from trial to trial. Methods that average across 
multiple trials may then therefore average across the two pools 
making two look like one. Our analyses so far suggest that neu-
rons do not consistently align to the first/second offer or the left/
right offer in asynchronous left-right choices (Azab and Hayden, 
2017; Blanchard et al., 2015, 2018). Perhaps the strongest evi-
dence so far comes from datasets with simultaneously recorded 
cells, allowing robust single trial analysis, which still fail to indi-
cate separate pools of cells (Rich and Wallis, 2016).

Implications for the framework. The one-pool finding, if 
true, goes hand in glove with the attentional alignment 

Figure 3. Neurons use a similar ensemble coding format (signed 
regression coefficient) for the values of offer 1 and offer 2 when they 
are attended in sequence. In this illustration, options were presented 
and thus attended asynchronously, and regression coefficients for each 
neuron were estimated in the appropriate epochs. Each dot indicates 
a single neuron; its x and y positions indicate the linear component of 
its tuning function for each option. The positive correlation between 
the two indicates a preservation of tuning, as predicted by a single-
population model. A labelled line model would predict that points 
would cluster around the anti-diagonal and produce an anti-correlation. 
Data from VS are shown (Strait et al., 2015); similar patterns were 
observed in other core value regions (see text).
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hypothesis. Specifically, if there is a single pool of neurons, its 
firing rates must somehow be linked with an option. The most 
straightforward way would be to limit reference to a single pos-
sible option, defined by attention. That system would allow the 
set of neurons to flexibly encode the value of any offer and 
would free the system from having to have a rigid linkage for 
offers and values. The narrow restriction of attention to a single 
option would thereby resolve the option-value binding problem. 
This logic also works for the tentative finding that offered and 
chosen values are encoded by the same neurons: presumably the 
chosen offer is attended around and immediately after the time it 

is chosen, and so it should be encoded in the same neurons that 
encoded its value at offer time.

Opposed tuning for offer pairs at the time of 
choice

At the time, the second offer is attended (and the value of the first 
is available in working memory), the decision-maker can begin 
comparing their values. At this time, firing rates of neurons in 
several regions encode the difference in values of the two offers. 
Specifically, individual neurons tend to show opposing tuning 
functions for their values. These regions include vmPFC (Strait 
et al., 2014), VS (Strait et al., Figure 5), dACC (Azab and 
Hayden, 2017), and sgACC (Azab and Hayden, 2018), as well as 
the PMd (Pastor-Bernier and Cisek, 2011) and the supplementary 
eye fields (SEF) (Chen and Stuphorn, 2016). These signals are 
observed in the same neurons that encode the values of the indi-
vidual offers and not a separate class of neurons. This pattern is 
broadly consistent with the finding that several brain regions 
show coding for the difference in the values of the two offers 
(Basten et al., 2010; Boorman et al., 2009; FitzGerald et al., 
2009; Hunt et al., 2012). The value difference is the key decision 
variable for economic choice – a simple threshold applied to 
value difference will produce a choice. It is thus, arguably, a sig-
nature of value comparison.

We previously argued that the value difference result is a sig-
nature of value comparison by separate populations (Strait et al., 
2014). The data reviewed in the previous sections suggest an 
alternative interpretation that neurons encode the relative value 
of the attended offer. That is, they encode its value relative to the 
value of rejecting it, which in binary choice is equal to the value 
of the other offer. There is a good deal of evidence that evaluation 
in the brain is done in a relative manner. It has variously been 
labelled range adaptation (Padoa-Schioppa, 2009), mutual inhi-
bition (Hunt et al., 2012; Jocham et al., 2012; Strait et al., 2014), 
and divisive normalisation (Louie et al., 2011; Yamada et al., 

Figure 4. Some evidence for a one-pool model. (a) In a simple gambling task with two offers presented asynchronously, neurons selective for the 
value of the first offer are more likely to be selective for the value of the second as well. Selectivity here is measured by the absolute value of the 
regression coefficient of firing rate against the value of the offer. The positive correlation between the variables indicates that a neuron driven by 
the value of the first offer is more, not less, likely, to be driven by the value of the second one. We see no evidence of separate populations of cells, 
as would be predicted by a labelled line model. Illustrative data from dACC shown (Azab and Hayden, 2018); similar patterns were observed in other 
regions (see text). (b) Evidence for a single-population encoding offered values and chosen values. Illustrative data from dACC shown (Azab and 
Hayden, 2018); (c) aligned encoding of attended offer values. Values of attended offers are encoded in correlated formats across time, in contrast to 
two-pool model predictions of mutual inhibition through time (Azab and Hayden, 2017).

Figure 5. Neurons use inverted tuning formats (reversed regression 
coefficients) to encode the values of the two offers during choice. 
Each point indicates a single neuron. The x- and y-positions of the 
dots indicate the linear term of the regression coefficient for the firing 
rate of that neuron at the time of choice against the values of the two 
different (and uncorrelated) offers. The negative correlation indicates 
that these coefficients are anti-correlated and thus that the population 
encodes the difference in the values of the two offers. Illustrative data 
from VS shown (Strait et al., 2015); similar patterns were observed in 
other core reward regions.
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2018). The key thing, though, is that relative value has the same 
benefits of value difference coding: subject only to a thresholding 
operation, it can serve as the basis for categorical choice.

Implications for the framework. Putative value compari-
son signals, in the same neurons that encode values of offers, 
indicate that these neurons do not specialise in encoding the 
value of the attended offer. Instead, they have a more sophis-
ticated and flexible role in choice. Specifically, they can 
encode the value difference, or the relative value (or a func-
tion thereof) between the attended and the remembered val-
ues. Doing so requires them to have some kind of working 
memory store (whether active or passive) and raises the 

question of what form it takes (see model below). Note also 
that the presence of value comparison signals in multiple 
regions suggests that the comparison occurs simultaneously in 
multiple regions (see Discussion).

Activation of motor plans during deliberation

When we evaluate options, and before we choose, the anticipated 
motor plans of both option are encoded in premotor and parietal 
cortices (Baumann et al., 2009; Cisek and Kalaska, 2005; McPeek 
and Keller, 2002; Scherberger and Andersen, 2007). When the 
action is clear and overt, that action plan is called an affordance 
(Cisek, 2007). We use the more generic term action plan here to 
mean pretty much the same thing as affordance, but to include 
contexts in which the specific motor command is not clear (imag-
ine for example you are asked which entrée you wish to order, but 
there is no menu to point at). As evidence accumulates in favour 
of one option, its corresponding action plan gets stronger and the 
other one gets weaker, until the decision threshold is reached 
(Cisek, 2006; Cisek and Kalaska, 2005). The gradual evolution 
of these processes, in turn, gives rise to decisional commitment 
(Thura and Cisek, 2014). Together, these findings support a 
biased competition model for economic choice, which extends 
classic ideas of biased competition from the perceptual system to 
the motor system (Cisek, 2005; Cisek and Kalaska, 2010; Pastor-
Bernier and Cisek,  2011).

Implications for the framework. These results suggest that 
attending to one offer will activate its action plan, and that 
switching to the other will suppress and enhance the action plan 
of the first. During deliberation, these modulations will not trig-
ger an action, but they will be critical for the process of selection 
and commitment that occur when deliberation ends. These find-
ings also raise the possibility of a solution to the action binding 
problem as well: if the attended offer activates its corresponding 
representation in the premotor system, then there is no ambiguity 
about which option that action code corresponds to.

Part II: a proposed framework for the 
neural basis of economic choice
The recent empirical findings point towards the following gen-
eral framework (Figure 6). Sensory inputs activate specific popu-
lations of units that represent complex features, and thus, the 
activation of those features in the offer layer defines the identity 
and characteristics of the offer under the scrutiny of attention. 
These offer-layer units then activate a representation of the 
option’s value in units in a separate value layer. The offer-layer 
units convey no information about the value of the offers; this 
information is stored in the connections and/or processes (which 
we do not describe) that link offer-layer units with value-layer 
units. Responses from the value layer convey no information 
about the identity of the option; they simply signal the value of 
the currently attended option. (Note that we use the term value 
for convenience. The variable could be any variable or set of 
variables that correlate with choosing the attended option, such 
as ‘evidence in favour’, or signals that reflect the values of indi-
vidual object features). Some research indicates that the brain 
treats differently variables that are directly observed and those 

Figure 6. Our proposed framework in practice. When the first offer 
appears, its feature detectors are excited, which define the distributed 
response in the offer layer. These activate the appropriate value units 
in the appropriate manner to signal the value of the first offer. They 
also activate the corresponding premotor layer units (grey arrows). 
Those are the units that, if the action they signal is released, the 
animal will choose the offer. When the second offer appears, its 
feature detectors are excited. They activate the appropriate value 
units, which are likely the same ones that were activated by the first 
offer, and with the same tuning function. They also activate their 
appropriate premotor units. Finally, following choice, the chosen offer 
is attended and so its features, value, and action units are activated. 
This activation allows for credit assignment processes to know the 
appropriate elements to sculpt for learning.
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that are inferred (e.g. Barron et al., 2013; Jones et al., 2012). In 
our framework, the inference process is one that occurs in the 
value layer. It is thus endowed with some complex computational 
abilities.

The activation of the offer layer will also activate the option’s 
action plan in a premotor layer. The action plan is the specific 
action that would be used to select the option and can be as spe-
cific as a reach or as abstract as the concept of ‘select this option 
using the appropriate action when that action is later identified’. 
The premotor units get signals from both the offer and the value 
layer. The option information activates the associated action; the 
value information activates all output actions non-specifically 
(arrows are not displayed but they are understood as present), 
providing a general drive to act. The interaction between the 
value units and the offer units allows for only the attended action 
to be selected. Finally, the framework allows for additional non-
specific modulatory inputs to all action units, which lets extrane-
ous factors such as urgency to affect the likelihood that an action 
will be triggered (not shown).

First fixation: value and action plan for first 
option

We propose that in practice, consideration of options is nearly 
always asynchronous. That is, even when multiple options are 
presented simultaneously, attention selects one of them for scru-
tiny first, possibly covertly (Krajbich et al., 2010). When the first 
offer is attended, the units responsive to its features and/or iden-
tity in the offer layer are activated; these units proceed to activate 
corresponding value and action units. The action will not yet be 
triggered. In most cases, assuming the need to decide is not 
urgent, the first option is likely to be automatically rejected in 
order to consider the second option; this would be implemented 
by the global modulatory inputs. Specifically, it would be rejected 
because the background benefit–cost ratio is quite high: it 
includes the informational value of the second offer at the very 
low time and energetic costs of simply attending to it.

Second fixation: relative value and action 
plan for second option

When attention shifts to the second offer, its corresponding offer-
layer units that represent their features will be activated. These 
units then activate the corresponding value-layer units – which 
will be the same ones that signalled the value of the first offer; 
they will also use the same format to do so (e.g. a unit with posi-
tive tuning for offer 1 will have positive tuning for offer 2). Units 
in the value layer take on the property of response-dependent sup-
pression, meaning its response to the first attended offer attenu-
ates its response to the second one in proportion to its response to 
the first (or a function thereof). Suppression is not necessary per 
se, as response-dependent enhancement could work as well. 
However, response-dependent suppression is a prominent feature 
of the inferotemporal cortex (IT, for example, Miller et al. 1991) 
and may be observed in the reward system as well (e.g. Barron 
et al., 2013) and dependence on previous outcomes is commonly 
observed in the reward system (e.g. Hayden et al., 2011a, 2011b; 
Kennerley et al., 2011). This response-dependent suppression will 
serve the purpose of a within-cell memory (i.e. does not require an 

additional external memory buffer and thus can occur within a 
single pool) that will produce value comparisons. There are many 
possible neuronal mechanisms that could implement response-
dependent suppression; we use a simple one for concreteness, one 
for which there is ample evidence in different domains: divisive 
normalisation (Carandini and Heeger, 2012; Reynolds and 
Heeger, 2009).

When the second offer is processed, the value-layer units will 
show response-dependent suppression for the value of the first 
offer. If the first offer was particularly good, the response to even 
a good second offer will be attenuated. If the first offer was poor, 
the response to the second will be less attenuated. The value-cod-
ing units will therefore exhibit simultaneous and anti-correlated 
tuning for the values of both offers (as in Strait et al., 2014). 
However, whereas in that paper we proposed that this pattern 
results from competing populations, response-dependent suppres-
sion only involves a single population. Notably, the value of the 
second offer will not be encoded per se. It will only ever be 
encoded relative to the value of the first. The second offer will 
also lead directly to the activation of its action plan, just as the first 
offer did. The action plan for offer 2 will be more strongly acti-
vated than the one for offer 1, because attention enhances the 
action plan. However, we anticipate the action plan for offer 1 will 
still be moderately activated, due to system hysteresis. Both action 
plans will in any case be activated simultaneously (as in Cisek and 
Kalaska, 2005).

Subsequent to the second fixation, subjects may select it or 
they may return to the first offer. A return to the first offer will 
lead the value-layer units to encode its value relative to the 
value of the second. (This hypothesis has not yet been tested, 
but follows naturally from our framework). Its action plan will 
also be enhanced. This process can continue back and forth 
until an option is selected (as in Rich and Wallis, 2016). Why 
would a decision-maker come back a second time rather than 
just decide immediately? Additional bouts of consideration may 
provide a more accurate estimate of the value of the offers to 
due accumulated response-suppression of the value unit, allow-
ing for fine discrimination of closely valued options (Krajbich 
and Rangel, 2011).

Choice and outcome periods: relative value 
and action plan of chosen option

An option is selected when the activation in the action layer 
crosses some threshold. The threshold is determined by several 
factors that together embody the value of rejection. There is very 
little data on the process of threshold computation (but see 
Kolling et al., 2014). However, we assume that rejection has a 
high value following the first offer (because of the informational 
benefit and low cost of inspecting the second one.) The value of 
rejection will decrease as time increases and the opportunity cost 
of further deliberation rises. Once one action plan crosses a 
threshold, commitment occurs and the selected action inhibits 
other activated actions, so as to ensure only one action plan is 
implemented (Thura and Cisek, 2014.) The selection process 
leads the chosen option into the focus of attention. As such, its 
offer units are preferentially activated and value-layer units 
encode its value. Note that there are no chosen value units in our 
framework; the units encoding the chosen value are the same 
value-selective units that were involved in choice.
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After selection

After selection, the reward is received, the chosen option is 
attended, and its corresponding offer, value, and action units are 
correspondingly activated (or reactivated). At this point, post-
reward processes come into play. These post-reward processes 
include monitoring, learning, adjustment, and updating of priors, 
as well as possibly switching to new strategies or rules. These 
processes are unique to the post-reward period and will therefore 
create patterns that are not observed in the offer period, but that 
will be superimposed on the standard offer-related signals 
(Nogueira et al., 2017; Wang and Hayden, 2017).

Extending the framework to more than two 
options

Our framework deals well with binary choices, but they need an 
additional feature to handle choices with more than two options 
(which we call multi-option choices for convenience). Our model 
here will be more speculative since we do not have unit data from 
multi-option choices, although relevant lesion (Noonan et al., 
2010), neuroimaging (Boorman et al., 2011, 2013), and perceptual 
decision-making (Churchland et al., 2008) data exist. We propose 
that when attention falls on the third option, the brain encodes its 
value relative to the value of the best of the first two options 
(Boorman et al., 2013). The brain could maintain a separate buffer 
to store the value of the best-so-far option, but we propose a sim-
pler alternative with a single unlabelled value buffer.

Specifically, we propose that the brain maintains an active 
salience buffer – a representation of the entire option space (both 
the visual scene and some abstract set of options could be 
included). The buffer tracks the location of the most valued 
option so far – but not its value, nor its identity or action plan. 
The computational framework described above can also be 
extended to account for multi-option choices using the idea of the 
salience buffer. The basic idea is that only the offer with the high-
est value so far is actively remembered, causing divisive normali-
sation on the current stimulus being attended (cf. Louie et al., 
2011). Finally, based on the current response, a choice needs to 
be made between the new stimulus and the past stimulus with the 
highest value. This pairwise comparison can be made in the same 
way as described in the previous section.

A possible neuronal implementation

The key element of our computational model is the presence of a 
working memory mechanism that affects the response of the 
value layer to the second option and depends on the value of the 
first option. We propose that this computation is implemented by 
repetition suppression, via divisive normalisation (Carandini and 
Heeger, 2012; Reynolds and Heeger, 2009). Note that repetition 
suppression per se is not necessary; similar effects can be 
obtained if neurons exhibit repetition enhancement. We focus 
here on repetition suppression because it is strongly supported 
empirically (e.g. firing rate adaptation).

We assume that the attended option encoded in the offer layer 
delivers information to the value-encoding layer (see Figure 7). 
In response to the first offer, with value V1, the firing rate of neu-
ron i i N( , , )= …1  in the value layer is

r Vi i=α 1

where αi  is a positive coefficient. We consider for simplicity 
only positive values, although this framework can be naturally 
extended to negative values too, and to any arbitrary form of tun-
ing curves (e.g. non-linear).

When the second offer appears, the response of the value-encod-
ing neurons will be diminished because of repetition suppression in 
the value (or even in the offer) layer. We assume here that repetition 
suppression in the value layer is caused by divisive normalisation of 
the neuronal response to the second option in proportion to the 
strength of the first response. Specifically, the response of neuron i  
in the value layer to the second offer becomes

 r
V

Vi
i

i

=
+
α
β
2

11
 (1)

where βi  is a small positive number (0 11< β  ). As a conse-
quence, responses to the second offer will be reduced even if the 
values of the two options are identical, consistent with the experi-
mental data provided above.

Finally, a choice between the first and second options needs to 
be made based on the responses that are available in the final 
stage, that is, the responses to the second offer in equation (1). 
The choice cannot be done with a homogeneous layer of value-
encoding neurons, but it can be done with a heterogeneous layer 
where the sensitivity parameters αi  and βi  differ across neu-
rons. This is because setting a threshold to equation (1) with iden-
tical parameter values for all neurons causes biases in the choice 
by leading it to prefer the first offer over the second one, or vice 
versa. However, this bias can be avoided by simply linearly com-
bining the responses of a heterogeneous population of N neurons 
to make it approximately equal to the difference of values of the 
first and second stimuli

 
i

N

i iw r V V
=
∑ −
1

1 2  (2)

This linear combination can deliver a very good approxima-
tion of the actual difference if neurons are heterogeneous and the 
population is sufficiently large, as we will see in a neuronal imple-
mentation of this basic algorithm (see Figure 8). This is because if 
the divisive normalisation parameter βi  in equation (1) is small, 
the firing rates can be expanded approximately as linear function 
of both values. Combining several of those approximately linear 
functions, it is possible to compute the value difference, which is 
again a linear function. Therefore, a layer of value neurons with 
repetition suppression has all necessary information to perform a 
sequential comparison of two offers, and this information can be 
extracted by a simple linear readout.

What kind of signals in the brain could carry information 
from the past to the present in a format that allows also compar-
ing values of sequentially attended stimuli? One such potential 
candidate is synaptic depression (Abbott, 1997; Tsodyks and 
Markram, 1997). Synaptic depression acts on the inputs to a neu-
ronal population in such a way that continuous stimulation causes 
synaptic resources, such as number of vesicles and amount of 
neurotransmitter, to be depleted. Due to its slow decay, depress-
ing synapses can hold information in working memory for 
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several seconds (Miller and Desimone, 1994; Miller et al., 1991; 
Mongillo et al., 2008). Thus, synaptic depression is a potential 
mechanism for facilitating the comparison between the values of 
two offers presented asynchronously through repetition suppres-
sion. It is possible that there are multiple mechanisms with simi-
lar effects working together, for instance, firing rate adaptation in 
the offer and value layers. Here we show simply that synaptic 
depression is a good starting point, although we acknowledge 
that due to its rigidity in the slow time scales involved, it will be 
insufficient to accommodate the large variations of timing in 
which decision-making can occur. This proposal then should be 
seen as a workable example of how these changes may occur, 
illustrating the viability of our framework.

We consider a value layer composed of N independent neu-
rons described by their temporally modulated averaged firing 
rate, r t i Ni ( ) ( , , )= …1  receiving inputs subject to synaptic 
depression. Each neuron i  in the value layer receives the exter-
nal input I ti ( ), modelled as a time-varying signal weighted by 

the value of the stimulus plus background activity, 
I t a b V ti i i( ) ( )= + × . We assume that the value of the attended 
stimulus V t( )  is computed as a weighted linear combination of 
activities in the offer layer (see Figure 6), although of course non-
linear function beyond linear can be achieved by multi-layer 
networks.

The net input into each neuron is computed as d t I ti i( ) ( )× , 
where d ti ( )  is the synaptic depression variable for the inputs for 
neuron i, with takes lower values the higher the activity was in 
the recent past. Therefore, the net input into each neuron is not 
simply the external current, but a normalised version of it with a 
normalisation factor that depends on the previous history of 
attended options and their values. Further details for the models 
are described in the ‘Methods’ section. The dynamics of a neuron 
in the value layer is shown in Figure 7 for three relevant scenar-
ios. The external input to the neuron is shown in the top panel, 
while the response and the synaptic depression variables are 
shown in the middle and bottom panels, respectively.

Figure 7. A neuron in the value layer has similar tuning to the values of the first and second offers and shows repetition suppression. (a)The 
tuning to the difference between offer values (tuning to EV1-EV2), (b) to the first value (tuning to EV1) and (c) the second value (tuning to EV2) 
are shown. In (b) and (c), the values of the first or second offers are fixed, respectively. The input (top row), the response (middle row), and the 
depression variable (bottom row) are displayed as a function of time. The input, encoded in the projections from the offer to the value layers, is 
proportional to the expected values of the two offers, presented at times 2 and 3 s, respectively. Three different conditions are used (black, blue, 
and grey lines), see text
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In the first scenario (tuning to EV1–EV2; Figure 7(a)), the 
external input alternates between a high and a low value offers 
(black, top panel), two intermediate value offers (blue), and one 
low and a high value offers (red). The response of the neurons 
follows the same trend as the input (middle panel), while the 
synaptic depression variables display the reversed trend (lower 
panel). Note the response to the intermediate values (blue, mid-
dle panel) in the first and second epochs: the response is reduced 
during the second stimulation epoch compared to that in the 
first epoch, even though the stimulus value is identical in the 
two conditions. This phenomenon corresponds to repetition 
suppression, as implemented by divisive normalisation 
(Methods, equation (4)).

This can be understood by looking at the temporal evolution 
of synaptic depression variable. Initially, this variable has a rela-
tively large value due to low spontaneous firing rate (around one 
half). However, during attention to the first option, the external 
input increases and as a consequence, the depression variable 
decays to a lower value (blue, lower panel). Right after offer off-
set, the depression variable starts to recover and increase towards 
the basal value. However, the increase is slow due to the long 
recovery time constant of synaptic resources, and thus, the 
depression variable does not have time to reach the basal value. 
Indeed, when the second offer is attended, the depression varia-
ble has a value that is lower than the basal value. This difference 
leads to a response to the second offer that depends on the value 
of the first offer.

In the second scenario (tuning to EV1, Figure 7(b)), the value 
of the first offer ranges from high (black, top panel) to intermedi-
ate (blue) and low (red), while the value of the second attended 
offer is fixed at an intermediate value. During the presentation of 
the first offer, the response of the neuron increases with its value 
(middle panel), indicating that this neuron has a positive encod-
ing of the first offer value. It is interesting to observe is that dur-
ing the presentation of the second offer, this cell is still tuned to 
the value of the offer. However, the tuning is reversed: higher 
responses are obtained for the lower value in the first attended 
offer. Also the tuning to the value of the first attended option dur-
ing the second epoch is reduced compared to the tuning during 

the first epoch. These two patterns reproduce the experimental 
results from our laboratory in vmPFC, VS, and dACC (Azab and 
Hayden, 2018; Strait et al., 2014, 2015) and echo those of Pastor-
Bernier and Cisek (2011).

In the final scenario (tuning to EV2), the value of the first 
offer is fixed, while the value of the second offer varies. 
Consistent with experimental results (Azab and Hayden, 2018; 
Strait et al., 2014, 2015), the tuning of this cell to the value of the 
second offer is positive. Thus, the neuron tends to keep the same 
polarity towards stimulus value regardless of stimulus identity or 
presentation timing.

Decoding choices

We next asked whether a downstream decoder can make an 
accurate choice based on the activity of the neurons in the 
value layer during the second offer epoch. As noted, the 
response to the second attended option is inverted relative to 
the first. This inverted tuning allows the system to compare the 
values. How can this information be extracted? As with the 
computational framework, it is not possible to read out this 
information if only one type of neuron is present in the value 
layer. This is because the firing rate of a neuron during the 
second epoch depends on the values of both first and second 
attended offers and does not necessarily compute a value dif-
ference between the two. Our strategy is then to create a het-
erogeneous population of neurons in the value layer, which  
is a realistic feature throughout the brain architecture. 
Heterogeneity can be introduced by choosing neuron and 
depression parameters randomly (Methods).

Note that in our framework, it is not necessary that every neu-
ron perform normalisation with respect to the previous observed 
value in an identical way. Rather, we postulate that the normalisa-
tion effects are heterogeneous, which allows the neurons to 
encode the two offer values in the same population, which in turn 
allows for a choice. Thus, we do not directly suggest that there 
are neurons for which the beta parameter is very small, although 
it is not possible to disregard that possibility in a small population 
of neurons.

Figure 8. A heterogeneous population of neurons in the value layer can faithfully encode the value difference between first and second offers. (a) 
The response of a representative neuron in the value layer during the second epoch increases with the value of the offer in that epoch, EV2, but it 
is also negatively modulated by the value of the offer previously presented, EV1. This mixed encoding makes impossible to read the value difference 
from just a single neuron. (b) Decoded value difference as a function of the real value difference for a population of 4 (blue) and 10 (red) neurons. 
The decoded values get closer to the actual values (unit slope line, black) as the population is larger. The decoder is based on a linear readout of 
the population using the responses at 100 ms after second offer onset, trained using linear regression, equation (2).
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With a value layer consisting of just four neurons, it is possi-
ble to estimate the value difference approximately (Figure 8, blue 
points; max error = 0.97). With 10 neurons, it is possible to esti-
mate value difference with high precision (Figure 8, red points; 
max error = 0.08). Although these simulations are based on deter-
ministic dynamics, the presence of response variability can be 
partially alleviated simply using larger populations if differential 
correlations are weak (Moreno-Bote et al., 2014). Therefore, it is 
possible to compare values of sequentially presented offers by 
linearly reading out the activity of a small neuronal population in 
the value layer during attention to the second offer.

Discussion
Review recent discoveries about the neuronal correlates of eco-
nomic choices suggest a novel framework for future models of 
how choice occurs. In this framework, only one option is attended 
at a time and processing of that option leads to either acceptance 
or rejection. This occurs regardless of whether the options are 
presented asynchronously or whether they are presented at the 
same time. Rejection often leads to consideration of the next 
option. During deliberation, attention to an option activates a rep-
resentation of its value and of the action plan associated with 
choosing it. This action plan can be specific or it can be abstract, 
that is, it can in principle be a commitment to a proposition 
(Shadlen and Kiani, 2013). Our framework requires a single pool 
of value-sensitive units whose responses encode the value of the 
attended option relative to the value of previously attended 
options. It does not involve two pools or more of cells that use 
labelled line coding and that compete for control of action. 
Comparison is accomplished through a value normalisation pro-
cess that can occur simultaneously at multiple levels and that 
may involve a response-dependent suppression of future respond-
ing. As such, the evaluation, comparison, and selection are per-
formed by the same pool of neurons.

Our proposal is preliminary and is not meant to serve as a 
formal model. Indeed, we believe that there is no currently 
sufficient data in the literature to make one. The innovative 
aspects of our theory are (1) that choice is serial, not parallel, 
and (2) that this allows for even ostensibly multi-option deci-
sions to be implemented using accept–reject principles. In 
particular, it (3) requires the narrow focus on a single option 
(attention), and that this new requirement, while cumbersome, 
allows for (4) choice to occur within a single pool of neurons 
rather than between competing pools. That in turn allows for 
(5) an abandonment of a labelled line organisation. Giving up 
labelled lines carries several benefits, most notably produces 
networks that are more efficient to build and are more flexi-
ble; it also leads to a solution to important and often ignored 
binding problems.

Where is this one pool of neurons that is critical to our pro-
posal? We suspect that it is not in any single brain region, but 
instead that pool really reflects processes occurring in parallel in 
multiple regions at the same time. The function of this distributed 
group of neurons is likely to be quite broad, but in the context of 
choice, that function can be thought of as simply the representa-
tion and the sequential comparison of values.

The proposal is not meant to be a formal model for choice, 
but is, rather, to be a general framework that can guide the 
development of such models in the future. One particular 

limitation of the framework is that it does not correspond to the 
unit level. For example, the strict division into an offer layer, a 
value layer, and an action layer is not supported by current data. 
Instead, individual cells are likely to have multiple contribu-
tions in multiple layers simultaneously. These multiple func-
tions in turn are reflected in the multiplexed and mixed 
selectivity patterns that are characteristic of the key regions 
(Blanchard and Hayden, 2018; Fusi et al., 2016; Raposo et al., 
2014; Rigotti et al., 2013). These functions may even change 
and adjust with task context (e.g. Hunt et al., 2013). Another 
example is that value-sensitive neurons, such as those in OFC 
may be stimulus specific, and thus not directly analogous to our 
value layer (e.g. Schoenbaum et al., 1998).

A third example of a limitation of our framework is that 
value comparison is likely to occur not within a single region, 
but rather through a distributed consensus process that includes 
ostensibly motor and association regions both (Chen and 
Stuphorn, 2016; Cisek, 2012; Hunt and Hayden, 2017). 
Ultimately, we propose that our framework may be a descrip-
tion of the algorithmic level, but not the implementation level, 
of choice.

An important future direction for our theory is to deal with 
its clumsy handling of both the object and the action layer. That 
is, in our framework, these layers still have labelled lines. 
Instead, the focus of our proposal is showing that separate value 
populations are not needed. We suspect that it is possible to 
simplify these other layers as well and hope that future work, 
guided by to-be-collected data in these regions, will do so. We 
suspect that greater research on the relationship between mem-
ory and economic choice will provide grounding for these ideas 
(Shadlen and Shohamy, 2016). In particular, this research will 
need to shed light on how different dimensions that constitute 
value are combined to form an abstract value signal (e.g. Barron 
et al., 2013; Hayden, 2016; Kolling et al., 2014; Padoa-Schioppa 
and Assad, 2006).

Another important direction for future research will be under-
standing the process by which attention is withdrawn from a 
rejected option and shifted towards a new one. This in turn 
involves two component decisions: (1) the decision to commit to 
rejecting a currently attended option, so that attention can be 
withdrawn, and (2) the decision for where to move attention next. 
That decision has been treated as random (Krajbich and Rangel, 
2011). However, it is likely that there is some prioritisation of 
information going on, perhaps in something like a salience map 
that is maintained to guide future decisions (Itti and Koch, 2001). 
Indeed, recent research linking ostensibly value-related regions 
to switching processes provides suggestive evidence that the 
ideas of attentional switching and choice have a deep linkage 
(Birrell and Brown, 2000; Sleezer et al., 2017; Sleezer and 
Hayden, 2016; Blanchard et al., 2014)

What are the critical tests of our proposal? The first question 
that must be addressed is whether the representation of the values 
of different offers occurs within a single population of neurons or 
within two discrete sets. As noted, our data support a one-pool 
model, but other studies support a two-pool model (most impor-
tantly, Padoa-Schioppa, 2011). Second, we need a greater under-
standing of the dynamics of choice within the neurons that 
implement it. Third, the generality of the ‘mutual inhibition’ find-
ing must be established. Fourth, the causal role of the mutual 
inhibition signals, and, indeed, the other signals we review above 
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must be demonstrated. Finally, although theoretical work has 
addressed the dynamics of accept–reject decisions, its neural 
basis is poorly understood, and its proposed overlap with binary 
choice must be demonstrated.

Relation to models of sensory  
memory-guided decisions

Our framework is partially inspired by well-known models 
of (working) memory-guided perceptual decisions (Hayden 
and Gallant, 2013; Lui and Pasternak, 2011; Machens et al., 
2005; Miller and Desimone, 1993; Miller et al., 1991; 
Mirabella et al., 2007; Romo et al., 2002; Romo and Salinas, 
2001, 2003). Typically, in memory-guided perceptual deci-
sions, the subject is presented with a memorandum, and then, 
following the delay, a probe. The subject is then asked to 
perform a perceptual discrimination on the relationship 
between the memorandum and the probe (e.g. do they match? 
Which has higher frequency?). One approach to modelling 
these decisions is to allow the memorandum to modify the 
sensory tuning properties of neurons so that their response to 
the probe makes the correct classification automatically 
(Machens et al., 2005; Miller and Desimone, 1994; Pagan 
et al., 2013). This general approach has been successful in 
modelling mid-/high-level and prefrontal responses (with 
visual memoranda) and prefrontal responses (with soma-
tosensory memoranda.) Indeed, we propose that binary eco-
nomic and mnemonic decisions may function through similar 
brain mechanisms.

The overlap between our proposed framework and the 
framework used for perceptual decisions is not limited to its 
relationship with memory-guided decisions. The attentionally 
aligned coding scheme we propose is shared with perceptual 
systems. For example, neurons in the ventral visual system 
have large receptive fields that often contain multiple stimuli 
competing for attention. Focusing attention on a particular 
stimulus causes the neurons to behave as if the attended option 
was the only one present. Thus, the identity of the attended 
option is identified only by the status of attention. When atten-
tion shifts (within the receptive field), the tuning stays the 
same but the response changes to one that is based on the 
newly attended stimulus.

This principle, known as biased competition, has proven suc-
cessful at explaining responses of neurons in the ventral visual 
stream and offers a basis for theorising about memory, attention, 
and learning (Chelazzi et al., 1998; Desimone and Duncan, 
1995; Moran and Desimone, 1985). Our framework is, in 
essence, an extension of these ideas past the temporal pole, 
along the uncinate fasciculus, and into the orbital and medial 
regions of the prefrontal cortex. We are not the first to make this 
analogy. From the motor side, Cisek and colleagues have argued 
that biased competition principles also apply to representation 
and choice signals in motor and premotor regions (Cisek, 2007; 
Cisek and Kalaska, 2010; Pastor-Bernier and Cisek, 2011). We 
agree with this idea and propose that it extends backwards. One 
appealing feature of this idea is that it allows the brain to make 
use of a single principle to make both perceptual and economic 
decisions, rather than use a completely different architecture for 
the two types of choices.

The neuroeconomic binding problems. One virtue of our 
framework is that it offers a solution to three important neuro-
economic binding problems that are difficult to avoid with 
labelled line models. They concern how values are bound to 
options, to actions, and to choices (Akaishi and Hayden, 2016; 
Cai and Padoa-Schioppa, 2014; Hare et al., 2011; Strait et al., 
2016). Values must be linked to their corresponding options 
(the value binding problem, (Akaishi and Hayden, 2016; Strait 
et al., 2016). Then, to select that option, we need to link the 
result of a comparison with the action that will be used to select 
it (the action binding problem, Cai and Padoa-Schioppa, 2014; 
Hare et al., 2011; Strait et al., 2016; Yoo et al., 2018). Finally, 
once the choice is resolved, we need to link the experienced 
value with the choice that produced it (the outcome binding 
problem). This is one example of the broader class known as 
credit assignment problems (Schultz, 2006; Sutton and Barto, 
1998).

These binding problems can be understood by analogy to the 
feature binding problem (Engel and Singer, 2001; Shadlen and 
Movshon, 1999; Treisman and Gelade, 1980). Imagine seeing a 
red square and a blue circle; how does your brain know that it is 
not seeing a red circle and a blue square? Neuronal activity 
encoding each option dimension must be somehow coordinated. 
This coordination is unlikely to come through specialised neu-
rons that are sensitive to any combination of multiple features – 
this would lead to a problem of a combinatorial explosion (Plaut 
and McClelland, 2010; Shadlen and Movshon, 1999; Von der 
Malsburg, 1981). One possibility is that this problem is solved 
by the degeneracy introduced by attention: if only one option is 
attended at a time, then the dimensions can be assumed to be 
related to the same single object. The same principle may apply 
for value as well.

These binding problems are difficult to solve in a labelled 
line system. If line labels are stable, our brains would need neu-
rons for all possible options; this is unrealistic. If a new option is 
added to the mix, new neurons would have to be added. Would 
they be kept in reserve just in case a new option appears? What 
if 10 new options appear at once? This approach would require 
complex and specific wiring, ready to go for any possible choice. 
If the labels are assigned dynamically, then in situations with 
dozens of choices – such as when choosing cereals at the grocery 
store – we would need competition between dozens of neuron 
types. This approach would also require an as yet unidentified 
supervisory system to assign labels and implement the assign-
ment. More importantly, it would not solve the binding problem: 
how would the decoders know which options had been assigned 
to which neurons? How could they know which action to per-
form to select the option? The costs of such coordination are 
daunting.

In our model, option identity and value/action/choice can 
be decoded by the principle of degeneracy: if there are only 
one option, value, and action within the focus of attention, then 
they can be assumed to correspond. Thus, in our framework, 
binding is implemented by attention and is determined solely 
by temporal context, not by stable labelled lines. By doing so, 
the potential combinatorial explosion is contained (Shadlen 
and Movshon, 1999; Von der Malsburg, 1981). Thus, in our 
view, the strict bottleneck imposed by limited attentional 
capacity is a feature, not a bug.
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Methods

Description of the neuronal model

The dynamics of the firing rate and synaptic depression variables 
follow, respectively, the equations

 
d

dt
r

r
f d I ti

i

r
i i= − + ( )( )

τ  (3)

 
d

dt
d

d
d I ti

i

d
i i i=

−
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where f x( )  is the rectified linear function (i.e. f x x( ) =  if 
x > 0  and f x( ) = 0  if x 0) (Abbott, 1997; Tsodyks and 
Markram, 1997). The time constants for the firing rate and synap-
tic depression dynamics are chosen to be long, τ r = 500ms  and 
τd = 2s, to allow keeping a memory of the previous stimulus 
over the interval between stimuli presentation (Mongillo et al., 
2008). Long firing rate effective time constants can also be 
obtained through recurrent dynamics. The firing rate of the neu-
ron in equation (3) tracks the total input current with the time 
constant τ r . The synaptic depression variable in equation (4) 
depresses whenever the synapse is strongly stimulated and recov-
ers to its maximum value of one with time constant τd  if there is 
no stimulation. How fast the synapse depresses depends on the 
value of the parameter γ i .

Heterogeneity of the neuronal populations used in Figure 8 
was generated by selecting at random from a normal distribu-
tion the tuning parameters a bi i,  and the depression parameter 
γ i  (means: [0.5, 1, 1]; standard deviations: [0.05 0.1 0.1], 
respectively).
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