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Abstract. Muscle development involves a series of 
complex cell-cell interactions that are mediated, at 
least in part, by several different cell adhesion mole- 
cules. Previous work from this lab showed that the dif- 
ferent isoforms of NCAM and its level of polysialyla- 
tion are developmentally regulated during chick 
myogenesis in vivo and that this regulation is important 
for normal muscle development. Using developing 
chick secondary myotubes grown in culture, we show 
here that both the polysialylation of NCAM and the de- 
velopmental switch in isoform expression are regulated 
by activity and that Ca 2÷ entry through voltage-gated 
channels and the subsequent activation of protein ki- 
nase C are required for the developmental changes in 
NCAM isoform synthesis. Specifically, PSA expression 
was shown to be developmentally regulated with high 
expression being temporally correlated with the onset 
of spontaneous contractile activity. Furthermore, 
blocking contractile activity caused a decrease in PSA 

expression, while increasing activity with electrical 
stimulation resulted in its up-regulation. Immunoblot 
and metabolic labeling studies indicated that dividing 
myoblasts synthesize primarily 145-kD NCAM, newly 
formed, spontaneously contracting myotubes synthe- 
size 130-, 145-, and 155-kD NCAM isoforms, while 
older, more mature myotubes primarily synthesize the 
glycosylphosphatidylinositol-anchored 130-kD isoform. 
In addition, mature myotubes synthesized a 180-kD iso- 
form which, in contrast to the other three isoforms, had 
a high rate of turnover. This developmental switch in 
NCAM isoform expression could be inhibited with 
Ca 2÷ channel blockers and inhibitors of protein kinase 
C. Taken together, these results suggest that Ca 2+ ions 
and protein kinase C are involved in a second messen- 
ger cascade coupling membrane depolarization with 
transcriptional factors that regulate NCAM isoform 
synthesis and polysialylation. 

T 
HE neural cell adhesion molecule (NCAM) 1 is de- 
velopmentally expressed on a wide variety of cell 
types and mediates many cell--cell interactions in- 

cluding axonal growth (Doherty and Walsh, 1992), fascicu- 
lation (Landmesser et al., 1988), cell migration (Ono et al., 
1994), and myogenesis (reviewed by McDonald et al., 
1995). During skeletal muscle development, NCAM is ex- 
pressed at the onset of primary myogenesis, increases 
throughout secondary myogenesis and eventually declines 
around the time of birth (Covault and Sanes, 1986) or 
hatching (Fredette et al., 1993; Tosney et al., 1986). Skele- 
tal muscle NCAM has at least three major isoforms that 
are generated by alternative splicing of a pre-mRNA that 
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is transcribed from a single gene (Cunningham et al., 1987; 
Owens et al., 1987). Proliferating myoblasts in vitro (Co- 
vault et al., 1986; Moore et al., 1987; Knudsen et al., 1989) 
and primary myotubes in vivo (Fredette et al., 1993) pre- 
dominantly express the 145-kD transmembrane isoform of 
NCAM. However, as development proceeds, both in vivo 
and in culture, the 145-kD isoform is down-regulated and 
the GPI-linked 130-kD isoform of NCAM is up-regulated 
to become the predominant isoform (Covault et al., 1986; 
Fredette et al., 1993; Yoshimi et al., 1993). In vivo, this 
large upregulation of the GPI-linked isoform is associated 
with secondary myogenesis (Fredette et al., 1993). 

The factors that regulate the expression of NCAM, and 
in particular its different isoforms, are not well under- 
stood. NCAM on mammalian skeletal muscle fibers is 
down-regulated postnatally but is rapidly re-expressed fol- 
lowing denervation (Covault and Sanes, 1985, 1986). These 
results indicate that the overall expression of NCAM in 
neonatal and adult muscle fibers is regulated by muscle ac- 
tivity. However, the role of neuromuscular activity in reg- 
ulating the expression of individual isoforms during em- 
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bryogenesis is less clear. Blockade of neuromuscular 
activity during primary and secondary myogenesis in vivo 
prevents the normal switch from the 145- to the 130-kD 
isoform of NCAM (Fredette et al., 1993), suggesting that 
activity plays a role in regulating this isoform switch. How- 
ever, since activity blockade also results in a dramatic re- 
duction in the total number of secondary myotubes that 
are formed (Fredette and Landmesser, 1991; Harris, 1981; 
Ross et al., 1987), the observed absence of an isoform 
switch in activity blocked muscles may simply result be- 
cause secondary myogenesis is inhibited. Thus it is not 
possible to conclude from these observations that activity 
directly affects NCAM isoform expression. 

Electrical activation of myotubes has also been shown to 
regulate the polysialylation of NCAM. During early stages 
of in vivo myogenesis polysialic acid (PSA) on NCAM is 
low, but as myogenesis proceeds and neuromuscular activ- 
ity increases, PSA is dramatically up-regulated on myo- 
tubes and then declines (Fredette et al., 1993). Blockade of 
spontaneous neuromuscular activity by chronic treatment 
with d-tubocurarine (dTC) prevented both the expression 
of PSA on myogenic cells and the separation of myotubes 
from clusters (Fredette et al., 1993). 

How might electrical activity regulate NCAM isoform 
expression and PSA? Neuromuscular activity is known to 
be an important factor regulating the expression of acetyl- 
choline receptors (AChRs) both in vivo (reviewed by 
Changeux et al., 1990) and in vitro (Betz and Changeux, 
1979; Changeux et al., 1990). More recent studies have 
shown that the activity dependent down regulation of 
AChRs is blocked by both voltage-dependent Ca 2÷ chan- 
nel blockers (Fontaine et al., 1987; Klarsfeld et al., 1989; 
Huang, et al., 1994) and by inhibitors of protein kinase C 
(PKC) (Klarsfeld et al., 1989; Huang et al., 1992). Since 
the expression of both AChRs and total NCAM is down- 
regulated by neuromuscular activity, and up-regulated in 
the absence of activity, it is possible that both proteins 
share a common regulatory pathway. 

To examine more closely the role of neuromuscular ac- 
tivity and potential downstream molecular mechanisms 
regulating the expression of both NCAM isoforms and of 
PSA, chick secondary myotubes grown in culture were 
subjected to a number of controlled experimental para- 
digms designed to alter activity and/or downstream second 
messengers. We find that the polysialylation of NCAM 
and the developmental switch in isoform expression is reg- 
ulated by activity. Furthermore, Ca 2+ entry through volt- 
aged gated channels and the activation of PKC is required 
for the developmental changes in NCAM isoform synthesis. 

Preliminary results have previously been published in 
abstract form (Rafuse, V., and L. Landmesser. 1994. Soc. 
Neurosci. Abstr. 20:1318). 

Materials and Methods 

Cell Culture 
Myotube cultures were isolated from white leg horn chick pectoral mus- 
cles from stage 38 (Hamburger and Hamilton, 1951) embryos. Cultures 
prepared for immunofluorescence and metabolic labeling were prepared 
with the following procedure. Myoblasts were mechanically dissociated 
from myotubes by gently triturating the dissected muscles through two 
fire-polished Pasteur pipettes with openings of 0.75 and 0.5 ram. The cell 

suspension was centrifuged at 1,000 g for 15 s to separate the myoblasts 
from cell debris. The supernatant containing the myoblasts was diluted 
with culture medium to a final concentration of 106 myoblasts/ml. Myo- 
blasts were plated on rat tail collagen (type I; Collaborative Biomedical 
Products, Bedford, MA)-coated glass cover slips (12 mm; Carolina Biolog- 
ical Supply Company) at 50,000 cells/cover slip in 0.5 ml of Ham's  F-10 
(supplemented with 1.26 mM CaCI2) containing 10% horse serum 
(GIBCO BRL, Gaithersburg, MD), 5% chicken embryo extract, 100 U/ml 
penicillin, and 100 Ixg/ml streptomycin (culture medium) and cultured in 
24-well plastic tissue culture plates. 50% of the culture medium was re- 
placed with fresh medium on day 3 and thereafter every 2 d. Under these 
conditions myotubes routinely began spontaneously contracting on day 3. 

Cultures used for SDS-PAGE immunoblot analysis were prepared as 
above except that myoblasts were plated in collagen-coated 60 mm plastic 
culture dishes at 106 cells/dish in 5 ml medium. No differences were ob- 
served in either the morphology or rate of myogenesis between the two 
culture conditions. As observed with the cultures plated on glass cover- 
slips, myotubes began spontaneously contracting on day 3. 

To examine the effects of electrical activity on NCAM and PSA expres- 
sion, cultured myotubes were either treated with tetrodotoxin (TTX) or 
electrically stimulated. Spontaneous contractile activity was blocked by 
treatment with 5 p.M TI 'X (added on day 2) or was increased by electri- 
cally stimulating 7 d cultured myotubes. As described above, myotubes 
were cultured in 24-well tissue culture plates on collagen-coated glass cov- 
erslips. Stimulating silver electrodes were immersed in the culture me- 
dium and placed on opposites sides of a single well containing spontane- 
ously contracting myotubes. Myotubes were stimulated using a stimulator 
(model $88; Grass Instruments Co., Quincy, MA) that was coupled to an 
integrated circuit (IC) output device that converted monopolar pulses to 
balanced bipolar pulses. The output from the IC device was connected to 
the silver stimulating electrodes with flexible copper wires. The myotubes 
were stimulated with a single pulse (1-ms pulse width at 60 V) every 10 s 
for 3 d. This procedure effectively stimulated N60% of the cultured myo- 
tubes. Myotubes that did not contract when electrically stimulated were 
also never seen to contract spontaneously. The electrical stimulation pa- 
rameters used did not have any detrimental effects on the health of the 
myotubes based on both their morphology and frequency of spontaneous 
contractions. 

Immunofluorescence 
Three antibodies to NCAM were used: 5E, a monoclonal IgG antibody 
that recognizes all isoforms of NCAM (Frelinger and Rutishauser, 1986), 
4D, a monoclonal IgG antibody that only recognizes the 180-kD NCAM 
isoform (Watanabe et al., 1986), and 5A5, a monoclonal IgM that recog- 
nizes only the polysialated form of NCAM (Dodd et al., 1988; Acheson et 
al., 1991). For double labeling of both total and PSA forms of NCAM, 5E 
and 5A5 were diluted together in PBS (pH 8.0) and BSA to a final con- 
centration of 1:100 each. 

Cultured cells were washed with PBS and then fixed with cold 3.7% 
formaldehyde for 15 min at room temperature. Fixed cells were washed 
six times (5 min/wash) with PBS and then blocked with 2% BSA/PBS for 
1 h at room temperature. All cells were processed for immunohistochem- 
istry by first incubating them overnight at 4°C in primary antibodies di- 
luted in 2% BSA/PBS. After rinsing with PBS the cells were incubated for 
1.5 h in a mixture of secondary antibodies (Sigma Immunochemicals, St. 
Louis, MO) consisting of fluorescence-conjugated anti-mouse IgG (1:100) 
and rhodamine-conjugated anti-mouse IgM (1:100). After rinsing several 
times in PBS the coverslips were mounted on a slide and coverslipped 
with a glycerol and PBS mixture (50:50) containing p-phenylenediamine 
(0.3 mg/ml) to prevent fading. All comparisons for staining intensity were 
performed using the same dilution of antibodies and photographed with 
Kodak Tri-X Pan film using the same exposure settings. Photographs 
were taken with a Nikon Microphot microscope equipped with epifluores- 
cence. 

SDS-PAGE Immunoblotting 
Cultured cells were washed with PBS, harvested in 4 ml of PBS and centri- 
fuged at 5,000 g for 10 min at 4°C. The pellet was re-suspended in extrac- 
tion buffer (50 mM Hepes, 150 mM NaCI, lmM EDTA, 2 mM PMSF, 100 
p~g/ml leupeptin, 0.2 TIU/ml aprotinin, 1% NP-40) sonicated for 10 s, 
placed on ice for 1 h and centrifuged for 1 h at 100,000 g (4°C). The con- 
centration of the solubilized proteins was determined (BCA method; 
Pierce Chemical Co., Rockford, IL) and adjusted to 1 mg/ml. Some ali- 
quots of the extract (25 t-d) were treated with neuraminidase (0.2 U/ml of 
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Vibrio Cholerae; Calbiochem-Behring Corp., San Diego, CA) for 2-3 h at 
37°C to remove sialic acid while others from the same sample were treated 
with buffer alone. SDS sample buffer containing dithiothreitol was added 
to each sample, heated for 20 min at 65°C, and then the proteins were sep- 
arated by SDS-PAGE according to the Laemmli method (Laemmli, 1970) 
on a 6% gel. 20 Ixg of total protein was loaded in each lane. Proteins were 
transferred onto Immobilon-P membranes, incubated for I h with block- 
ing solution (4% milk in TBS), followed by overnight incubation at 4°C 
with 5E diluted in TBS and 1% milk (1:500). Membranes were washed 
several times with TBS and then they were incubated for 1.5 h with alka- 
line phosphatase-conjugated mouse IgG secondary antibody (1:500; 
Sigma Immunochemicals). Bands were visualized with the BCIP/NBT 
method. 

Peanut Lectin Immunoblots 
5-d-old myotube cultures were washed with PBS, harvested and homoge- 
nized in 200 Ixl of extraction buffer as described above. The extracted pro- 
teins were rotated overnight at 4°C in the presence of 30 Ixl of 5E-conju- 
gated Sepharose beads to immunoprecipitate NCAM. Beads were washed 
four times (1 ml each) with buffer A (50 mM Tris-HCl, 0.5 M NaC1, 1% 
NP-40, pH 8), four times with buffer B (50 mM Tris-HCl, 150 mM NaCI, 
0.5% NP-40, 0.1% SDS, pH 8) and one time with extraction buffer (see 
above). Beads were diluted with 30 I~1 of extraction buffer and half the 
sample was incubated with neuraminidase (see above) for 1-2 h at 37~C to 
remove the sialic acid. SDS sample buffer containing dithiothreitol was 
added to each sample, heated for 20 min at 65°C, and then the proteins 
were separated by SDS-PAGE on a 6% gel. Proteins were transferred 
onto Immobilon-P membranes and were incubated for 1 h with blocking 
solution (4% milk in TBS). The membranes were then incubated over- 
night at room temperature with peanut agglutinin (PNA) (10 Ixg/ml; 
Sigma Immunochemicals). PNA was diluted in Hepes-buffered saline (10 
mM Hepes, 0.15 M NaC1, 0.1 mM CaC12) containing 1% BSA. Treated 
membranes were then washed several times with TBS, incubated for 1 h 
with anti-PNA (anti-arachis hypogaea lectin) (1:10; Sigma Immunochemi- 
cals), washed, and finally incubated for 1.5 h with alkaline phosphatase- 
conjugated rabbit IgG secondary antibody (1:500; Sigma Immunochemi- 
cals). Bands were visualized with the BCIP/NBT method. Each lane on 
the immunoblot represents half of the total NCAM immunoprecipitated 
from myotubes cultured in a single 60 mm tissue culture dish. 

Metabolic Labeling 
Glass coverslips, containing myotube cultures, were placed in 24-well tis- 
sue culture plates containing 250 Ixl of methionine-free MEM (Sigma Im- 
munochemicals) for 1 h at 37°C prior to addition of 30 IxCi of [35S]me- 
thionine. Cultures were pulsed for 8 h at 37°C after which the cells were 
washed at least 15 times (2 ml each) with cold MEM. Washed cells were 
either homogenized immediately or were placed in fresh culture medium 
(see above) and then incubated (chased) for 1 or 2 d. Cells to be homoge- 
nized were scraped from the coverslip, added to 200 p.l extraction buffer 
(see above), sonicated for 10 s, placed on ice for 1 h, and finally centri- 
fuged at 100,000 g for 1 h at 4°C. Vials containing extracted proteins and 
30 ixl of 5E-conjugated Sepharose beads were rotated overnight at 4°C to 
immunoprecipitate NCAM. Beads were washed four times (1 ml each) 
with buffer A, four times with buffer B, and once with extraction buffer 
(see above). Beads were diluted with 30 p,1 of extraction buffer and incu- 
bated with neuraminidase (see above) for 1-2 h at 37°C. SDS sample 
buffer was added to each sample, heated for 20 rain at 65°C, and then the 
proteins were separated by SDS-PAGE on a 6% gel. Equivalent amounts 
of protein were added to each lane, which represents half of the total 
NCAM immunoprecipitated from myotubes cultured on a single 12 mm 
glass cover slip. Gels were fixed (10% acetic acid, 25% isopropanol, 65% 
water) for 30 min, soaked in Amplify (Amersham Corp., Arlington 
Heights, IL) for 30 min, and dried on blotting paper using a Bio-Rad drier 
(gel drier model 583; Bio-Rad Laboratories). Dried gels were placed onto 
pre-flashed Hyperfilm-MP (Amersham Corp.) in an X-ray cassette for 
1 wk at -70°C after which the films were developed using a medical film 
processor (model QX-70; Konica). 

Drug Treatments 
Several pharmaceutical agents were used throughout this study to alter 
normal cellular function. Voltage-sensitive calcium channels were blocked 
with 10 p~M verapamil (Calbiochem-Behring Corp.) (Walsh et al., 1986). 
To increase intracellnlar Ca 2÷ levels myotubes were treated with either 10 

mM thapsigargin (Calbiochem-Behring Corp.) an inhibitor of Ca2+-ATP - 
ase activity (Thastrup et al., 1990) or with veratradine, a Na channel acti- 
vator (Stallcup, 1977). PKC was inhibited with either 10 -6 M phorbol 12 
myristate-13-acetate (TPA; Sigma Immunochemicals) (Tamaoki et al., 
1986) or 10 -7 M staurosporine. Finally, phosphatidycholine-specific phos- 
pholipase C was selectively inhibited with 30 mM D609 (Calbiochem- 
Behring Corp.) (Muller-Decker, 1989). Individual drugs were added to 
the myotube cultures on day 4 and remained in the medium for the de- 
scribed times. 

Results 

Immunocytochemical Comparison of 
Total NCAM and Polysialic Acid Expression 
during Secondary Myogenesis 

Previous work in this laboratory (Fredette et al., 1993) 
showed that, while total NCAM is relatively uniformly ex- 
pressed on developing chick myoblasts and myotubes 
throughout primary and early secondary myogenesis in 
vivo (St 28-40), the amount of PSA associated with 
NCAM was temporally regulated. Specifically, the inten- 
sity of PSA immunofluorescence was very low during 
early primary myogenesis (St 28), increased slowly during 
late primary and early secondary myogenesis, until the be- 
ginning of St 37, a t  which time PSA immunostaining 
sharply peaked (St 38) correlating with the break up of 
myotube clusters. To better clarify the mechanisms regu- 
lating the temporal pattern of NCAM and PSA expression 
on developing chick muscle in vivo, we used an in vitro 
model of secondary myogenesis where putative regulatory 
factors could be more easily controlled. 

The formation of myotubes in vitro occurs in a series of 
well-timed events. During the first 24 h of myogenesis, myo- 
blasts divided and many began to align into small clusters 
of cells. One day after plating immunofluorescence for to- 
tal NCAM was uniformily distributed along the surfaces of 
all myoblasts (Fig. 1 A). During the next 24 h of myogene- 
sis myoblasts continued to divide and tightly align as long 
strings of cells that began to take the shape of the future 
myotubes. The expression of total NCAM remained high 
during this time period with slightly higher immunostain- 
ing observed between apposed cells (Fig. 1 C). Over the 
next 24 h virtually all myoblasts fused together to form 
large multinucleated myotubes. When myoblasts were cul- 
tured in Ca 2÷ supplemented F-10 medium, as was done in 
this study, many newly formed myotubes began to exhibit 
frequent spontaneous contractions by the third day of cul- 
ture and many, but not all, remained spontaneously active 
for as long as the myotubes remained in culture. During 
this entire period, overall NCAM staining remained high 
on both newly formed, as well as on older, more mature 
myotubes (Fig. 1, E and G). Thus, in vitro, overall NCAM 
immunostaining did not appear to be developmentally 
regulated or to be affected by the onset of spontaneous 
contractility in myotubes. 

In contrast, PSA expression was strongly correlated with 
the onset on electrical activity. Thus, PSA was absent from 
myoblasts at 1 d after plating (Fig. 1 B) and was only 
weakly expressed on a few myoblasts at 2 d (Fig. 1 D). At 
3-4 d, when myotubes became spontaneously active, PSA 
was expressed at moderate levels by many, but not all (Fig. 
1 F) myotubes. During the next few days PSA levels in- 
creased with some myotubes exhibiting intense staining 
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Figure 1. NCAM and PSA ex- 
pression during different 
stages of in vitro myogenesis. 
Cultures were immunostained 
for NCAM (A, C, E, and G) or 
PSA (B, D, F, and H). At 1 d 
after plating myoblasts express 
NCAM strongly (A, arrow), 
but PSA is weak to absent (B, 
arrow). At 2 d NCAM is 
strongly expressed on all myo- 
blasts (C, arrow) and PSA be- 
gins to be weakly expressed on 
a few fusing myoblasts (D, ar- 
row). By 3-4 d NCAM staining 
is intense on the newly formed 
myotubes (E, arrow). PSA ex- 
pression increases on most my- 
otubes (F, arrow), but is weak 
to absent on others (F, arrow- 
head) which are NCAM posi- 
tive (E, arrowhead). By 8 d 
PSA expression has increased 
markedly on many myotubes 
(1t, arrow), but is still low to 
absent on others (H, arrow- 
head). In contrast, NCAM 
staining is uniformly high on 
all myotubes ( G, arrow and ar- 
rowhead). Bar, 75 ixm. 

(Fig. 1 H, arrow). However,  PSA staining remained het- 
erogeneous and even by day 8 some myotubes which ex- 
pressed N C A M  still exhibited weak to absent staining for 
PSA (Fig. 1 H, arrowhead). 

Fredette et al. (1993) previously showed that PSA ex- 
pression on the surface of  myotubes in vivo was dramati- 
cally altered by neuromuscular activity blockade. Thus, 
while total N C A M  expression was only modestly affected 
by activity blockade, PSA immunofluorescence was virtu- 
ally abolished during all stages of  muscle development. 

Since PSA was expressed on cultured myotubes at the 
time when they initiated spontaneous contractions (third 
day in culture) and because activity blockade prevented 
the upregulation of PSA in vivo, we decided to test more 
directly the possibility that electrical activity was regulat- 
ing PSA. Thus spontaneous contractile activity was either 
completely blocked by bath application of TTX or in- 
creased by electrically stimulating 7-d-old myotubes (1 pulse/ 
10 s; 24 h/d) for 72 h. 

Chronic exposure to TTX did not affect myotube forma- 
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Figure 2. NCAM and PSA ex- 
pression in the presence of 
TI'X or electrical stimulation. 
10 d myotube cultures grown 
in the presence of 10  - 6  M TTX 
for 8 d were stained for 
NCAM (Mab5E) (A) or for 
PSA (Mab5A5) (B). Similar 
cultures were electrically stim- 
ulated at a rate of one pulse 
every 10 s for 72 h, beginning 
on day 7, and stained for 
NCAM (C), or for PSA (D). 
TTX-treated myotubes (A) ex- 
pressed similar levels of 
NCAM as electrically stimu- 
lated myotubes (C). However, 
5A5 expression was dimin- 
ished following TrX treatment 
(B) and many myotubes did 
not express PSA (B, long ar- 
rows). Some myotubes (B, 
short arrows) did exhibit PSA 
expression, but this was, in 
general, lower than that for 
electrically stimulated myo- 
tubes (D) or those with normal 
levels of spontaneous contrac- 
tions. ITX-treated myotubes 
were also generally of smaller 
diameter than either control or 
electrically stimulated myo- 
tubes. Bar, 75 ~m. 

tion but did result in considerably thinner myotubes pre- 
sumably because of the reduced synthesis of contractile 
proteins (Cerny and Bandman 1986). As occurred in vivo 
(Fredette et al., 1993), total NCAM was uniformly ex- 
pressed on myotubes and the level of immunofluorescence 
was not visibly different between TI 'X  (Fig. 2 A) and elec- 
trically stimulated (Fig. 2 C) myotubes. In contrast, PSA 
expression was very sensitive to myotube activity levels, 
being low to undetectable in myotubes whose activity had 
been blocked (Fig. 2 B) and very high in chronically stimu- 
lated myotubes (Fig. 2 D). PSA expression in these chron- 
ically stimulated myotubes was, in general, higher than in 
control spontaneously contracting myotubes. 

Immunoblot Analysis of  NCAM Isoforms during 
Secondary Myogenesis In Vitro 

Since the mAb 5E does not distinguish among the differ- 
ent isoforms of NCAM it is possible that, although the 
overall expression of NCAM did not change during in 
vitro myogenesis, changes in the expression of individual 
isoforms may have occured during specific stages of mus- 
cle development. Previous studies in developing chick 
(Fredette et al., 1993; Yoshimi et al., 1993) and mouse 
muscles (Covault and Sanes, 1986) have shown that the 
145-kD transmembrane isoform is expressed during early 
myogenesis whereas the 130-kD lipid-linked isoform be- 
comes the predominant isoform later in development. 
However, since developing muscles in vivo are composed 
of a heterogeneous population of primary and secondary 

myoblasts and myotubes it is difficult to ascertain whether 
this in vivo switch in isoform expression occurs because 
NCAM isoform expression is regulated developmentally 
in all cell types or because different populations of muscle 
cells express different isoforms. For example, several in 
vitro studies concluded that myoblasts preferentially ex- 
press the 145-kD transmembrane isoform while the 130- 
kD lipid-linked form is expressed on myotubes once fu- 
sion occurs (Moore et al., 1987; Knudsen et al., 1989; 
Tassin et al., 1991). A previous in vivo study from this lab 
(Fredette et al., 1993) observed that the 145-kD isoform 
predominated when muscles were composed of primary 
myotubes, with expression of the 130-kD isoform being as- 
sociated with secondary myogenesis.  

To clarify this issue, NCAM isoform expression was ex- 
amined at several stages during in vitro secondary myo- 
genesis. To determine the pattern of isoform expression 
the isoforms were examined with SDS-PAGE combined 
with immunoblot analysis. Cell cultures were harvested 
and homogenized at 1 d (homogenous culture of second- 
ary myoblasts), 3 d (newly formed secondary myotubes), 
and 4-8 d (progressive maturation of myotubes) after plat- 
ing. Half  of the tissue homogenates were desialylated with 
neuraminidase to remove the polysialic acid associated 
with the NCAM isoforms. 

The predominance of the different NCAM isoforms var- 
ied with the stage of myogenesis. In agreement with previ- 
ous studies (Knudsen et al., 1989; Tassin et al., 1991), 1-d-old 
myoblast cultures contained NCAM of three different mo- 
lecular weights when desialylated: 155, 145 and 130 kD, 
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N A M  + - + + - + + - +  - 
1 d 3d 4d  5d 6d 8d 

B 100 

 ,0j N, 

130 145 155 130 145 155 130 14-5 1.55 

1 doy 3 doy 8 doy 

Figure 3. SDS gel electrophoresis and immunoblot analysis of 
NCAM isofonns and degree of polysiaJylation during muscle de- 
velopment in vitro. (A) Neuraminidase-desialylated proteins (+ 
lanes) from 1, 3, 4-8 d myotube cultures show that there are pro- 
gressive changes in the proportions of the different NCAM iso- 
forms during in vitro myogenesis. Myoblasts contain primarily 
the 145-kD isoform with lesser amounts of the 155-kD isoform. 
Weak expression of the 130-kD isoform, barely detectable on the 
immunoblot shown in A was confirmed with quantitative densi- 
tometry (see B). The 130- and 155-kD isoforms are up-regulated 
in newly formed, spontaneously contracting myotubes (3d). This 
pattern remained relatively constant until 8 d when the relative 
expression of the 155- and 145-kD isoforms decreased compared 
to the 130-kD isoform. NCAM from 1 and 3 d myotube culture 
homogenates that were not treated with neuraminidase was de- 
tected as three discrete bands ( -  lanes) indicating that at this 
stage of development NCAM was not polysialylated. In contrast, 
NCAM from 4 d myotubes was detected as a diffuse band run- 
ning between 250-140 kD indicating that actively contracting myo- 
tubes have highly polysialylated NCAM. (B) Quantitative repre- 
sentation of the developmental changes in NCAM isoform 
expression. Densitometric scans were made of the NCAM immu- 
noblots and the quantity of 155-, 145-, and 130-kD isoforms is ex- 
pressed as a percent of the total NCAM present. Values are 
means --- SE from at least three separate experiments. 

with the 145-kD isoform being most prominent and the 
130-kD GPf-linked isoform being only weakly expressed 
(Fig. 3). Newly formed, spontaneously contracting, myo- 
tubes (3-d-old cultures) continued to express all three iso- 
forms; however the expression of the 155-kD isoform had 
now increased sharply with respect to the 145-kD NCAM 
as did, to a lesser extent, the lipid-linked 130-kD isoform. 
1-d later (4-d-old cultures), the expression of the 155- and 
145-kD isoforms had remained relatively constant whereas 
the 130-kD NCAM had increased considerably. This pat- 
tern of NCAM expression remained relatively constant 
until day 8 when the relative expression of the 155- and the 

145-kD isoforms decreased while that of the 130-kD 
NCAM increased to become the major isoform (Fig. 3, A 
and B). 

The developmental regulation of PSA expression, shown 
previously with immunostaining, was also detectable on 
immunoblots. NCAM from 1- and 3-d-old muscle culture 
homogenates that were not treated with neuraminidase 
(Fig. 3 A, columns labeled with - )  was detected as three 
discrete bands running at only slightly higher molecular 
weights than homogenates that were treated with neur- 
aminidase (Fig. 3 A). In contrast, NCAM from 4 d and 
older cultures was detected as a diffuse band between 250- 
140 kD. These results indicate that the NCAM on second- 
ary myoblasts and newly formed myotubes (i.e., 3 d) is not 
polysialylated while NCAM on older, actively contracting 
myotubes is highly polysialylated. These results agree with 
the PSA immunofluorescence which showed that staining 
with the mAb 5A5 was not detectable on 1-d-old myo- 
blasts and was very weak on 2-d-old myoblasts while it was 
readily detectable on myotubes. These results also show 
that secondary myotubes growing in culture polysialylate 
all three major NCAM isoforms. This contrasts with chick 
muscle development in vivo, where Fredette et al. (1993) 
showed that the 145-kD isoform was not polysialylated at 
times when the 130 and 155 isoforms were. Although at 
present we do not have an explanation for these differ- 
ences, it is possible that primary myotubes, which in vivo 
make a significant contribution to total muscle NCAM, 
sialylate isoforms differently than secondary myotubes. 

Metabolic Labeling of NCAM lsoforms 
The changes in NCAM isoform expression we observed 
could be due to differences in either the rate of synthesis 
of each isoform or their rate of turn-over. For example, it 
is possible that only myoblasts synthesize the 145-kD iso- 
form and that its continued expression on myotubes is due 
to its slow rate of turn-over during myotube formation. 
Similarly, the switch in the predominant isoform observed 
by 8 d in culture may have resulted because by this stage of 
development the 155- and 145-kD isoforms were turning 
over more rapidly than the 130-kD isoform. Thus, if all 
were synthesized at the same rate, more of the 130-kD iso- 
form would be present at any given time point. 

To examine these possibilities [35S]methionine pulse- 
chase experiments were performed on myotube cultures 4 
and 7 d after plating. As shown in Fig. 4 A, all three iso- 
forms are synthesized in 4-d-old myotube cultures indicat- 
ing that the 145-kD isoform is not only synthesized by myo- 
blasts as previously suggested (Covault et al., 1986; Moore 
et al., 1987) but also by myotubes which at this stage con- 
stitute the vast majority of the NCAM expressing cells in 
these cultures (Fig. 4 A). After 1 or 2 d of chase the level 
of [35S]methionine labeling of all three isoforms of NCAM 
decreased at a similar rate. Optical density measurements 
(Fig. 4 B) indicated that the half life of all three isoforms at 
this stage of development was ~20 h. 

The relative rates of synthesis of the three NCAM iso- 
forms changed markedly between 4 and 7 d in culture (Fig. 
4 C). By 7 d in culture the relative rate of synthesis of the 
130-kD NCAM had greatly increased with respect to the 145- 
and 155-kD isoforms. Thus the predominance of the 
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Figure 4. Rate of synthesis 
and turn-over of newly syn- 
thesized NCAM isoforms at 
4 and 7 d in cultures. Myo- 
tube cultures were pulsed 
with [35S]methionine for 8 h 
after which the proteins were 
either extracted immediately 
(Od) or chased with 
[35S]methionine-free medium 
for 1 or 2 d. NCAM was im- 
munoprecipitated and run on 
6% SDS-PAGE gets (see 
Materials and Methods for 
additional details). (A) 4-d- 
old myotube cultures synthe- 
size all three "muscle spe- 
cific" isoforms with the level 
of synthesis of the 145 kD be- 
ing slightly higher than the 
155- and 130-kD isoforms. 
(B) Plotting the optical den- 
sity measurements on semi- 
logarithmic axes indicates 
that at this stage of muscle 
development all three iso- 
forms have a half life of N20 h. 
Note that there is a faint, but 

discernible band at 180 kD in the 0d lane. (C) While 7-d-old myotube cultures also synthesize all three "muscle specific" isoforms, the 
expression pattern dramatically differs from 4 d myotubes; the relative rate of synthesis of the 130-kD isoform is substantially higher 
than either the 155- and 145-kD isoforms. The level of expressison of all three isoforms progressively decreases following a 1 and 2d of 
chase. (D) Optical density measurements, plotted on semilogarithmic axes, indicates that the turn-over rate of the 130-kD isoform is 
significantly slower (half-life of 48 h) than both the 155- and 145-kD isoforms (both with half-life of 12 h). Also note that an intense 180- 
kD band can dearly be seen in the 0d lane but is absent following 1 and 2d of chase. (E) Not all NCAM isoforms synthesized in 8 d myo- 
tube cultures are polysialylated. [35S]Methionine-labeled cultures show that the 130-kD isoform is detectable as a distinct band only 
when the homogenate is treated with neuraminidase (+) and that this band is completely absent in untreated samples ( - ) .  In contrast, 
the 180-kD isoform is clearly detectable as a discrete band of essentially the same molecular weight in both untreated ( - )  and treated 
(+) myotube homogenates. 

130-kD isoform appears to be due, at least in part, to an in- 
creased rate of  synthesis. However,  pulse chase experi- 
ments also indicated that the turn-over rate of this isoform 
was slower compared to the 145- and 155-kD isoforms. 
From optical density measurements (Fig. 4 D) its half life 
was ~48  h compared to 12 h for both the 145- and 155-kD 
isoforms. Thus, the relative abundance of  the GPI-linked 
130 isoform in more  mature myotubes appears to be due 
to both an increase in its relative rate of synthesis and a 
decrease in its rate of degradation. 

In addition, in both 4 and 7 d myotube cultures we no- 
ticed a band in the position where the 180-kD N C A M  iso- 
form would appear. The 180-kD isoform has been consid- 
ered to be nerve specific (but see Tassin et al., 1991; Lyons 
et al., 1992), and in most immunoblots of cultured myo- 
tubes, there was only a very faint band evident in this posi- 
tion (see for example Fig. 3 A, 4-6 d cultures). Neverthe- 
less, in the autoradiograms from 8 d cultures (Fig. 4 C, 
0 d), the protein running at this position was being synthe- 
sized at a higher rate than any of the other N C A M  iso- 
forms. However,  unlike the 155-, 145-, and 130-kD N C A M  
isoforms, this protein had a very fast turn-over rate, with a 
half-life of less than 8 h, since it was virtually absent fol- 
lowing a 1 d chase (Fig. 4 C, I d). In striking contrast to the 
other three isoforms, the 180-kD N C A M  was not poly- 
sialylated as indicated by the distinct band running at 

180-kD from the 8-d-old culture homogenate  that was not 
treated with neuraminidase (Fig. 4 E). 

A protein with a very high molecular weight (>200 kD) 
was frequently immunoprecipitated along with N C A M  us- 
ing 5E-conjugated Sepharose beads (for example see Figs. 
4 C and 7 B). While the identity of this protein is not  
known, it is clearly not N C A M  since it was not recognized 
by either 5E monoclonal  antibody (Figs. 3 and 5) or by 
polyclonal ant i -NCAM (data not shown). Preliminary ex- 
periments indicate that some, but not all, of  the material 
running at this position is myosin that bound nonspecifi- 
cally to the beads used in the immunoprecipitation. 

Expression o f  a I80-kD N C A M  Isoform by Skeletal 
Muscle Cells 

Metabolically labeled myotubes synthesized an apparent  
N C A M  isoform with a molecular weight of 180 kD (Fig. 
4). Previous studies had indicated that this t ransmembrane 
N C A M  isoform, with a large intracellular domain, was ex- 
clusively synthesized in neuronal tissue, and was absent 
from skeletal muscle (but see Tassin et al., 1991). To better 
characterize the 180-kD isoform of N C A M  synthesized in 
muscle, homogenate  extracts were prepared from St. 37 
chick hindlimb muscles, 5 d myotube cultures, and from 
sciatic nerve. Immunoblots  were stained with either a 
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Figure 5. The "neuronal" 180-kD NCAM isoform is expressed in 
developing chick muscle, both in vivo and in vitro. Neuramini- 
dase-desialylated proteins, extracted with NP-40 from St 37 sci- 
atic (NERVE), hindlimb muscles (MUSCLE) and 5d myotube 
cultures (CULTURE) were separated by SDS-PAGE and immu- 
noblotted with either an mAb that recognizes all NCAM iso- 
forms (5E) or with an mAb that specifically recognizes only the 
180-kD isoform (4D). The 4D mAb specifically recognized a 180- 
kD isoform in embryonic nerve, muscle and myotube culture ex- 
tracts indicating that this isoform is not exclusively expressed by 
neuronal tissue. Immunoprecipitated NCAM was separated by 
SDS-PAGE and incubated first with PNA, and then immuno- 
blotted with ant-PNA. Peanut lectin (PL) bound to 180-, 155-, 
and 130-kD NCAM isoforms, but not to the 145-kD isoform indi- 
cating that this isoform does not contain the MSD region. 

mAb that recognized all NCAM isoforms (5E) or with one 
specific for the 180-kD neuronal isoform (4D). Sciatic 
nerve extracts from St 37 chick embryos contained both 
the 140- and 180-kD NCAM isoforms (Fig. 5, 5E, 
NERVE) and in agreement with Watanabe et al. (1986), 
the 4D mAb exclusively recognized the 180-kD isoform 
(Fig. 5, 4D, NERVE). The predominant NCAM isoforms 
observed in extracts from St 37 chick muscles were the 
130-, 145-, and 155-kD isoforms; nevertheless the 180-kD 
isoform was clearly detectable (Fig. 5, 5E, MUSCLE; see 
also Fredette et al., 1993) and recognized by the 4D mAb 
(Fig. 5, 4D, MUSCLE). To rule out the possibility that the 
180-kD NCAM isoform observed in the muscle extracts 
was due to NCAM derived from intramuscular nerves, 
myotube cultures were homogenized and analyzed by im- 
munoblotting with either the 5E (Fig. 5, 5E, CULTURE; 
see also Fig. 3) or 4D (Fig. 5, 4D, CULTURE) mAbs. As 
observed in the muscle extracts, cultured myotubes also 
contained the 180-kD isoform of NCAM. 

The rate of synthesis of the 180-kD isoform in myotube 
cultures increased developmentally, being greater at 7 d 
than at 5 d (Fig. 4, A and C). In addition, its turn-over rate 
was significantly faster than that of the other isoforms 
since the metabolically labeled 180-kD isoform was com- 
pletely absent with only 1 d of chase (Fig. 4 C). This high 
rate of turn over may explain why the 180-kD isoform is 
only weakly detected in immunoblot analysis (Fig. 3). 

Specific NCAM Isoforms Contain a Peanut Lectin 
Binding Region 

The 155- and 125-kD isoforms of NCAM from the C2 
skeletal muscle cell line contain a muscle-specific domain 
(MSD) splice insert which contains an O-linked glycosyla- 
tion site that is recognized by peanut lectin (Walsh et al., 
1989). To characterize the binding of peanut lectin to 
NCAM from chick skeletal muscle, NCAM was immuno- 

precipitated from 5-d-old secondary myotube cultures, 
treated with neuraminidase, separated by SDS-PAGE, 
and transferred onto Immobilon-P membranes (see Mate- 
rials and Methods for details). Binding of peanut lectin 
was detected on the 155- and 130-kD isoform bands but 
not on the 145-kD band, indicating that the latter isoform 
lacks the MSD insert (Fig. 5, PL) (see also Yoshimi et al., 
1993). Peanut lectin also bound to the 180-kD "nerve" 
specific NCAM isoform, indicating that this isoform also 
contains the MSD. Byeon et al. (1995) recently found that 
in embryonic chick cardiac muscle the 125-, 155-, and 185- 
kD NCAM isoforms contained the MSD insert, while the 
145- and 180-kD isoforms did not. 

Molecular Mechanisms Regulating the Synthesis of 
NCAM Isoforms 

Total NCAM is gradually down-regulated along the sur- 
face of embryonic muscle fibers following innervation, de- 
clining around the time of hatching in chicks (Tosney et 
al., 1986) and of birth in mammals when it becomes con- 
fined mainly to neuromuscular junctions (Covault and 
Sanes, 1985). However, if neuromuscular activity is de- 
creased in adult muscles by denervation (Covault and 
Sanes, 1985, 1986; Covault et al., 1986) or TTX treatment 
(Covault and Sanes, 1985) there is a rapid up-regulation of 
NCAM. These results show that the overall expression of 
NCAM on neonatal and adult muscle fibers is regulated 
by neuromuscular activity. However, at earlier stages of 
embryonic development when overall NCAM synthesis 
was not altered by activity blockade (Fredette et al., 1993), 
the synthesis of specific isoforms was. How might electri- 
cal activity be coupled to isoform synthesis? 

Muscle contraction involves a series of events including de- 
polarization of the sarcoplasmic reticulum and the t-tubules, 
activation of voltage-sensitive Ca 2+ channels, release of 
Ca 2+ from the sarcoplasmic reticulum (SR), Ca2+-depen - 
dent activation of actin and myosin cross-bridges, and fi- 
nally the reuptake of Ca 2+ back into the SR. Increased lev- 
els of intracellular Ca 2+ are known to be a critical element 
in intracellular signaling for many different cell types. In 
muscle fibers, neurally evoked Ca 2+ release is believed to 
mediate changes in the synthesis of macromolecules in- 
cluding ACh receptors, myosin heavy chains, and Ca 2+ 
ATPases (for general review see Pette and Vrbova, 1992). 

To test whether Ca 2+ plays a role in regulating NCAM 
isoform expression, one group of 5-d-old myotube cultures 
was treated with the Ca 2+ channel blocker verapamil for 
2 d, and then homogenized for immunoblot analysis. The 
other group served as a control. At the time this 7 d cul- 
ture was analyzed, the 155- and 130-kD isoforms had al- 
ready been up-regulated, becoming the predominant iso- 
forms, while the 145-kD isoform had been significantly 
down-regulated (Fig. 6 A, lane 1). In contrast, when volt- 
age-activated Ca 2+ channels were chronically blocked with 
verapamil (Fig. 6 A, lane 2), the 145-kD isoform (arrow) 
now became the predominant isoform. Thus, preventing 
the entry of Ca 2÷ resulted in a less mature isoform pattern 
relative to the control, suggesting that Ca 2+ entry during 
spontaneous electrical activity may serve as the first step 
in triggering the developmental isoform switch we ob- 
served. 
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Figure 6. Chronic blockade of voltage-operated Ca 2+ channels 
results in a dramatic change in NCAM isoform expression. (A) 
Immunoblot analysis of NCAM from desialylated proteins ex- 
tracted from 7 d control myotube cultures (lane 1) and cultures 
treated for 24 h with verapamil (10 -6 M) (lane 2) shows that 
blockade of Ca 2÷ channels results in a dramatic increase of the 
145-kD NCAM isoform relative to the 130- and 155-kD isoforms. 
(B) Autoradiograms and optical density scans of 5-d-old cultures 
pulsed with [35S]methionine show that chronic verapamil treat- 
ment results in a dramatic decrease in the synthesis of the 130- 
and 155-kD isoforms of NCAM. This effect can be seen after only 
a 9 h verapamil treatment (lane 2) but is significantly more dra- 
matic after a 20 h treatment (lane 3). 5 d cultures treated for 24 h 
with thapsigargin (10 mM) (lane 5) or veratridine (10 -7 M) (lane 
6), which would increase intracellular Ca 2+, decreased the rela- 
tive expression of the 155-kD isoform with respect to the 130-kD 
isoform. 

To determine the extent to which this altered isoform 
expression pattern was due to altered synthesis of individ- 
ual isoforms, 5-d-old cultures were treated with verapamil 
for 1 or 12 h prior to an 8 h pulse with [35S]methionine. 
Verapamil was maintained in the medium for the duration 
of the pulse. Untreated 5-d-old cultures (Fig. 6 B, lane 1) 
synthesized all three isoforms, with the 155- and 130-kD 
isoforms being synthesized at a relatively higher rate com- 
pared to the 145-kD isoform. This was similar to the rela- 
tive amounts of these isoforms detected in immunoblots, 
such as that shown in Fig. 6 A. After a brief 1 h pre-treat- 
ment with verapamil (9 h total treatment), the 145-kD iso- 
form (arrow) was now increased markedly with respect to 
the 155- and 130-kD isoforms. The effect was more dra- 
matic following a 12 h pre-treatment with verapamil (20 h 
total); in this case (Fig. 6 B, lane 3), synthesis of the 155- 
and 130-kD isoforms was completely inhibited, with only 
the 145-kD isoform still being synthesized. 

IntraceUular Ca 2÷ levels can be increased with thapsi- 
gargin, a drug that specifically inhibits the endoplasmic 
reticulum Ca2+-ATPase (Thastrup et al., 1990). As can be 
seen in Fig. 6 B (lane 5) a 24 h treatment with this drug, 
had the opposite effect of verapamil, producing a more 
mature isoform pattern, in which the 130-kD predomi- 
nates with lower rates of synthesis of both the 145- and 

155-kD isoforms. Thus these cultures, which were 6-d-old 
at the time of the analysis, had an isoform expression pat- 
tern more like control 8 or 9 d cultures (see for example 
the immunoblots in Fig. 3 A and the autoradiogram in Fig. 
4 B). The Na ÷ channel activator veratradine also produced 
a more mature isoform pattern (Fig. 6 B, lane 6). When 
this drug was added to the cultures it produced more fre- 
quent spontaneous contractions, and thus may have indi- 
rectly caused increased entry of Ca 2÷. 

The amount of the 180-kD isoform synthesized varied 
between control cultures of the same age (compare lanes 1 
and 4 in Fig. 6). This could be caused by differences in the 
level of spontaneous electrical activity which varies be- 
tween cultures. In support of this possibility, older, more 
actively contracting myotubes consistently synthesized 
more of the 180-kD NCAM than younger less active myo- 
tubes (for example see Fig. 4). 

Previous studies have indicated that the 180-kD NCAM 
isoform is a substrate for endogenous Ca2÷-activated pro- 
teolysis (Covault et al., 1991; Sheppard et al., 1991). Pulse- 
chase experiments presented in this study show that the 
180-kD isoform has a very rapid rate of turn-over (Fig. 4). 
Whether this is due to Ca2÷-activated proteolysis is not 
known. However, consistent with this possibility, blockade 
of voltage-activated Ca2÷channels with verapamil, which 
would be expected to lower intraceUular Ca 2+, resulted in 
an increase in the amount of the 180-kD isoform (compare 
lanes 1 and 2 in Fig. 6 B). Conversely, thapsigargin or ver- 
atradine, both of which increase the level of intracellular 
Ca 2÷, caused a decrease in the amount of 180-kD NCAM 
(compare lanes 5 and 6 with lane 4 in Fig. 6 B). 

In conclusion, it appears that Ca 2÷ entry via voltage de- 
pendent Ca 2÷ channels has the effect of increasing the syn- 
thesis of the 155- and 130-kD isoforms relative to that of 
the 145-kD form. Since these different NCAM isoforms 
arise by alternative splicing from a single gene, the entry of 
Ca z÷ via voltage sensitive channels appears to be the first 
step in the pathway by which electrical activity controls 
the developmentally regulated isoform switch we have de- 
scribed. We therefore decided to explore possible down- 
stream consequences of this intial step. 

Another molecule, whose synthesis is known to be regu- 
lated by electrical activity, is the AChR. Synthesis of this 
receptor in nonsynaptic nuclei is down-regulated following 
initial innervation and activation of myotubes, but is rap- 
idly restored following denervation (Berg et al., 1972; 
Miledi and Potter, 1971). More recent studies have impli- 
cated entry of Ca 2÷ and activation of PKC in this down- 
regulation. Denervation of chick hind limb muscles (Huang 
et al., 1992) or blockade of spontaneous contractions in 
cultured myotubes with TTX (Klarsfeld et al., 1989; Men- 
delzon et al., 1994) causes a dramatic decrease in nuclear 
PKC activity and an increase in the level of AChR 
mRNA. In addition, inhibition of PKC activity with selec- 
tive inhibitors leads to an increase in AChR m R N A  syn- 
thesis in both TI 'X-treated cultured myotubes (Fontaine 
et al., 1987; Klarsfeld et al., 1989) and in denervated chick 
muscles (Huang et al., 1992). Since the developmentally 
regulated NCAM isoform switch we observed was also 
sensitive to activity and appeared to require entry of Ca 2+, 
we examined the possible involvement of PKC in this reg- 
ulation. 
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Figure 7. Chronic inhibition of PKC results in a dramatic change 
in NCAM isoform expression. (A) Immunoblots and optical den- 
sity scans of NCAM from desialylated proteins extracted from 7 d 
control myotube cultures (lane 1) and cultures treated for 24 h 
(lane 2) and 72 h (lane 3) with TPA (10 -6 M) (lane 2) shows that 
inhibition of PKC results in a significant increase in the 145-kD 
NCAM isoform relative to the 130- and 155-kD isoforms. Synthe- 
sis of NCAM isoforms following treatment with staurosporine or 
long-term TPA. Control 5 day cultures show that synthesis of the 
145-kD isoform (lane 1, arrow) is lower than that of the 155- and 
130-kD isoforms. 5-d-old cultures treated for 20 h with staurospo- 
rine (10 -7 M) (lane 2) or long-term TPA (10 -6 M) (lane 3) 
resulted in increased synthesis of the 145-kD isoform (arrow) 
relative to the other two isoforms. (C) Inhibition of phosphatidyl- 
choline metabolism with D609 (30 mM) (lane 4) mimics the ef- 
fects seen with chronic TPA treatment. 

5-d-old myotube cultures were treated with the phorbol 
ester, TPA (10 -6 M), for 24 or 72 h and subsequently ho- 
mogenized to assess NCAM expression using SDS-PAGE 
combined with immunoblot analysis. Continuous applica- 
tion of this concentration of TPA has previously been 
shown to substantially deplete PKC in nuclear fractions 
from chick muscle fibers after 16 h of treatment (Huang et 
al., 1992). After a 24 h treatment with TPA the expression 
pattern of NCAM isoforms on cultured myotubes differed 
significantly from untreated control cultures. The control 
cultures of this stage, the level of the 145-kD NCAM was 
substantially lower than the 155- and 130-kD isoforms 
(Fig. 7 A, lane 1, arrow), whereas in the cultures treated 
with TPA for 24 h, all three isoforms were being expressed 
at approximately equivalent levels (Fig. 7 A, lane 2). Thus 
it appeared that the 145-kD isoform had been significantly 
increased relative to the other two isoforms. This effect 
was even more obvious following a 72 h treatment when 
the 145-kD isoform was the only isoform detected (Fig. 7 
A, lane 3). Similar results were obained when relative 
rates of isoform synthesis were measured in cultures 
pulsed with [35S]methionine following treatment with stau- 
rosporine or long-term TPA treatment, both of which 
would be expected to down-regulate PKC. As seen in Fig. 

7 B (lanes 1-3), both of these treatments increased the 
synthesis of the 145-kD isoform relative to the other two 
isoforms. 

In summary, blocking Ca 2+ entry via voltage-dependent 
Ca 2÷ channels or inhibiting PKC appeared to selectively 
inhibit the synthesis of the 130- and 155-kD isoforms while 
increasing that of the 145-kD isoform. 

PKC is activated by Ca 2÷ and diacylglycerol following 
hydrolysis of phosphatidylinositol and/or phosphatidyl- 
choline. Hydrolysis of the latter is believed to result in a 
more sustained elevation in diacylglycerol which conse- 
quently sustains the activation of PKC (Asaoka et al., 
1992). The phospholipid that supplies diacylglycerol dur- 
ing neuromuscular activity is not known. However, studies 
on Ascaris suum muscles have shown that ACh stimulates 
phosphatidylcholine metabolism (Arevalo and Saz, 1992). 
To determine whether sustained activation of PKC, via the 
phosphatidylcholine pathway, is required for the develop- 
mental switch in NCAM isoform expression 5-d-old myo- 
tube cultures were treated for 48 h with a selective inhibi- 
tor of phosphatidylcholine-specific phospholipase C (D609). 
As was observed with long-term TPA treatment, inhibi- 
tion of PKC activation with D609 altered the pattern of 
NCAM isoform expression such that the 145 kD became 
the predominant isoform of NCAM (Fig. 7 B). 

Molecular Mechanisms Regulating the Polysialylation 
of  NCAM 

As shown above, electrical activity appears to control the 
alternative splicing of NCAM isoforms via influx of Ca 2+ 
and activation of PKC. Since activity was also shown to be 
required for the polysialylation of NCAM, we explored 
the possibility that this might be mediated by a similar in- 
tracellular signaling pathway. Although not as extensively 
investigated as the isoform switch, our data is consistent 
with this possibility. As shown in the immunoblot in Fig. 8 
A, untreated NCAM from 4 d cultured myotubes ran as 
diffuse smear (lane 1). Treatment with the PSA specific 
endoneuraminidase (lane 2) altered the mobility of that 
portion of the NCAM running above the indicated line, 
which we operationally define as polysialylated NCAM. 
As shown in Fig. 8 B, a 24 h treatment with TPA (lane 3) 
reduced the proportion of the NCAM running above this 
line as compared to the control (lane 1), as did a 24 h treat- 
ment with verapamil (lane 5). Correlated with this, dis- 
crete bands, representing nonsialylated NCAM, became 
discernable in the untreated sample (Fig. 8, indicated by 
stars in lanes 3 and 5). Verapamil treatment for 24 h was 
more effective than 24 h of TPA, both in reducing poly- 
sialylation and bringing about the isoform switch (com- 
pare lanes 2, 4, and 6). This would be expected since ver- 
apamil would have blocked Ca 2÷ entry for the full 24 h 
while PKC activity is only reduced by long term TPA after 
~16 h (Huang et al., 1992). The autoradiogram in Fig. 8 C 
shows that the NCAM being synthesized in the verapamil 
treated cultures at the 24 h time point, is all of the 145-kD 
isoform and that it is not sialylated (the mobility of the dis- 
cete band marked by the star in the untreated sample of 
lane 1 is not altered by neuraminidase treatment, lane 2). 
In summary, as was shown for the isoform switch, electri- 
cal activity appears to regulate NCAM polysialylation via 
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Figure 8. Expression of PSA 
and total NCAM on cultured 
myotubes treated with TPA or 
verapamil. (A) NCAM immu- 
noblots, from 4 d myotube cul- 
tures, that were untreated 
(lane 1) or treated with endo- 
neuraminidase (lane 2) or 
neuraminidase (lane 3). The 
NCAM running above the line 
in lane 1 had its mobility al- 
tered following treatment with 
the PSA specific endo- 
neuraminidase (lane 2) and 
thus represents the polysialy- 
lated NCAM. (B) Immuno- 
blots from similar cultures that 
were untreated (lanes 1 and 2) 
or treated for 24 h with TPA 
(lanes 3 and 4) or verapamil 
(lanes 5 and 6). After 24 h of 
treatment with TPA (lane 3), 
the proportion of polysialy- 
lated NCAM, running above 
the line, is reduced compared 
to the control (lane 1). In addi- 
tion distinct bands represent- 
ing 145/155-kD and the 130- 
kD NCAM (indicated by stars) 
become visible even without 
neuraminidase treatment. The 
switch from the 155- and 130- 
kD isoforms toward the 145- 

kD isoform described earlier is also seen (compare lanes 2 and 4). After treatment with verapamil for 24 h both the reduction in the 
proportion of polysialylated NCAM (lane 5) and the switch toward expression of the 145-kD isoform, indicated by the star (lanes 5 and 
6), is more complete (see text for additional explanation). (C) An audoradiograph from a similar culture treated for 24 h with verap- 
amil, shows that the metabolically labeled NCAM being synthesied at this time (lane 1, without neuraminidase treatment) is almost en- 
tirely the 145-kD isoform and is not sialylated (the mobility of a distinct band at this position is identical in the untreated (lane 1) and 
neuraminidase treated (lane 2) sample. (D-F) Cultures immunostained to visualize total NCAM expression. 4 d myotube cultures were 
either untreated (D) or treated for 24 h with verapamil (16 p~M) (F) or TPA (10 -6 M) (E) and immunostained with mAb 5E that recog- 
nizes all NCAM isoforms. NCAM levels and distribution were generally similar in all cases. Overall, myotube morphology was also sim- 
ilar except in the TPA treated cultures where some of the myotubes appeared to be more flattened and less uniformly cylindrical. E, en- 
doneuraminidase; N, neuraminidase. Bar, 15 p~m. 

an intracellular signalling pathway involving Ca 2+ influx 
and PKC. 

Long-term treatments with verapamil or T P A  produced 
dramatic alterations in the proport ion of the different 
N C A M  isoforms expressed and in their level of sialylation. 
Nevertheless, myotubes in such cultures remained healthy 
in appearance and retained a typical myotube morphol-  
ogy. In addition, immunostaining with m A b  5E, revealed 
that both T P A  (Fig. 8 E) and verapamil (Fig. 8 F) treated 
myotubes continued to express N C A M  with a level and 
distribution similar to controls (Fig. 8 D). 

Discussion 

Expression and Regulation of  N C A M  and PSA during 
In Vitro Myogenesis 

The present study confirms the results of  Mege et al. 
(1992) showing that N C A M  is strongly and uniformly ex- 
pressed by myogenic ceils throughout  in vitro myogenesis. 
N C A M  is prevalent on cultured myoblasts and, unlike 

N-cadherin (Hahn and Covault, 1992; Mege et al., 1992), is 
not down-regulated in older, spontaneously contracting 
myotubes. This temporal  pattern of expression is similar to 
that observed during in vivo development of  chicken mus- 
cle, in which N-cadherin is rapidly down-regulated (Fre- 
dette et al., 1993; Hahn and Covault, 1992), while N C A M  
continues to be expressed for at least a week after muscle 
fibers begin to be electrically activated by neurons (Bekoff 
et al., 1975; O ' D o n o v a n  and Landmesser,  1987). N C A M  
declines only around the time of  hatching in the chick 
(Tosney et al., 1986) and birth in the mouse (Covault and 
Sanes, 1985). 

In contrast, we found that the polysialylation of  N C A M  
was developmentally regulated during secondary myogen- 
esis in vitro and that this was controlled by electrical activ- 
ity. Previous observations had indicated that PSA synthe- 
sis by myotubes in vivo was either directly or indirectly 
regulated by neuromuscular activity since activity block- 
ade by dTC prevented its usual up-regulation during sec- 
ondary myogenesis (Fredette et al., 1993). However  these 
results might have been explained by some direct effect of 
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dTC acting on either classical skeletal muscle a l  or "neu- 
ronal" et7 AChRs, which are both present on chick myo- 
tubes at early developmental stages (Corriveau et al., 
1995). The present results show that it is indeed blockade 
of electrical activity and not some pharmacological effect 
of dTC that prevents PSA expression. Specifically, the 
level of PSA immunostaining increased sharply when 
newly formed myotubes began to spontaneously contract. 
Furthermore, it was greatly reduced in myotube cultures 
treated with TTX to block spontaneous contractions and 
was increased in cultures that were electrically stimulated 
to increase the frequency of contractions. Together, the 
present results provide strong support for the hypothesis 
that neuromuscular activity is an important factor regulat- 
ing PSA synthesis in muscle during development. Interest- 
ingly, not all cultured myotubes expressed PSA even 
though they were well formed and stained intensely for to- 
tal NCAM. Upon visual inspection of the cultures, it was 
clear that some myotubes were not spontaneously con- 
tracting nor could they be induced to contract with electri- 
cal stimulation. It is therefore possible that the myotubes 
that did not express PSA were the same ones that did not 
exhibit spontaneous contractile activity. 

It is not yet known how neuromuscular activity regu- 
lates NCAM polysialylation. Recently, Bruses et al. (1995) 
found that PSA expression in developing chick ciliary gan- 
glia appeared to be regulated at the level of a polysialyl- 
transferase whose activity correlated well with temporal 
patterns of PSA expression. It is possible that polysialyl- 
transferase activity also regulates PSA synthesis in devel- 
oping muscle such that the absence of PSA on proliferat- 
ing myoblasts and newly formed myotubes is because 
these cells do not yet contain sufficient levels of active poly- 
sialyltransferase. If PSA synthesis by muscle is shown to 
be regulated at the level of the polysialyltransferase, our 
overall results would strongly suggest that either the syn- 
thesis or the activity of the relevant sialyltransferases is 
controlled, at least in part, by electrical activity, and that 
the intracellular signaling pathway involves Ca 2+ influx 
and PKC. 

Interestingly, while mature myotubes in culture synthe- 
size four different isoforms of NCAM not all are polysialy- 
lated. In contrast to the other isoforms, the 180-kD iso- 
form was not polysialylated even though it was the 
predominant form being synthesized (Fig. 4 E). How such 
selective isoform polysialylation occurs is not known. Sev- 
eral studies have reported selective sialylation of different 
NCAM isoforms in both brain (Breen et al., 1987; Breen 
and Regan, 1988; Bartsch, 1990), and in developing chick 
muscle (Fredette et al., 1993). However, both brain and 
developing muscle are highly heterogeneous with respect 
to the type of cells they contain and their stage of develop- 
ment (i.e., myoblasts vs. myotubes and/or primary vs. sec- 
ondary myotubes). It is thus possible that the sialylated 
and nonsialylated isoforms observed in the above studies 
were being synthesized by different cell types. However, 
the present observations strongly suggest that an individ- 
ual cell is capable of preferentially polysialylating different 
isoforms, since in the developmentally homogeneous pop- 
ulation of myotubes in our cultures the 130-, 145-, and 155- 
kD isoforms were polysialylated while the 180-kD isoform 
was not. 

Expression of NCAM Isoforms during Myogenesis 
In Vitro 
We have shown in the present study that the expression of 
specific NCAM isoforms is temporally regulated during 
chick muscle development in vitro, generally confirming a 
number of earlier studies (Covault et al., 1986; Moore et 
al., 1987; Tassin et al., 1991). Several of these studies, using 
both primary cultures of muscle cells (Knudsen et al., 
1989; Tassin et al., 1991; but see Yoshimi et al., 1993) and 
muscle cell lines (Moore et al., 1987), reported that myo- 
blasts express only the 145-kD isoform while the 130-kD 
isoform is expressed by myotubes at the time of fusion. 
However, it is clear from our metabolic labeling results 
that the synthesis of the 145-kD NCAM is not restricted to 
myoblasts since both newly formed and mature myotubes 
in culture continue to synthesize the 145-kD as well as the 
155- and 130-kD isoforms. In addition, following treat- 
ments with drugs that caused our cultures to express pri- 
marily the 145-kD isoform (for example, long-term TPA), 
immunostaining revealed that this NCAM isoform was 
distributed uniformly in well-formed myotubes and was 
not concentrated on nor confined to myoblasts. 

Earlier studies of NCAM isoform expression during 
heart (Hoffman et al., 1990) and skeletal muscle (Fredette 
et al., 1993) development considered the 180-kD isoform 
to be of neural origin (however see Tassin et al., 1991; Ly- 
ons et al., 1992). The present study, however, indicates 
that the 180-kD isoform is indeed expressed by developing 
skeletal muscles. Very recent observations have shown 
that developing heart muscle expresses both 180- and 185- 
kD isoforms of NCAM with the latter containing the MSD 
insert (Byeon et al., 1995). The present metabolic labeling 
studies of myotube cultures indicate that the 180-kD is 
also synthesized at a high rate. 

Regulation of NCAM Isoform Expression during 
In Vitro Myogenesis 
During avian muscle development in vivo (Covault et al., 
1986; Fredette et al., 1993; Yoshimi et al., 1993), and in 
vitro (this study; Covault et al., 1986; Tassin et al., 1991; 
Yoshimi et al., 1993; Lyles et al., 1993), the predominantly 
expressed NCAM isoform switches from the transmem- 
brane 145-kD to the GPI-linked 130-kD isoform. In vivo, 
this developmental switch, due to alternative splicing, ap- 
pears to be regulated by neuromuscular activity since it 
does not occur if activity is chronically blocked (Fredette 
et al., 1993). 

The present study has begun to define the signaling 
events that link electrical activity at the cell surface to the 
regulation of NCAM alternative splicing. Specifically we 
have found that an increase in intracellular Ca 2÷ levels and 
subsequent activation of PKC appear to regulate this de- 
velopmental isoform switch, at least in cultured myotubes. 
Blockade of Ca z+ influx through voltage sensitive C a  2+ 

channels by verapamil, or inhibition of PKC by staurospo- 
rine or long-term TPA treatment increased the synthesis 
of the 145-kD isoform, while decreasing the synthesis of 
both the 155- and the 130-kD isoforms. In contrast, treat- 
ing with drugs that presumably would increase intracellu- 
l a r  C a  2+ levels, such as veratradine, (a sodium channel ac- 
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tivator that increased the frequency of spontaneous myotube 
contractions), or thapsigargin (a Ca2+-ATPase inhibitor 
that prevents the resequestration of cytoplasmic Ca 2+) in- 
creased the synthesis of the 130-kD NCAM. 

The observations that we and others have made show 
striking similarities between the regulation of NCAM and 
the AChR. The level of expression of both AChRs (Betz 
and Changeux, 1979) and NCAM (Covault and Sanes, 
1986) is down-regulated by neuromuscular activity and 
dramatically up-regulated following activity blockade (Co- 
vault and Sanes, 1985). This up-regulation of both AChRs 
and NCAM is prevented by electrically stimulating the 
denervated muscle fibers (Lomo and Westgaard, 1975; 
Goldman et al., 1988; Covault and Sanes, 1985). Several 
studies have proposed that Ca 2+ and PKC are involved in 
a second messenger cascade that couples membrane depo- 
larization with transcriptional factors that regulate the 
synthesis of the AChR. Membrane depolarization causes a 
transient increase in intracellular Ca 2÷ and translocation 
of PKC (Richter et al., 1987) while blocking depolariza- 
tion causes a decrease in nuclear PKC activity (Huang et 
al., 1992; Mendelzon et al., 1994). Blockers of voltage-acti- 
vated Ca 2÷ channels increase the expression (Shainberg et 
al., 1976) and synthesis (Klarsfeld et al., 1989; Huang et al., 
1994) of AChRs in muscle cultures. Similarly, inhibition of 
PKC increases AChR et subunit synthesis in cultured myo- 
tubes (Klarsfeld et al., 1989). 

The precise mechanisms by which Ca 2÷ ions and PKC 
regulate alternative splicing of NCAM during muscle de- 
velopment are not understood. Recently, Huang et al. 
(1993) showed that the myogenic factor, myogenin, de- 
clines rapidly in electrically stimulated denervated chick 
muscle at a rate comparable to the decline in AChR gene 
activation. They also showed that myogenin gene tran- 
scription was blocked by PKC inhibitors. One possible ex- 
planation for the regulation of NCAM isoforms is that 
membrane depolarization leads to both an increase in in- 
tracellular Ca 2÷ and translocation of the Ca2÷-dependent 
PKC into the nucleus where it phosphorylates myogenic 
transcription and/or splicing factors which in turn regulate 
the alternative splicing of NCAM. Mendelzon et al. (1994) 
recently proposed that the repression of AChR biosynthe- 
sis by membrane depolarization results from the phosphor- 
ylation of myogenin via the PKC second messenger path- 
way. Phosphorylation of myogenin inhibits its binding to 
DNA which in turn prevents the transcription of the 
AChR (Mendelzon et al., 1994). Whether myogenin or 
other myogenic transcription factors are involved in alter- 
native splicing of NCAM is currently under investigation. 

NCAM, PSA, and Neuromuscular Development 

The precise roles played by PSA and the different iso- 
forms of NCAM in promoting skeletal myogenesis and 
synapse formation are not known. Since the gross locomo- 
tor capabilities of NCAM-deficient mice appear to be nor- 
mal (Cremer et al., 1994), NCAM and PSA do not seem to 
be essential for many aspects of neuromuscular develop- 
ment. However, it is possible that other cell adhesion mol- 
ecules compensated for the loss of NCAM and PSA in 
these animals. For example, while PSA is unique to 
NCAM, its proposed function in reducing some of the mo- 

lecular interactions involved in adhesion/signaling could 
be compensated for by a number of other molecular alter- 
ations that also affect adhesion or signaling. Alternatively, 
several different molecular interactions may contribute to 
ensure that a specific developmental process takes place, 
but either alone may suffice. For example, the separation 
of secondary myotubes from clusters is associated with 
both a down regulation of N-cadherin and an up-regula- 
tion of PSA, both of which would reduce adhesion. How- 
ever, either one of these alterations in adhesion molecule 
expression may be sufficient for separation to occur. Thus 
PSA expression would only become critical for this pro- 
cess in situtations where the down regulation of N-cad- 
herin failed to occur. Finally, more detailed observations 
of these NCAM-deficient mice may reveal alterations in 
neuromuscular development that are not detectable at the 
behavioral level, or alternately that are compensated for 
by subsequent developmental processes. 

A number of observations do indicate that NCAM and 
PSA are significantly involved in myogenesis and neuro- 
muscular development. Fusion of C2 myoblasts was en- 
hanced when they were transfected with a human gene 
construct for either the GPI-linked (Dickson et al., 1990) 
or the 140-kD transmembrane (Peck and Walsh., 1993) 
NCAM isoform. In contrast, removal of the GPI-linked 
isoform from myoblasts with phospholipase C retarded 
myotube fusion (Knudsen et al., 1989). In vivo, injection of 
anti-NCAM reduced the number and length of intramus- 
cular nerve branches (Landmesser et al., 1988) and PSA 
removal resulted in a reduction in both neuromuscular 
synapse formation and motoneuron survival (Tang and 
Landmesser, 1993). Finally, activity blockade, which pre- 
vents the expression of PSA on myotubes, but not nerve, 
interfered with the separation of myotubes from myotube 
clusters (Fredette et al., 1993). In the adult, other studies 
provide evidence that NCAM promotes nerve terminal 
sprouting following localized paralysis (Booth et al., 1990) 
and that it enhances the rate of neuromuscular reinnerva- 
tion following partial denervation (Langfeld-Oster et al., 
1994). 

The tightly and differentially regulated pattern of NCAM 
isoform expression during in vivo neuromuscular develop- 
ment suggests that these alternately spliced isoforms are 
playing distinct roles. Since only the 145-kD isoform is 
present when primary myotubes form and when nerves 
first branch and synapse within muscle, it is most likely re- 
sponsible for mediating some of the NCAM-dependent 
nerve-muscle interactions described above. The up-regu- 
lation of the 130-kD isoform only at the onset of second- 
ary myogenesis and its persistence in the adult suggests 
that it may be playing other roles. However, thus far there 
is only limited in vitro evidence on different effects of 
NCAM isoforms. Specifically, Peck and Walsh (1993) 
have shown that the 140-kD isoform is more effective in 
enhancing myotube fusion in culture than the GPI-linked 
MSD containing isoform. Clearly, further experiments 
that specifically addresss this question, both in vitro and in 
the animal are needed. 

In summary, the culture paradigm that we have devel- 
oped should be a useful one in which to further elucidate 
the cellular pathways by which overall NCAM gene tran- 
scription as well as the synthesis of alternatively spliced 
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isoforms is regulated. In addition, the ability to switch in 
culture the predominant NCAM isoform expressed by 
these myotubes, should allow us to better determine the 
role played by individual isoforms in muscle-muscle cell 
interactions such as myoblast alignment, fusion, and sepa- 
ration, as well as in nerve-muscle interactions, including 
neurite growth, branching, and the formation and stabili- 
zation of synapses. 
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