
Research Article
Wear Scar Similarities between Retrieved and
Simulator-Tested Polyethylene TKR Components:
An Artificial Neural Network Approach

Diego A. Orozco Villaseñor1,2,3 and Markus A. Wimmer1,2

1Orthopedic Surgery, Rush University Medical Center, 1611 W. Harrison Street, Chicago, IL 60612, USA
2Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607, USA
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The aim of this study was to determine how representative wear scars of simulator-tested polyethylene (PE) inserts compare with
retrieved PE inserts from total knee replacement (TKR). By means of a nonparametric self-organizing feature map (SOFM), wear
scar images of 21 postmortem- and 54 revision-retrieved components were compared with six simulator-tested components that
were tested either in displacement or in load control according to ISO protocols.The SOFMnetwork was then trained with the wear
scar images of postmortem-retrieved components since those are considered well-functioning at the time of retrieval. Based on this
training process, eleven clusters were established, suggesting considerable variability among wear scars despite an uncomplicated
loading history inside their hosts.The remaining components (revision-retrieved and simulator-tested) were then assigned to these
established clusters. Six out of five simulator components were clustered together, suggesting that the network was able to identify
similarities in loading history. However, the simulator-tested components ended up in a cluster at the fringe of the map containing
only 10.8% of retrieved components. This may suggest that current ISO testing protocols were not fully representative of this TKR
population, and protocols that better resemble patients’ gait after TKR containing activities other than walking may be warranted.

1. Introduction

Wear performance evaluation has become an important
preclinical tool for the assessment of materials and designs
of total knee replacement (TKR) components. To date, the
International Organization for Standardization (ISO) has
established two wear testing protocols to evaluate the long-
term wear performance of TKR components [1, 2]. Both ISO
protocols aim at replicating load and motion characteristics
of a natural knee during level walking, which is considered
to be the most frequently performed physical activity of daily
living [3]. As with any simulation tool, the ultimate goal of
wear simulations is to recreate in vivo conditions as closely
as possible. For knee wear simulation, this means recreating
wear damage characteristics (wear rates, wear modes, wear
patterns, damage appearances, particle sizes, and morpholo-
gies) that are similar to those generated in vivo. However,

reproducing in vivo wear damage characteristics of the knee
has proven to be very challenging because simulators gen-
erate tibial liner wear scars that are less variable in size and
location compared to those observed in retrievals of the same
design type [4, 5].

Several factors, such as the characteristics of the pros-
thesis (materials and designs), the patient (height, weight,
joint loading during daily activities, and activity level), and
the surgical technique (alignment and soft tissue balancing),
influence the wear of a TKR polyethylene tibial liner. Dis-
crepancies between simulated and in vivo worn components
can be identified by comparing their wear scar characteris-
tics, which are substantially influenced by the kinetics and
kinematics of the knee joint. Hence, wear scars are useful
indicators of the physiological load and motion spectrum
applied to the tibial insert during daily physical activity.
However, a detailed analysis of wear scars is very complex.
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Table 1: Demographic information of liner hosts (revision and postmortem).

Implant source (𝑁) Gender (𝑁) Side (𝑁) In situ time (mo.) Cause of failure (𝑁)

Revisions (54)
Females (22)
Males (26)
Unknown (6)

Left (24)
Right (23)
Unknown (7)

Range (1–108)
Mean (26)
Unknown (16)

Infection (10)
Maltracking (9)
Loose (9)
Instability (5)
Synovitis (2)
Fracture (1)
Osteolysis (1)
Failed liner (1)
PE wear∗∗ (1)
Unknown (15)

Postmortem (21) Females (13)
Males (8)

Left (11)
Right (10)

Range (19–144)
Mean (79) Autopsy (21)

Simulator (6) Not applicable Left (6) 60 months∗ Not applicable

Heavily delaminated
(10)

Females (5)
Males (4)
Unknown (1)

Left (7)
Right (3)

Range (24–130)
Mean (73)
Unknown (3)

Instability (2)
Polyethylene wear (2)
Tibial subsidence (2)
Painful tibial
component (1)
Unknown (3)

∗1 million cycles representing 12 months of level walking.
∗∗PE = polyethylene.

The mathematical description of wear scar patterns is non-
linear and multidimensional, which makes it very difficult
or even impossible to model these patterns using traditional
mathematical or statistical methods. For instance, different
geometric parameters, including area, perimeter, or centroid
of a wear scar, could be used to form the basis for a specific
model. However, even multiple geometric parameters may
not sufficiently explain the overall wear scar generation
process, which is why we propose to analyze in vivo and in
vitro generated war scars as a whole using bitmap images.

In this study, an artificial neural network (ANN) model
based on image information is implemented as a data mining
tool to differentiate wear scars that originate from different
loading histories. ANNs have been successfully used for
similar models because of their ability to handle nonlinear
behavior, to learn from experimental data, and to generalize
solutions [6–11]. From the pool of ANN models, the self-
organizing feature map (SOFM) was selected for this study
because it is an unsupervised neural network (i.e., no a priori
knowledge of the data structure and classification is used). It
is frequently used for the visualization of high dimensional
data and for data mining and knowledge discovery [7–10, 12–
14]. SOFMs are particularly useful because of their ability to
map nonlinear statistical relationships between high dimen-
sional data onto a convenient and easily comprehendible two-
dimensional map. This type of mapping preserves the topol-
ogy of the data, meaning that points within close proximity in
the high dimensional space are mapped to neighboring map
units in the output space.While thismodeling technology has
been used for imagemapping since the early 2000s [15], to the
best of our knowledge, it has not been used for applications
in orthopedic tribology.

The purpose of the present investigation was to create a
clustering structure of wear scar images based on similarities

between retrieved (revision and postmortem) and simulator-
tested components of the same design type. Wear scars
from the retrieved group were used to create a clustering
structure, whereas the wear scars from simulator-tested com-
ponents were then assigned to the existing clustering struc-
ture based on their similarities. Subsequently, data mining
was performed to understand the similarities among wear
scars clustered together as well as to explain the differences
between wear scars of different clusters. Two hypotheses were
tested: (1) wear scars from retrieved components will generate
several clusters of wear scars because of the variability of
wear scar size and location that characterizes retrieved com-
ponents and (2) all simulator components, regardless of the
testing standard used, will be clustered together, reflecting
the comparability of the two ISO testing standards and their
limitation in generalizing the greater variability observed in
retrieved components of the same design type.

2. Materials and Methods

An overview of the materials andmethods used in this inves-
tigation is presented in Figure 1.

With approval from the Institutional Review Board
(#L03072801), twenty-one postmortem- and fifty-four revi-
sion-retrieved tibial liners were selected from the Retrieval
Repository at Rush University Medical Center (Table 1).
Before being included in the study, components were
screened for missing demographic information and for signs
of heavy delamination. All retrieved components were man-
ufactured by a single company (Zimmer, Inc., Warsaw, IN,
USA) and were of the posterior cruciate retaining MG-II
design, a fixed bearing prosthesis with a flat tibial polyethy-
lene plateau.

Wear testing was performed using eight tibial liners,
which were of the same design type and company as the
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Figure 1: Flow diagram providing the methodology applied in this investigation. The methodology was divided into three main sections: (1)
data collection and preprocessing; (2) data processing; and (3) SOFM training.
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retrieved components (MG-II, Zimmer, Inc., Warsaw, IN,
USA). Testing components were randomized into two equal
groups. In each group, three samples were tested for wear
performance and one sample served as a loaded soak control.
The tibial plateaus were machined from ultra-high molecular
weight polyethylene (UHMWPE), gamma sterilized, and
packaged in a nitrogen environment by themanufacturer.The
boxes were opened immediately prior to testing.

Wear performance tests were carried out in a four-
station knee simulator (EndoLab, Rosenheim,Germany).The
simulator met ISO standards [1, 2] and could be set up to
run either in load control mode or in displacement con-
trolmode.The simulatormotionswere hydraulically actuated
and closed-loop controlled. The difference in control mode
refers to two degrees of freedom (anterior-posterior and
internal-external, resp.) that were either load or displacement
controlled, resulting in different implant articulations that
were determined by the specific design aspects of the artificial
joint.

Thewear tests were conducted prior to 2009 following the
original ISO standards and have been published elsewhere
[16]. Briefly, each simulator station was comprised of a
temperature-controlled chamber that maintained the test
lubricant at 37∘C.The lubricant was based on a buffered mix-
ture of bovine serum (Hyclone Inc., Logan, UT, USA) mixed
with a physiological salt solution to achieve a final protein
content of 30 g/L and a pH of 7.4. In order to sequester metal
ions, 200mg/L ethylenediaminetetraacetic acid (EDTA) was
added. All chambers were closed and sealed during the entire
test to minimize fluid evaporation and contamination. The
simulator was connected to a computer equipped with a
user interface for machine control, test supervision, and data
acquisition.

The first simulator group was tested in load control mode
(LCM) and the second group was tested in displacement
control mode (DCM).The LCM and DCM tests followed the
same general protocol and testing parameters stated in the
original 2002 and 2004 versions [1, 2]. Tests were conducted at
1.0Hz cycle frequency and lasted for five million cycles (Mc).
Load and displacement input represented one full walking
cycle per test cycle and were taken from the respective
ISO standards. The experiment was interrupted every 0.5Mc
to dismount, clean, and weigh the specimens according to
the ISO standard [17]. Wear scars on the tibial UHMWPE
plateaus that developed during the test were analyzed after
test completion.

Medial and lateral articulating surfaces were visually
analyzed using a video-basedmicroscope (SmartScope, OGP
NY, USA). Wear scars were digitized by manually tracking
their contours (i.e., the boundary between worn and unworn
areas) on the liner surface (Figure 1(a)) [18]. Since the goal
of this study was to compare wear scar patterns using images
rather than discrete geometric parameters, black and white
wear scar bitmap images (220× 170 pixels) were generated for
each component (Figure 1(b)). Each bitmap image contained
medial and lateral wear scar shapes with black pixels rep-
resenting worn areas and white pixels representing unworn
areas. Each bitmap image was converted to a 220 × 170matrix
with “1” representing white pixels and “0” representing black
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Figure 2: Self-organizing feature map (SOFM) neural network
structure. In the competitive layer, input vectors are assigned to the
neuron with the shortest Euclidean distance. Similar input vectors
will be assigned to neighboring neurons.

pixels. Each matrix was then reshaped to a single row vector
and used as input for the SOFMmodel.While the component
border was not kept in the image, the length and height
of the image were adjusted to match the component size.
All components were normalized to an equal size and right
implantation side. Components with unknown implantation
side (∼7%, Table 1) were normalized after side determina-
tion with ANN. Geometric wear scar parameters, including
area, perimeter, centroid, bounding box, anterior/posterior
stretch, medial/lateral stretch, moment of inertia, and mul-
tiple shape factors, were computed for each component
(Figure 1(c)) and used for statistical analysis.

The SOFM network was designed and trained using the
Matlab SOMToolbox 2.0 (Helsinki University of Technology,
Finland). A sensitivity analysis was conducted to identify
ideal training parameters generating best mapping results.
The networks consisted of an input layer of 37,400 neurons
(from image dimensions of 220 × 170 pixels = 37,400), a com-
petitive layer, and an 𝑛×𝑚 neurons map or output layer (Fig-
ure 2). Five different networks with different map dimensions
were generated. Map size and neighborhood radius were
the only parameters tuned during the sensitivity analysis.
The learning rate was linearly adjusted for all networks and
the presentation of training samples was done in a random
order. Training was performed using postmortem-retrieved
components only. Subsequently, simulator- and revision-
retrieved components were assigned to already existing clus-
ters. No network learning occurred from the simulator wear
scar patters. Training was done using the batch algorithm
based on the Euclidean metric. Statistical analysis of the
clustering structure was performed only from the map pro-
viding the smallest quantization error (which is a measure of
“fit” between input and output mapping) and a well-defined
cluster structure.

The u-matrix method was used to visualize the distance
of each map neuron to its neighbors.The shorter the distance
between neurons, the smaller the difference between them
[19, 20]. This method was used to visually uncover the clus-
tering structure in the SOFM.Commonly, a two-dimensional
color coded u-matrix is used to identify cluster boundaries.
Component planes (another commonly used visualization
tool) were not created because the type of input data used
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in this study would have produced 37,400 component planes
(one for each dimension).

Clustering robustness was evaluated by producing mul-
tiple versions of the map with the best mapping results.
The goal of this process was to detect mapping irregularities
caused by the inherentmapping errormeaning that data from
a high dimensional spacemask a significantly smaller dimen-
sional space. To detect clustering irregularities, three network
versions were created and trained until they converged. The
networks were created and analyzed by an independent
investigator. The networks’ map size, learning rate, and
neighborhood radius were left unchanged. The only training
parameters that differed between networks were the initial
values of themapneurons and the presentation of the training
samples, which were both randomly chosen. The clustering
structure was visualized and compared between network
versions. The map neurons assigned to each wear scar in
each of the networks were recorded and used for comparison.
Cohen’s kappa analysis was carried out to investigate if each
component was consistently clustered with the same group of
components.

SOFM mapping configurations were evaluated based on
quantization errors. To test the interrater reliability of the
network, intraclass correlation coefficients (ICC) were com-
puted. An analysis of variance (ANOVA) was conducted
to detect differences within and among clustered wear scar
images. The geometric parameters, computed for medial and
lateral wear scars separately, were used as output variables in
the statistical analysis.The associations between two available
input variables (“time in host” and “age at surgery”) with out-
put variables were evaluated using regression analysis. Only
clusters with available input on more than three retrieved
components were included. The chance probability that five
of six simulator components would land in a single cluster
was estimated using the binomial distribution. The proba-
bility of “success” (i.e., landing in cluster “X”) was estimated
from the proportion of revision andpostmortemcomponents
that landed in that cluster. All statistical analyses were
performed in SPSS 16.0 forWindows (SPSS Inc., Champaign,
IL, USA).

3. Results

Anetwork with amap size of 12 × 10 and initial to final neigh-
borhood radii of 4 to 1 was found to provide the lowest
quantization error (𝑞

𝑒
= 11.14) and a well-defined clustering

structure. The other network configurations evaluated were
20 × 10/4 to 1, 20 × 10/4 to 1, 10 × 10/4 to 1, 10 × 10/5 to 3.5, and
7 × 7/4 to 1. The 20 × 10 network had a lower quantization
error (𝑞

𝑒(20×10)
= 10.9) than the network selected for the

final analysis; however, its cluster boundaries were not easily
identifiable. The remaining networks evaluated had higher
quantization errors: 𝑞

𝑒(10×10/4 to 1) = 12.7; 𝑞𝑒(10×10/5 to 3.5) =
15.3; and 𝑞

𝑒(7×7)
= 17.1.

The clustering robustness analysis showed substantial
interrater reliability for the different SOFMs created with a
kappa value of 0.69 (𝑝 < 0.001) and 95% CI (0.667, 0.712).
Despite the random initial values of map neurons and the
random presentation of the training samples, tibial inserts

that were clustered together in the first round stayed mostly
in the same cluster during the second round. On average 84%
(SD ± 19%) of all components were consistently mapped with
the same components.

Using the u-matrix visualization method, eleven clusters
became evident, each containing at least one postmortem-
retrieved component and a maximum of 18 retrieved com-
ponents (Figures 3 and 4). While 54 revision-retrieved com-
ponents were assigned to nine of eleven clusters, all but one
of the six simulator-tested components were placed in cluster
1. The chance probability that five or more of the simulator
components would land in cluster 1 was estimated to be 1.6𝐸−
4 using the binomial distribution. It is worth mentioning that
cluster 1 contained only 10.8% of retrieved components and
was one of the more isolated clusters at the fringe of the
map.

The geometric features of the wear scars are summarized
in Table 2. There was no single geometric variable that could
have explained the differences between all clusters. Thus, it
was found that cluster 1 was not significantly different from
the other clusters based on wear scar geometric parameters
alone, although the SOFM network had established cluster 1
as one of themost dissimilar clusters. Interestingly, the largest
number of significant differences was found in cluster 11. For
simulator components only, medial and lateral wear scars
were more anteriorly located and more symmetrical than for
the retrieved components in the cluster. However, only the
anterior location differed significantly from all other cluster-
retrieved components (𝑝 < 0.05), whereas the wear scar
symmetry did not. The associations between two available
input variables (i.e., “time in host” and “age at surgery”)
and geometric output variables differed between the various
groups (Table 2).

4. Discussion

In this study, the relationship between wear scar images of
simulator-tested and retrieved TKR tibial components was
investigated. A nontraditional qualitative modeling approach
was used to project nonlinear relationships of a high dimen-
sional data set (wear scar images) onto a two-dimensional
map. The SOFM algorithm was used as a data mining and
knowledge discovering tool and served as visual aid in the
discovery of wear scar characteristics.

After successfully training with wear scars from post-
mortem-retrieved components, eleven clusters were created.
Purposefully, postmortem-retrieved inserts were used for
this training purpose since they count as well-functioning
at the time of retrieval and as such may be considered a
“gold standard” for TKR wear simulation. As hypothesized,
several clusters of wear scars were generated, mimicking the
variability of wear scar patterns that characterizes retrieved
components [4, 5]. Further, wear scars generated through
mechanical simulation were clustered together, suggesting
that the clustering process is meaningful in that wear scars of
a similar loading history are recognized by the SOFM. It must
be stressed that this cluster contained wear scars from both
load and displacement control tested inserts, which showed
distinct differences in wear scar size in an earlier study [17].
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Figure 3: U-matrix visualization of the SOFM after training. Eleven wear pattern clusters were identified. Five out of six in vitro tested
components were assigned to cluster “1”. ∗Thenumber of revised (R), postmortem (P), and simulator (S) components and the total percentage
(%) of components assigned to each group are noted in brackets [R, P, S, %]. Light map colors represent cluster areas (valleys), while darker
colors represent cluster boundaries (hills).

Hence, there must be other important wear scar features that
render them similar.

All but one of the simulator-tested components were
clustered together. The simulator-tested component assigned
to cluster 4 clearly differs visually from the other simulator
components (see Figure 3). We were aware of this difference
because one of the AP actuators of the simulator became
faulty during one of the wear tests. However, this information
was not used as input into the SOFM.Theonly data and infor-
mation used as input into the network was the medial and
lateral wear scar images from both retrieved and simulator-
tested components, which were all presented to the network
in a random order during the training process. Hence, it
appears that the SOFM network is capable of identifying
subtle differences in loading history.

Based on the clustering results, the load and displacement
control tested inserts account only for about 11% of the wear
scar characteristics found in retrieved components. Cluster 1
is at the fringe of the cluster map and relatively isolated from
other components (as indicated by the high ridge around it;
see Figure 3). Ideally, the cluster containing the simulator
components establishes itself in the center of the map to
have shorter distances to all components and, thus, be more
representative. The sole application of ISO gait cycles may
not be sufficient in mimicking the greater variability of wear

scar patterns observed on retrieved components. Ngai et al.
reported that not only do the motion patterns of TKR patient
differ from the motion pattern applied by the displacement
[21] and/or load control [22] standard, but they are also
highly variable between patients [23]. Also, these findings
may indicate that it is important to consider other activities
of daily living for knee wear testing. Both Benson et al. [24]
and Cottrell et al. [25] found that the inclusion of one cycle of
stair descent or ascent for every seventy cycles of level walking
during wear testing produced more in vivo-like wear scars
than those generated by walking alone. Thus, the variability
of wear scars observed in retrieved components may not just
be the result of different walking patterns but may reflect
the range of physical activities performed by the patient,
raising the need for amore representative TKRmotion testing
pattern.

There are limitations to using the SOFM. The network
does not identify variables that characterize each cluster and
best discriminate between the clusters [7]. Hence, the user
is left in ambiguity. In this study we were unable to explain
wear scar clustering by geometric characteristics. Since the
clustering created by the SOFM is a projection of a nonlinear
and high dimensional input space, the clustering results may
not be fully explained by traditional linear statistical models.
Perhaps, future mathematical means may resolve this issue.



BioMed Research International 7

P P P S R R

S S S S

R R

R P P R

R P P R R R R R

R R R R R R R R

R R R R R R

P P P

S P

P R

R R

P

Cluster “1”: 6 revision, 3 postmortem, and 5 simulator components

Cluster “2”: 2 revision and 2 postmortem components

Cluster “3”: 6 revision and 2 postmortem components

Cluster “4”: 14 revision and 4 postmortem components

Cluster “5”: 0 revision and 1 postmortem component

Cluster “6”: 1 revision and 1 postmortem components

Cluster “7”: 1 postmortem component

Cluster “8”: 8 revision and 2 postmortem components

P

P R R R R R

Figure 4: Continued.



8 BioMed Research International

Cluster “9”: 12 revision and 3 postmortem components

Cluster “10”: 0 revision and 2 postmortem components

Cluster “11”: 8 revision and 1 postmortem components

R R P P P R R

R R R R R R R

R

R R R R R R P R

P P

R

Figure 4: Eleven Clusters were established. Except for one, all simulator components fell in Cluster “1” together with six revision and three
postmortem components.

Because of the nature of the clustered data of this study, the
issuewas amplified. Typically, cluster correlations created by a
SOFM are performed using component planes; however, our
data sets were based on pixel information and this analysis
was not applicable. A second limitation was that the high
dimensionality of the input data set affected the training
time of the SOFM, ranging from four hours to almost a full
day until convergence, depending on the map size. Smaller
bitmap images or a different representation of the wear scar
patternmay be used to limit the computational time spent on
training the SOFM. Smaller bitmap images may also reduce
the quantization error because this error depends directly on
the dimensionality of the input space and the output map
where a greater dimensionality reduction will result in a
greater quantization error. On the other hand, a coarser,
more pixilated wear scar may result in loss of sensitivity
and a threshold has yet to be established. Finally, there
were also limitations with the study design. The simulator
tests were executed according to the original knee wear test-
ing standards and should be repeated following the updated
protocols. Our retrieval collection was small in size, with
modest and partially incomplete patient information. This
resulted in underrepresented clusters with few components
and prevented a thorough data mining. Both “time in situ”
and “patient age” are only auxiliary variables for prosthetic
use and patient activity. Knowledge about the number of
individual walking steps, the specific gait mechanics, and
activity profile of each patient may have provided important

clues in identifying associations and differences within and
between clusters.

5. Conclusions

In conclusion, an artificial neural network approach has been
applied for the comparison of wear scar images of simulator
and retrieved TKR tibial inserts. This modeling approach
proved to be robust and repeatable. The model, which was
based on the self-organizing feature map network, can be
used to directly compare wear scars from simulator and
retrieved tibial liners. The SOFM network analysis revealed
that (1) wear scars from retrieved components are highly
variable, generating multiple clusters, (2) wear scars gener-
ated through wear testing using two different ISO standards
were clustered together and are, thus, deemed comparable,
and (3) wear scars from simulator components were clustered
away from the center of the map and, therefore, are not
representative of the whole retrieval collection. In the future,
we may check if a new multiactivity testing protocol is
capable of generating wear scars that more closely resemble
retrieved components. The SOFM model may also be used
for data mining of very large retrieval cohorts and search
for associations and differences beyond physical context. For
example, the input could contain surgical factors and/or
socioeconomic factors. In the summary, the SOFM estab-
lished in this study provides a unique and versatile platform
for future discovery analysis.
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