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Abstract: The Internet of Things is a rapidly growing paradigm for smart cities that provides a way
of communication, identification, and sensing capabilities among physically distributed devices.
With the evolution of the Internet of Things (IoTs), user dependence on smart systems and services,
such as smart appliances, smartphone, security, and healthcare applications, has been increased.
This demands secure authentication mechanisms to preserve the users’ privacy when interacting with
smart devices. This paper proposes a heterogeneous framework “ADLAuth” for passive and implicit
authentication of the user using either a smartphone’s built-in sensor or wearable sensors by analyzing
the physical activity patterns of the users. Multiclass machine learning algorithms are applied to
users’ identity verification. Analyses are performed on three different datasets of heterogeneous
sensors for a diverse number of activities. A series of experiments have been performed to test the
effectiveness of the proposed framework. The results demonstrate the better performance of the
proposed scheme compared to existing work for user authentication.

Keywords: smartphone; continuous user authentication; behavioral biometrics; physical activity;
user identification; heterogeneous sensors; ubiquitous computing; smart cities

1. Introduction

The Internet of Things (IoT) is a network that provides a notion of ubiquitously connecting smart
sensors, smart devices, and other daily living physical objects, thus giving rise to smart cities. Unlike the
traditional internet that offers a connection between the people and a network, IoT aims to provide the
connectivity among devices, objects, and human beings for enabling diverse applications for smart
cities such as user identification, monitoring, tracking, and control. With flourishing advancement
in the field of IoT, an emerging paradigm consisting of ubiquitous sensing has been introduced.
The rapid increase in smart sensing capabilities has led to an outburst in the use of smart systems
and services, which has encouraged researchers and developers to think about the development of
smart cities. As a result, researchers are focused on presenting novel ideas for smart services and
smart devices, which can extract information from IoT generated data for automation and better
decision making. Nowadays, most of the people during their daily routine rely on smart systems
and services in terms of social contact, environment, healthcare, transportation, and entertainment.
Smart cities as a dominant area of IoT must be able to provide high-quality smart services to the people
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in terms of social contact, environment, healthcare, transportation, and entertainment. Smart buildings
are one of the core blocks of smart cities as people nowadays spending most of the time in indoor
activities for shopping, education, and work. Therefore, smart services should facilitate and meet
the needs of the inhabitants of smart cities. At one end, the development of smart systems and
services, such as smart appliances, smart home [1], security and surveillance applications, healthcare
and monitoring such as telecare medicine information system [2] is providing easiness in the life
of people. On the other hand, there are privacy issues arising due to these systems as they contain
some sensitive and vital user information. Similarly, besides their traditional voice communication,
smartphones are providing a common platform for numerous online services such as email, online
transactions, and e-commerce. Consequently, a large amount of personal information, such as contact
details, call logs, photos, and bank account number, are being generated and stored on smartphones.
Hence, potential threats to the owners of the accounts have increased significantly. Also, smartphones
are quite susceptible to probably being lost, stolen, or easily accessed by non-owners. As much as
these devices provide substantial benefits for users in everyday life, their privacy continues to be a
major concern. Hence, it has now become essential to explore authentication mechanisms that can
maintain the privacy of sensitive information, which is made available through these devices.

Authentication is the process of identifying the real user of the system [3]. User authentication
can be broadly classified into three categories: (i) knowledge-based; “what user knows” (involves
something that user must know like password, Personal Identification Numbers (PINs), an ID number,
or answer to a security question etc.), (ii) object-based; “what user has” (which involves something
that user possesses such as ID card, token, keys, badges, etc.), (iii) biometric; “who user is” (which
denotes the behavioral characteristics that can be represented by one or more physical or behavioral
attributes, e.g., fingerprint, face, iris, keystroke dynamics, etc.) [4]. Passwords and PIN codes are the
conventional methods used for user authentication, which are explicit mechanisms and require the
active participation of the user. Simple passwords can be easily remembered; however, they can be
guessed too as there is a risk of information disclosure (if the password is some useful information
related to the user) also. Hence, passwords are weak and vulnerable to guessing attacks [5,6].

Complex passwords can also be obtained by determining the screen taps location using
accelerometer and gyroscope sensor readings [7]. Long secure passwords are generally more annoying
to the users because of the effort required for their input. PINs are easier to remember than passwords.
However, they are less secure and can be guessed more quickly [8,9]. It is estimated that an average user
takes almost 4.7 s to unlock his/her smartphone through a PIN [10]. Another most common method
used in smartphones for authentication is the pattern lock, which provides an easy way to login to the
device. Unfortunately, they are vulnerable to side-channel attacks and can be guessed by determining
the trace of the fingerprints on the screen after the pattern has been drawn. Biometric authentication
has also been employed for smart devices and smart systems, which can be divided into two categories:
physiological and behavioral. Commonly used authentication methods involving physiological
biometric include face lock, iris recognition, and fingerprint scan. The main drawback of using
physiological biometrics for authentication purpose is that these physiological characteristics can be
duplicated and altered. For instance, hand geometry and fingerprints can be recreated in plastic [11].
Scars and bruises can change the fingerprints, and different poses of the face can create confusion in
the face recognition system [12]. Moreover, physiological biometric methods using fingerprint and iris
recognition require the support of some additional hardware for input. In addition, these methods
are active authentication methods and require the user to frequently and actively participate in the
system for getting access to any smart system, which becomes annoying and tedious to the users. As a
result, users prefer to use fewer privacy impediments. To overcome these challenges relating to user
authentication, the implementation of continuous authentication based on behavioral biometrics offers
a way for passive user authentication.

Passive authentication does not necessitate the direct involvement of the user in the system.
Instead, it is concerned with the behavioral traits of the user and continually monitors the user
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and identify user’s authenticity rather than authenticating the user once on the entry point, hence
enhancing system security. With the latest advancement in IoTs, sensor-based biometric authentication
mechanisms are proposed in which wearable sensors are attached to the user’s body for continuously
monitoring the user. On-body wearable sensors have the advantage of mobility and are always with the
user as opposed to traditional biometric systems, which are fixed at a location. Sensor-based wearable
devices come in different forms focusing on accessories and clothing that people use in daily routines.
These accessories and clothing comprise wrist-worn bands, smart jewelry, straps, head-mounted
devices, E-Textiles, and E-Patches [13]. Wearable sensors are attached to the body unobtrusively, which
continuously authenticate the user based on the behavioral and physiological signals captured from
the user’s body. Smartphone-based behavioral biometrics also grasped momentous attention in recent
years. User authentication scheme based on hand-writing pattern [14,15], touch behavior [16], gait
patterns [17,18], and GPS location patterns [19] are proposed, which require minimal user interaction
with no additional hardware support. With the latest advancement in mobile sensing technology,
behavioral-based authentication mechanisms using the motion sensors, embedded in the smartphone,
have become quite popular. The behavioral patterns of the user are monitored throughout the phone
usage process, even when the phone is in the locked condition, which improves the privacy of the user.
In sensor-based authentication, the experimental context is complex in terms of the diverse range of
sensors, actions performed by the user, and the position of the device used in data collection [20]. A few
research studies on smartphone user authentication focused on the recognition of activities of daily
living (ADL) for authenticating smartphone users and analyzed the effect of smartphone placement on
the recognition performance [20–23]. Behavioral biometrics like gait [18,24] and touch behavior [16]
have also been used for smartphone user authentication. Although these daily living activities are
prevalent in real life, however, the authentication mechanism cannot be limited to only those activities.
For example, due to any physical and mental health condition, the way of performing these activities
can be changed. The walking pattern of the user can vary due to changing footwear; in this case,
the user cannot be identified using simple walking. Similarly, sitting and standing activities have a static
nature, and it might be possible that they give low accuracy in identification. In this case, a postural
transition like sit-to-stand and stand-to-sit can assist in authenticating the user. Also, the probability of
occurrence is different for different activities in real life, so more activities need to be incorporated for
viable authentication.

In this paper, a heterogeneous sensing framework ADLAuth (ADL-based authentication) is
proposed to provide passive and continuous user authentication by analyzing and recognizing the
unique characteristics of the physical activity patterns of a user. For this purpose, different ADL and
their changing patterns are considered in this study for providing user authentication. The data from
smartphone motion sensors (accelerometer, gyroscope, and orientation sensors) and wearable inertial
sensors are used to validate the users on the basis of ADL. The ADLAuth framework evaluated three
different datasets for physical activity recognition of users for their identification. These datasets
were MobiAct [25], Human Activity Recognition using Smartphone dataset (HAR) [26], and (Physical
Activity Monitoring Dataset) PAMAP2 [27], containing different types of daily life activities performed
by a number of users. After data preprocessing, a set of time domain and frequency domain features are
extracted for user recognition based on ADL patterns. Three supervised machine learning classifiers,
support vector machine (SVM), decision tree (DT), and random forest (RF) were used to classify
the extracted features into different users. The results of the ADLAuth framework showed that the
proposed method is feasible and reliable for passive user authentication. The main contribution of our
work is as follows:

• A novel framework ADLAuth is proposed for passive and continuous user authentication, which
is based on the recognition of daily life activity patterns.

• Varying patterns of different activities are incorporated into the proposed scheme for assisting
in-the-wild user authentication.
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• To demonstrate the independence of our method on the type of sensors (either smartphone sensors
or wearable inertial sensors), a comprehensive evaluation is provided on three datasets that
include data from smartphone sensors as well as wearable sensors of different activities.

• An analysis of different time domain and frequency domain features is provided so that more
implicit information is exploited using the users’ ADL.

The rest of the paper is organized as follows: Section 2 describes the related work done for activity
recognition and authentication of users using built-in smartphone sensors and wearable sensors.
Section 3 describes in detail the datasets used and proposed framework that is evaluated on those
datasets. Section 4 depicts the analysis of the performance of the proposed framework. Section 5 gives
the concluding remarks and directions for future research.

2. Related Work

The aim of activity recognition is to describe how human beings perform their physical activity
by analyzing the data collected through multiple sensors. Human activity recognition has many
important applications that do not only monitor human activities but also help to understand those
activities (e.g., surveillance environments) better. With the development in computing and sensing
technology, sensors-based methods for activity recognition have become quite popular as they are
cheap and robust in various situations. Multiple on-body sensors have been used at different body
positions to recognize human activities [28,29]. In References [30,31], the accelerometer has been used
for physical activity recognition by applying different feature extraction algorithms. The accelerometer
sensor is used either in its triaxial arrangement or combined with other sensors like a gyroscope,
magnetometer, heart rate, or temperature sensors [32]. In Reference [33], the authors recognized
human activities using heterogenous sensors at different body positions, i.e., the right pocket, wrist,
belt, and arm. Gafurov et al. [34] used a device that was attached to the user’s lower leg and
obtained the acceleration signal in three dimensions for authentication. The results were evaluated
by implementing histogram similarity and equal cycle length, which achieved an equal error rate
(EER) of 5% and 9% respectively. Blasco et al. [35] designed a biometric system using wearable sensors
that have potential differences from traditional biometric systems. They provided a feasible solution
to biometric verification using wearable sensors composed of acceleration, photoplethysmogram
(PPG), electrocardiogram (ECG), and galvanic skin response (GSR). Their result showed an EER of
2% with one-minute of training data using the configuration of ECG, PPG, and GSR. Zhang et al. [36]
proposed a parallel ECG-based authentication (PEA) method incorporating hybrid ECG features to
improve the authentication accuracy for smart healthcare systems. The experimental results verified
that the performance of PEA is comparable to existing approaches. The authors in Reference [37]
used wireless body area networks (WBANs) to collect and exchange valuable information regarding
physical conditions of the patient. For behavioral authentication of the user, the wearable sensors
attached with wrist-worn devices and straps have also been used. In this aspect, an authentication
scheme [38] has been carried out on fifteen volunteers, in which a wrist-worn device, i.e., smartwatch,
was used to authenticate a user based on his/her gait pattern by examining the accelerometer data.
The proposed scheme distinguished an authorized user form an imposter with the authentication
accuracy as high as 99.6% and an equal error rate (EER) as low as 2.9%. In Reference [39], the authors
utilized a smartwatch to authenticate a user based on the gait pattern. The complete system was
implemented on a Samsung Gear Live smartwatch by adopting a new method of sparse fusion to
improve accuracy. Yang et al. [40] presented a motion-based authentication scheme using wrist-worn
devices with inertial measurement units (IMUs). An android smart watch was used to implement
the system. However, these on-body wearable sensors were uncomfortable to wear while performing
different activities. Also, they created problems in their adjustment on the user’s body. As a result,
smartphone sensors are often used for human activity recognition.

Nowadays, smartphones are equipped with multiple sensors (e.g., accelerometer, gyroscope,
orientation, and proximity sensor, etc.), which makes these sensors easily accessible. Because of
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these advantages, smartphone sensor-based activity recognition has gained a lot of attention in
recent years. Researchers have used these three-dimensional sensors for static as well as continuous
authentication [20,21,41]. Chen et al. presented a systematic performance analysis of sensor behavior
for recognizing human activities using smartphones. Authors developed and implemented both a
personalized and generalized model for activity recognition. Extensive results demonstrated that
everyone has its own distinct movement patterns. They achieved an F-score of 95.95% and 96.26%
for the personalized model and generalized model, respectively [23]. In Reference [42], a biometric
authentication scheme was proposed, where a user was identified by examining the movement he
performs while answering a phone call. The user’s movement was detected by recording accelerometer
and orientation sensors data. Muaaz et al. [43] proposed a smartphone-based authentication scheme
by examining the user’s gait behavior and observed how the device security was compromised when
imitation attacks were performed [43]. The highlight of their work was the collection of malicious
data against zero-effort attack in a realistic scenario. In addition to this, Abate et al. [44] investigated
carefully about the fusion method. They examined how the fusion of multiple smartphone sensors
affects authentication. Their method involved the inspection of sensors like gyroscope sensor, camera,
and accelerometer. They conducted their experiment by fusing accelerometer and gyroscope sensors
and concluded that only using accelerometer alone gives better authentication results instead of fusing
both, which leads to inaccurate results.

Some research works have investigated whether unobtrusive identification or authentication
means subjects do not need to perform any particular actions. Kwapisz et al. [45] used the mobile
phone-based accelerometer for unobtrusive biometric authorization or identification. Authors used
Neural Network and their own strategy of Straw-Man as the learning algorithms and achieved 100%
negative and positive authentications of all the five users. Wei-Han Lee and Ruby B. Lee [46] put
forward that they achieved high accuracy (90%, up to 95%) by a multi-sensor authentication method
with the orientation sensor, accelerometer, and magnetometer. These studies revealed that the fusion of
multiple sensors provided better classification results. Additionally, authentication mechanisms must
take into consideration more complex contexts. Primo et al. [47] proposed a gait-based authentication
scheme and investigated how a different phone position can affect authentication.

In this study, the challenges associated with the existing research to authenticate the user of a smart
system through behavioral patterns were analyzed, and to overcome those challenges, we presented
ADLAuth framework that utilized data of wearable sensors as well as smartphone sensors to provide
an appropriate solution for continuous authentication of the user.

3. Methodology

This section focuses on the procedure adopted to learn and identify the user of a smart
system through smartphone built-in and wearable sensors, based on their physical activity patterns.
The proposed methodology for ADLAuth framework is shown in Figure 1, which consists of the
following five steps: data collection, data preprocessing, feature extraction, feature selection, and user
identification. The detail of each section is elaborated below.

Figure 1. The proposed methodology for user identification.
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3.1. Dataset

This section focuses on the datasets used to evaluate this study. Three datasets MobiAct,
HAR (Human Activity Recognition using Smartphone dataset), and PAMAP2 (Physical Activity
Monitoring Dataset) [27] were used for the evaluation purpose in which two datasets MobiAct and
HAR contained the inertial data of smartphone sensors accelerometer, gyroscope, and magnetometer
and PAMAP2 dataset was based on wearable sensors at three different body positions. The data
was collected from a group of subjects while performing daily routine activities. Table 1 defines the
characteristics of these three datasets with only the selected activities used in this study. The selected
activities can be categorized into different groups, i.e., static, dynamic, and transitional. The reason for
selecting these activities was that authentication can be performed in a better way while incorporating
these activities as they are more common in the daily life of a person.

Table 1. Characteristics of the selected datasets.

Dataset Sensors No. of Users No. of
Activities

Activities

Static Dynamic Transitions

HAR [26] 2 Acc
1 Gyro 30 6

Standing
Sitting

Lying down

Walking
Walking upstairs

Walking downstairs
-

PAMAP2 [27]

3 IMUs:
2 Acc

1 Gyro
1 Mag

9 8
Standing

Sitting
Lying down

Walking
Running

Nordic Walking
Walking upstairs

Walking downstairs

-

MobiAct [25]
1 Acc

1 Gyro
1 Mag

59 9
Standing
Sitting on

chair

Walking
Walking upstairs

Walking downstairs
Jogging
Jumping

Sit-to-stand
Stand-to-sit

3.1.1. MobiAct Dataset

The MobiAct dataset consists of twelve different activities and four different types of falls. A total
of 59 participants performed ADLs. Falls were not considered in this research, and out of eleven ADLs,
we only used nine activities that were more related to the authentication purpose. The chosen activities
fall in the categories of dynamic, static, and transitional activities. The duration of activities during data
collection varied from each other. Three triaxial accelerometers, gyroscope, and orientation sensors
were used for data collection. Table 1 defines the complete characteristics of the dataset. The dataset is
publicly available and can be obtained from Reference [48].

3.1.2. HAR: Human Activity Recognition Using Smartphone Dataset

HAR is a smartphone-based human activity recognition dataset and is publicly available [26].
A group of 30 participants had performed the experiment of six basic human daily life activities by
attaching a smartphone to belt carrying at their waist for the collection of the dataset. The dataset
contained the triaxial signals from the device’s embedded sensors of accelerometer and gyroscope at a
rate of 50 Hz. The start and end labels were defined for each activity. Duration of all activities were
15 s except walking upstairs and walking downstairs activities, which were of 12 s.

3.1.3. PAMAP2: Physical Activity Monitoring Dataset

The PAMAP2 is a publicly available dataset [49] used for academic research and was initially
presented by Reiss and Stricker [27]. This dataset is based on on-body wearable sensors and collected
using four sensors, three inertial measurement units (IMUs), and one heart rate monitoring sensor.
A total of nine subjects (eight males and one female) participated in the experiment following a data
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collection protocol. Inertial measuring units were composed of two accelerometers of different scales
(±6 g and ±16 g), one gyroscope and one magnetometer at a sampling rate of 100 Hz. Sensors were
positioned on the chest, the wrist of the dominant arm and ankle. Eighteen daily living activities were
performed, from which only eight activities were used in our work. The nature of the selected activities
was categorized as static and dynamic activities.

3.2. Data Pre-Processing

Data Denoising and Segmentation

The raw data collected from sensors contained system measurement noise or other unexpected
noise owing to the vivacious movements of the user during the experiments. Noisy signal corrupts
the useful information contained in the signal. Hence, it was vital to reduce the effect of noise
so that meaningful information can be extracted from the signal for further processing. The most
common methods used for the filtering includes mean filter, low-pass filter, Wavelet filter, and Gaussian
filter [50,51]. In our study, we employed an average smoothing filter for signal denoising by applying
the filters along all three dimensions of the accelerometer, gyroscope, and orientation sensors.

After noise removal, the filtered data was segmented into small chunks for further processing
using a fixed size sliding window. The filtered continuous signal is divided into equal size segments of
10 s in time with 500 samples at the rate of 50 Hz and 1000 samples at the rate of 100 Hz. Those activities
which have a length shorter than 10 s were kept as it was.

3.3. Feature Extraction

Feature extraction is an essential step that extracts the vital information from the preprocessed
data that can be helpful in recognizing different types of activities and identify differences among
users based on activity patterns. “How can the features be extracted?” and “which features to choose?”
are important questions and will affect the performance significantly. In this section, after conducting
an empirical analysis of the features, a set of 18 features was selected from the time and frequency
domain. From the set of fourteen features, autoregression was a feature which returns four coefficients,
e.g., 14 features + 4 autoregression coefficients = 18, so the size of the feature vector varied with the
dataset. The MobiAct and PAMAP2 datasets contained data of three sensors (acceleration, gyroscope,
magnetometer) and features were computed for all three dimensions. The features defined in Equations
(11)–(13) gave a single value over all the dimensions of a single sensor’s data. In this case, the size of
the feature vector was (18 × 3 + 3) × 3 = 171. Similarly, for the HAR dataset, the size of the feature
vector was reduced to (18 × 3 + 3) × 2 = 114 as this dataset contained only two sensors (acceleration
and gyroscope). The adopted features for this study were mentioned below with a brief description.

3.3.1. Time Domain Features

• Arithmetic mean represents the mean value of the component contained in the signal.

s =
1
N

∑N

i = 1
si (1)

where si represents the ith sample value of the original signal and N is the total number of samples.
• Minimum amplitude is denoted by smin and shows the minimum value of the signal,

smin = min(si) (2)

• Maximum amplitude is denoted by smax and shows the maximum value of the signal,

smax = max(si) (3)
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• Standard deviation, denoted by std, depicts how much there is a spread from the mean or expected
value of the data. For a low value of standard deviation means that numbers are close to the mean
value. Std can show the intensity of activities the user performs,

std(s) = σ =

√
1
N

∑N

i = 1
(s− s)2 (4)

• Kurtosis measures tailedness of the probability distribution of real-valued random variables.
The standard measure of the kurtosis is based on the fourth moment about the mean where the
number of the moment is related to the tail of the distribution of data.

kurtosis(s) =
N∑
i

(si − s)4

Nσ4
(5)

where σ is the standard deviation.
• Skewness measures the symmetry of the variation of a signal about its mean,

skewness(s) =
N∑
i

(si − s)3

Nσ3 (6)

• Signal magnitude area, denoted by sma, calculates the magnitude of the triaxial signal.

sma(s) =
1
3

∑3

i = 1

∑N

j = 1

∣∣∣si, j
∣∣∣ (7)

where i represents the dimension of the triaxial signal and j represents the sample value of a
particular dimension.

• Median absolute deviation, represented by mad, is a robust statistic measure used to show the
variability of the data.

mad(s) = mediani

(∣∣∣∣si −median j|s j |

∣∣∣∣) (8)

where median j(s j)
represents the median value of the signal.

• Interquartile range: In descriptive statistics, the interquartile range is the measure of the variability
of data by dividing data into quartiles. It can be determined by calculating the difference between
the first and third quartile.

iqr(s) = Q3(s) −Q1(s) (9)

where Q3(s) and Q1(s) represent the third and first quartile of the signal.
• Autoregression (AR) coefficients are a popular feature of extraction methods. AR modeling

attempts to models the signal by using the previous time steps of the signal. AR coefficients
give much more detailed information about the signal than mean and variance alone. The given
function is used to find the AR coefficients to the 4th order using Burg’s method [52],

a = arburg(s, 4), aεR4 (10)

• Sum vector magnitude,

|s| =
√

s2
x + s2

y + s2
z (11)
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• Angle between the z-axis and vertical: Calculates the angle between the z-axis of the sensor’s data
and vertical plane. It results in feature size of R × 1 dimension.

θ1 = atan2
(√

s2
x + s2

y, sz

)
(12)

where R is the total number of samples over all dimensions in a chunk of sensor’s data that is
being segmented.

• Orientation of a person’s trunk,

θ2 = atan


√

s2
x + s2

y

sz

 (13)

• Angle between device and ground,
θ3 = sin(a) (14)

3.3.2. Frequency Domain Features

• Max frequency index represented by maxFreqInd is the most significant frequency component of
the signal,

axFreqInd(S) = arg maxi(Si) (15)

• Mean frequency: gives the average frequency, calculated as the sum of products of the power
spectrum of the signal and divided by the total sum of spectral intensity,

mean f req(S) =
∑N

i = 1
(iSi)/

∑N

j = 1
S j (16)

• Energy: shows the strength of the signal. At first, the signal is transmitted to the frequency domain
then energy was calculated using the formula below [41],

E f =
∑∣∣∣S∣∣∣ f ∣∣∣∣∣∣2 (17)

• Entropy: shows how much useful information is associated with the signal [41],

H(S( f )) = −

∑N

i = 1
pi(S( f )) log2pi(S( f )) (18)

where pi is the probability of the signal.

3.4. Feature Selection

After extracting the specified features above, a feature selection method, known as “Wrapper
Subset Evaluation” (WrapperSubsetEval) [53] was applied to the extracted set of features for
eliminating redundant features that do not play any vital role in the classification step ahead.
The WrapperSubsetEval feature selection method used a learning scheme to evaluate different
attributes or set of attributes. A cross-validation scheme was used to approximate the accuracy of
the learning classifiers for a different set of features. In our case, we used RF classifier to attribute
evaluation with a number of folds equal to 5.

3.5. User Identification

After feature extraction, the next step was to choose the suitable classification algorithm to classify
the user performing different activities. Classification algorithm plays a vital role in the recognition
system, and the right choice of classifiers has a high impact on recognition accuracy. Since every user
had different activity patterns and thus the features extracted on those activity patterns gave distinct
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information about each user. Classifiers learn meaningful information from the extracted features and
make decisions based on those features. Three widespread used classifiers: support vector machine
(SVM), decision tree (DT), and random forest (RF) were used in this study. Ten-fold cross-validation
was used for training and testing of the classifier and the activities performed by the user were classified
into different activities groups. Each user had a different activity pattern, so everyone was identified
based on the way they perform activities. The main reason for selecting these classifiers was their
efficient performance in existing work [20,21,41] for user identification. The detail of each machine
learning classifier is described in the following sections.

3.5.1. Support Vector Machine

The support vector machine [54] is a supervised machine learning algorithm used for both
regression and classification analysis. SVM classifies data using a hyperplane in one of two categories.
In the training phase SVM mapped the data which belonged to each category into high dimensional
space by creating a hyperplane which maximizes the distance between two categories. The new data
samples were then mapped to the same space based upon the which side of the hyperplane the new
sample fell. SVM could also perform non-linear classification efficiently through the kernel trick, i.e.,
mapping input space into high dimensional feature space.

3.5.2. Decision Tree

The decision tree [55] is a supervised machine learning approach used for regression as well as for
classification. The motivation of the decision tree was to build a training model which was used to
predict a target variable by learning simple decision rules. The decision rules were constructed from
the extracted features of the input data. The understanding of the decision tree algorithm was quite
simple compared to another machine learning algorithm, yet highly interpretable. The problem with
the decision tree was that it is expensive to add a new sample to the already trained model [56].

3.5.3. Random Forest

Random Forest [57] is an easy to use supervised machine learning algorithm. Due to its simplicity
and flexibility, it is a widely used algorithm for classification and regression problems. As its name
implies, it created multiple decision trees and added randomness to the model to achieve more stable
and accurate results. Another advantage of random forests was that instead of using important features,
it selected the best features among the set of features which made the model better. Random forests also
avoided the problem of overfitting, which was an issue in deep decision trees. The main limitation with
the random forests algorithm was that a large number of trees made it slow for real-time applications.

4. Results

This presents the experimental results obtained for the proposed authentication framework.
As the proposed scheme focused on heterogeneous sensing for user authentication, hence three
different datasets including HAR, MobiAct, and PAMAP2 datasets, were evaluated for the proposed
scheme. To perform the continuous authentication for the users, the proposed framework allowed
the performance of the recognition of physical activities from both wearables as well as smartphone
sensors by analyzing different activities performed by the users, and based on their activity patterns,
each user was identified. The performance of the proposed framework was evaluated using three
different classifiers: SVM, RF, and DT. The hyperparameters for these classifiers were tuned as
follows: A polynomial kernel with sequential minimal optimization (SMO) algorithm [58] and pairwise
classification (i.e., 1-vs.-1) approach was used for the SVM classifier. For the RF classifier, a random
tree was used with a based leaner, and the number of iterations was set as 100. A pruned C4.5 tree
(J48) [59] was used for DT classifier with a number of folds equal to 3.

The selected classifiers were trained for each dataset containing different physical activities and then
tested on those activities. Initially, the activities were recognized as performed by different users, and user
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labels were assigned to each activity. For training and testing purpose, k-fold cross-validation was used
with k = 10. A wrapper feature selection method, i.e., WrapperSubsetEval, was also applied to the extracted
set of features, which used the RF learner to assess different subsets of attributes. The hyperparameters
were settled for each classifier before the training process. The proposed heterogenous framework was used
to exploit three different datasets for user recognition, based on the labeled activity data. The performance
of the framework was evaluated in terms of performance metrics F-measure, average accuracy, and Root
Mean Square Error (RMSE). The results for each dataset are presented separately. For the classification task,
F-measure or F-score is denoted by F1, and is defined as,

F1 = 2×
(

precision × recall
precision + recall

)
(19)

The accuracy value is calculated as,

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

where TP = true positive, TN = true negative, FP = false positive, FN = false negative. The RMSE value
is calculated as,

RMSE =

√√√
1
N

N∑
i = 1

(
Ŝi − Si

)2
(21)

where Ŝi and Si represents the predicted signal and observed signal respectively.

4.1. HAR Evaluation

The HAR dataset included the six basic activities, i.e., walking, sitting, standing, lying, walking
upstairs, and walking downstairs. Extensive results are presented by implementing three classifiers
SVM, RF, and DT. The average accuracy of user recognition was highest in case of the RF classifier
which was 75.14%, the average accuracy of the SVM classifier was lower than the RF which was
72.98%, and DT showed the lowest average accuracy of 52.95% among all. Table 2 shows the results of
the three classifiers in terms of performance metrics. In the case of SVM and RF classifier, the user
recognition accuracy was better for walking, walking upstairs, and walking downstairs activities
because of their dynamic nature as the walking pattern of everyone is different. In the case of the
walking activity, the SVM classifier showed 100% while the RF classifier showed 99.54% recognition
accuracy. However, the RMSE was lower in the case of the RF classifier compared to the SVM classifier.
For static activities, sitting and standing, the recognition accuracy was low for all three classifiers and
this was due to the reason that the static activities do not involve movement and their still nature
make it difficult to recognize the user based on these patterns. Figure 2 shows the recognition accuracy
of the three classifiers for six activities in the HAR dataset. The accuracy of these classifiers was
calculated without any feature selection method. The RF classifier showed the highest accuracies
among other classifiers when no feature selection was applied. A wrapper feature selection method,
i.e., WrapperSubsetEval, was also applied on the dataset to reduce the dimensionality of the feature
vector by selecting more descriptive features, and the accuracy was calculated by the RF classifier.
Figure 3 shows the comparison of accuracies with and without the feature selection method obtained by
the RF classifier. It is clear from the figure that the accuracy obtained after the feature selection method
was higher for all activities in the dataset. Those activities which already have higher accuracy, were
not much influenced by feature selection. However, for static activities, there was an improvement in
the results with accuracies of lying 5.04%, sitting 9.66% and standing 13.13%. So, the feature selection
method, when applied with the RF classifier, showed improvement in the accuracy of the HAR dataset.
Moreover, Table 3 also contains the confusion matrix of 30 users, which shows the results of user
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identification for the walking activity. Only the best results of user identification are shown, and it can
be seen that no data is misclassified.

Figure 2. User recognition accuracy obtained for support vector machine (SVM), random forest (RF),
and decision tree (DT) classifiers for selected activities in the Human Activity Recognition using
Smartphone dataset (HAR) dataset.

Figure 3. Comparison of user recognition accuracies achieved by RF classifier on the HAR dataset with
and without feature selection.

Table 2. Results of user recognition based on performance metrics for selected activities in the
HAR dataset.

SVM RF DT

Activities Accuracy % F-Measure RMSE Accuracy % F-Measure RMSE Accuracy % F-Measure RMSE

Walking 100 1.00 0.1743 100 0.996 0.0812 80.82 0.800 0.1153
Walking upstairs 99.54 0.995 0.1743 99.54 0.995 0.0942 68.80 0.683 0.1423

Walking downstairs 98.58 0.985 0.1743 99.13 0.991 0.1089 67.25 0.672 0.1524
Lying 64.34 0.645 0.1749 68.60 0.668 0.1377 48.83 0.476 0.1756
Sitting 30.67 0.291 0.1769 31.09 0.311 0.1704 15.28 0.152 0.2254

Standing 44.78 0.438 0.1754 52.50 0.512 0.1533 36.74 0.369 0.1972
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Table 3. Confusion matrix of user identification for walking activity in the HAR dataset.
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U7 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U8 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U9 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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4.2. MobiAct Evaluation

Next, we evaluated performance based on the MobiAct dataset. Out of twelve, nine activities
were used in this research study, which was more related to user authentication. For example, walking,
sitting, standing, etc. are more common activities in daily life, and by monitoring these type of activities,
a user can easily be authenticated. As the number of sensors was larger in the MobiAct dataset than
in the HAR dataset, the length of the feature vector was increased. For each data sample, the same
features were computed.

The results evaluated on the MobiAct dataset are shown in Table 4. The random forests
(average accuracy = 96.03%) classifier shows the best classification results against SVM (average
accuracy = 91.31%) and decision tree (average accuracy = 76.28%) because the RF classifier added
randomness to the model and thus produced more stable and accurate results. The worst recognition
accuracy was achieved by the DT classifier for all activities except walking. The same approach was
employed, but this dataset was allowed to evaluate the framework in a complex way due to a large
number of activities compared to the other two datasets and the nature of activities. The recognition
accuracy wass higher in the case of walking, jogging, and stairs up (dynamic activities). Based on the
transitional activity, sit to stand, users were recognized accurately as the recognition accuracy was
100%, meaning that every user was identified correctly, and no user was misclassified or recognized
as another individual. In this dataset, the user recognition accuracy on static activities, standing and
sitting on the chair, was high and improved compared to the HAR dataset.

Figure 4 shows the recognition accuracy of three different classifiers based on selected activities
when the no feature selection method was applied. It was observed that the best recognition accuracy
was achieved by the RF classifier. For the activities; stairs down, standing and sitting on the chair,
there was a large gap between the accuracies of SVM and RF. The DT, however, showed the worst
performance among all. Its performance was less than the other two classifiers except in the case of
the standing activity. In that case, it showed better performance compared to SVM. This showed that
the RF classifier performed best in recognizing users from their activity patterns. Figure 5 clearly
demonstrates the increase in accuracy of MobiAct dataset achieved through the RF classifier when the
feature selection was applied. A comparison was made between the accuracies when calculated using
all the features, and when the feature selection method was applied. The activities of jumping, stairs
down, standing, and sit-on-chair showed a significant increase in the accuracies of 3.11%, 4.07%, 3.02%,
and 4.58% respectively. The other activities, including walking, stairs up and stand-to-sit, showed
only a little amount of increase in the accuracy of 0.3% to 2.27%, while sit-to-stand activity showed an
accuracy of 100% with both approaches (with and without feature selection).

Table 4. Results of user recognition based on performance metrics for selected activities in the
MobiAct dataset.

SVM RF DT

Activities Accuracy % F-Measure RMSE Accuracy % F-Measure RMSE Accuracy % F-Measure RMSE

Walking 98.46 0.985 0.1252 99.15 0.991 0.0453 91.36 0.914 0.0522
Jogging 97.44 0.975 0.1252 99.37 0.993 0.0682 72.80 0.721 0.0949
Jumping 91.89 0.928 0.1252 95.62 0.955 0.0771 70.03 0.700 0.0986
Stairs up 95.71 0.956 0.1252 96.89 0.969 0.0787 69.21 0.694 0.1013

Stairs down 85.31 0.852 0.1253 93.54 0.934 0.0876 63.36 0.620 0.1077
Standing 78.43 0.786 0.1253 92.38 0.926 0.0616 87.32 0.873 0.0599

Sit on chair 80.82 0.812 0.2141 91.23 0.902 0.0589 74.18 0.751 0.1662
Stand to sit 96.42 0.963 0.1252 96.15 0.769 0.0708 77.46 0.778 0.086
Sit to stand 97.36 0.974 0.213 100 1.00 0.1224 80.83 0.803 0.1433
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Figure 4. User recognition accuracy of RF, SVM, and DT classifiers for selected activities in
MobiAct dataset.

Figure 5. Comparison of recognition accuracies obtained by RF classifier for MobiAct dataset with and
without feature selection.

4.3. PAMAP2 Evaluation

The PAMAP2 dataset did not include transitional activities, so the analysis was done on static and
dynamic activities. The results of the dataset were calculated at three different body positions (chest,
hand, and ankle) and shown in the form of performance metrics in Table 5. By examining the table,
it was analyzed that the RF classifier showed the best results for user recognition due to its ability of
automatic feature selection and stability property. The average accuracy of the RF (93.44%) classifier
was higher compared to SVM (92.39%) and DT (85.02%) due to its automatic feature selection ability
and stability.
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Table 5. Results of user recognition based on performance metrics for selected activities in the Physical
Activity Monitoring dataset (PAMAP2).

SVM RF DT

Activities Accuracy % F-Measure RMSE Accuracy% F-Measure RMSE Accuracy% F-Measure RMSE Body Position

Walking 94.89 0.949 0.293 93.61 0.881 0.1245 89.08 0.938 0.1659 Hand
97.02 0.970 0.292 97.02 0.970 0.099 92.67 0.927 0.1283 Chest
98.29 0.983 0.292 97.44 0.975 0.0787 94.89 0.949 0.1129 Ankle

Upstairs 82.30 0.822 0.297 84.30 0.842 0.211 60.17 0.605 0.2985 Hand
93.80 0.939 0.294 93.90 0.939 0.1659 81.41 0.813 0.211 Chest
93.80 0.939 0.294 93.90 0.938 0.1777 77.87 0.773 0.2336 Ankle

Downstairs 87.12 0.870 0.295 87.15 0.853 0.207 67.33 0.667 0.2813 Hand
90.09 0.901 0.293 88.67 0.887 0.19 74.27 0.725 0.2634 Chest
97.02 0.970 0.292 93.08 0.930 0.1707 80.21 0.749 0.2262 Ankle

Running 95.78 0.958 0.313 95.78 0.958 0.123 93.68 0.937 0.1455 Hand
95.78 0.958 0.313 95.78 0.958 0.1225 93.68 0.937 0.1455 Chest
97.89 0.978 0.312 96.84 0.966 0.1192 90.52 0.903 0.1777 Ankle

Nordic walking 96.73 0.984 0.302 97.36 0.968 0.1089 90.21 0.902 0.1611 Hand
97.28 0.973 0.302 97.82 0.979 0.1063 91.30 0.913 0.1536 Chest
97.28 0.973 0.302 97.82 0.979 0.084 96.73 0.967 0.0965 Ankle

Sitting 80.66 0.805 0.296 87.84 0.879 0.1845 80.15 0.792 0.2231 Hand
83.97 0.842 0.295 92.81 0.929 0.151 81.76 0.816 0.2089 Chest
94.47 0.945 0.293 96.13 0.961 0.1083 88.95 0.890 0.1616 Ankle

Standing 79.56 0.974 0.297 87.48 0.875 0.1829 75.80 0.754 0.2367 Hand
91.39 0.915 0.293 91.93 0.920 0.1479 83.33 0.836 0.2001 Chest
93.01 0.930 0.293 93.89 0.936 0.1339 85.55 0.864 0.1795 Ankle

Lying 92.52 0.905 0.294 92.57 0.926 0.1232 87.36 0.873 0.1736 Hand
93.68 0.937 0.292 94.81 0.947 0.11 92.63 0.926 0.1358 Chest
93.15 0.932 0.295 93.67 0.937 0.1142 91.05 0.910 0.1447 Ankle

The classification results also depicted the effect of sensor placement at different body positions.
By analyzing the results, the ankle was considered the best position in recognizing the user as it had
provided satisfactory results in identifying users for all activities. The highest user recognition accuracy
was achieved in the case of Nordic walking (97.8%), running (96.8%), and walking (97.4%) activities.
Based on the activities of Nordic walking, walking, running, lying and upstairs, sensor placement
at the chest position also showed better results for user identification. As the recognition accuracy
was low when the sensors placed at hand position, this position was considered not good enough for
discriminating users.

Figure 6 shows the average accuracy rate achieved by each classifier for all eight activities in
the PAMAP2 dataset. Since for each activity, three different body positions were analyzed, and the
average accuracy rate was calculated by taking the mean of recognition accuracies on three represented
body positions. It is observed from the graph that the average accuracy rate of the RF classifier was
almost equal to the average accuracy rate of the SVM classifier based on walking, running, Nordic
walking, lying, and downstairs activities. For the activities sitting and standing, the RF classifier
performed better than the SVM. The overall lowest accuracy was achieved by the DT classifier. From the
above discussion, it can be concluded that the RF classifier achieved better results than SVM and
DT. The accuracy of the RF classifier was further improved by applying a wrapper feature selection
method. It is illustrated in Figure 7 that the performance of the RF classifier resulted in higher accuracy
when the feature selection method was applied. For the activities of walking, walking upstairs and
walking downstairs, the difference between the accuracies (obtained with and without feature selection)
was about 3.32%, 3.51%, and 5.57% respectively. Remaining activities also showed improvement in
accuracy with a feature selection approach, and the rise in accuracy was from 1% to 2.79%. To provide
the individual accuracies for all the users, Table 6 shows the confusion matrix of user recognition for
the PAMAP2 dataset. Most of the examples lie on the diagonal except for a few cases.
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Figure 6. User recognition accuracy of RF, SVM, and DT classifiers for selected activities in the
PAMAP2 dataset.

Figure 7. Comparison of user recognition accuracies obtained by the RF classifier for the PAMAP2 dataset
with and without feature selection.

Table 6. Confusion matrix of user identification for the Nordic walking activity in PAMAP2 dataset.

U1 U2 U3 U4 U5 U6 U7 U8

U1 19 0 0 0 0 0 1 19
U2 1 28 0 0 0 0 0 1
U3 0 0 27 0 0 0 0 0
U4 0 0 1 25 0 0 0 0
U5 0 0 1 0 25 0 0 0
U6 0 0 0 1 0 27 0 0
U7 0 0 0 0 0 0 28 0
U8 19 0 0 0 0 0 1 19
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Figure 8 shows the performance of the selected classifier on three different datasets for recognizing
activities. The performance of the selected classifier was evaluated in terms of average accuracy.
A comparison of selected classifiers was made on the basis of accuracies obtained without and with
the feature selection (FS) approach, which shows the accuracy with FS was better compared to the
accuracy without FS. Another comparison of evaluated performance was made on three datasets,
which showed that the best classification accuracy was always achieved by the RF classifier and the
worst accuracy by the DT classifier for activity recognition in case of any dataset. By comparing the
results of different datasets, the MobiAct dataset showed the highest average accuracy achieved by all
classifiers compared to other datasets. For activity recognition, the average accuracy rate of the RF
classifier (with FS) in the case of the MobiAct dataset was 99.98% which was 0.06% and 0.76% higher
than the average accuracy rate of the SVM and DT classifiers respectively.

Table 7 shows the comparison of our approach with existing work related to continuous authentication
of the user with different datasets and number of activities. Wu et al. and Ehatisham-ul-haq et al. presented
an authentication scheme for smartphone using the smartphone’s inertial sensors that achieved an accuracy
of 98.5% and 99.18% respectively. Other approaches performing identification achieved an EER of 5.7% [60]
and False Acceptance Rate (FAR) and False Rejection Rate (FRR) of 5.01% and 6.85% [61] over a small
number of activities. Our proposed approach proved to be better compared to existing work mentioned
for the following reasons: (1) It considers multiple datasets of heterogeneous sensors consisting of a
smartphone’s built-in inertial sensors as well as on-body wearable sensors. (2) The number of chosen
activities appeared to be higher compared to other works, i.e., a total of 12 distinct activities over all
datasets. (3) The average accuracy (99.81%) on the MobiAct dataset with the highest number of population,
outperformed the results obtained by other works.

Figure 8. Comparison of average accuracy for the SVM, RF, and DT classifier with and without feature
selection (FS) on selected datasets based on activity recognition.
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Table 7. Comparisons of previous work-related continuous authentication with our approach.

Study Dataset No. of Users Sensor Type No. of Activities Results

Shen et al. [61] [62] 48 Smartphone 1 (Passcode) FAR = 5.01%
FRR = 6.85%

Damaševičius et al. [60] USC-HAD [63] 14 Wearable 1 (Gait recognition) EER = 5.7%

Wu et al. [64] [65] 40 Wearable 6 Accuracy = 98.5%
F1-score = 86.67%

Ehatisham-ul-haq et al. [41] [66] 10 Smartphone 6 Avg. accuracy = 99.18%

de Fuentes et al. [67] Sherlock
dataset [68] 50 Smartphone N/A Accuracy = 97.05%

Our approach
HAR [26],

MobiAct [25],
PAMAP2 [27]

30, 59, 9 Smartphone +
Wearable 6, 9, 8 Accuracy = 94.96%,

99.81%, 96.54%

5. Conclusions and Future Work

In this work, a heterogeneous framework was proposed for implicit and continuous user
authentication. The proposed framework was tested on three different datasets, two composed of
smartphone motion sensors and one wearable inertial measurement unit (IMU). The sensor’s data of
each dataset was preprocessed and then classified one at a time using three prevalent classifiers DT,
SVM, and RF. At first, the activities were recognized from sensors data, and then user identification was
performed by analyzing the physical activity patterns of the users. The results were calculated in terms
of performance metrics accuracy, F-measure, and RMSE. A comparison was made on performance
among the classifiers. The results demonstrate that the RF classifier shows the best results among all
the classifiers for every dataset. To improve the accuracy, a wrapper feature selection method was
applied and results with feature selection were only computed by the RF classifier and compared
in terms of accuracy. The best results were obtained on the MobiAct dataset for activity recognition
as well as user recognition. The average recognition accuracy of the RF classifier for the MobiAct
dataset was 97.13% when the feature selection was employed. Even standing and sit-on-chair have
low accuracy compared to accuracies of other activities, but still, the accuracy did not drop below 95%,
which indicated the reliability of the suggested solution. The average accuracy of the HAR dataset was
80%, which was quite low compared to the MobiAct dataset, and that was due to the lower accuracy of
static activities, i.e., lying, sitting, and standing. This is in contrast with PAMAP2 dataset in which user
recognition was performed by placing sensors at different body positions and average user recognition
accuracy obtained at hand, chest, and ankle was 91.56%, 95.62%, and 97.84% respectively. This also
reveals useful information about the placement of sensors on the body. The ankle position was found
suitable for placing sensors for user recognition.

Although the currently implemented solution provides satisfactory results for smartphone and
wearable sensors, as future research work, exploring new substitutes of the proposed solution can be
beneficial in improving the accuracy. Other possible future work is to further improve user recognition
by incorporating a large number of activities such as complex and transitional activities to make a
generic framework. Similarly, in this work the datasets consist of smartphone sensors data considered
only one position for the smartphone, but in the future, a comprehensive smartphone dataset can
be considered which involves multiple body positions for smartphone placements. In this way,
position-aware user identification can be performed to improve the recognition results.
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