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An accurate carbon emissionsmap is of great significance for urban planning to

reduce carbon emissions, mitigate the heat island e�ect, and avoid the impact

of high temperatures on human health. However, little research has focused on

carbon emissions maps at the land patch level, which makes poor integration

with small and medium-sized urban planning based on land patches. In this

study, a vectorization method for spatial allocation of carbon emissions at the

land patch level was proposed. The vector maps and spatial autocorrelation of

carbon emissions in Zhangdian City, China were explored using multi-source

data. In addition, the di�erences between di�erent streets were analyzed,

and the carbon emissions ratio of the land patch was compared. The results

show that the vector carbon emissions map can help identify the key carbon

reduction land patches and the impact factors of carbon emissions. The

vector maps of Zhangdian City show that in 2021, the total carbon emissions

and carbon absorptions were 4.76 × 109kg and 4.28 × 106kg respectively.

Among them, industrial land accounted for 70.16% of carbon emissions,

mainly concentrated in three industrial towns. Forest land carbon absorption

accounted for 98.56%, mainly concentrated in the peripheral streets away

from urban areas. The Moran’s I of land patch level carbon emissions was

0.138, showing a significant positive spatial correlation. The proportion of

land patches is an important factor in determining carbon emissions, and

the adjustment of industrial structure is the most critical factor in reducing

carbon emissions. The results achieved can better help governments develop

di�erent carbon reduction strategies, mitigate the heat island e�ect, and

support low-carbon and health-oriented urban planning.

KEYWORDS

vectormaps, spatial autocorrelation, carbon emissions,multi-source data, land patch,

Zhangdian

Introduction

Urban planning is an important means to control carbon emissions. Urban planning

can improve energy efficiency, reduce carbon emissions, mitigate the heat island effect

and promote public health through rational allocation of land resources (1, 2). Studies

have shown that urban areas account for 76% of primary energy consumption, resulting
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in carbon emissions and ambient air pollution (3). Air pollution

is one of the most important causes of global human health

risks (4). In addition, urban planning can reduce energy carbon

emissions by 12% by adjusting land use structure (5). Compared

to a comfortable temperature of 23◦C, each 1◦C increase in

temperature was associated with a predicted 0.2% increase

in psychological stress (6). Therefore, urban planning is a

key technology for reducing carbon emissions and promoting

public health.

The carbon emissions map is an important basis for urban

planning to reduce carbon emissions. Urban planners can

intuitively obtain the characteristics of carbon emissions within

the research scope (7, 8), identify the hot and cold spots of

carbon emissions, and then formulate targeted low-carbon and

health-oriented urban planning scheme (9, 10). For example,

Guttikunda et al. mapped Madrid’s carbon emissions based

on a geographic information system, and analyzed the spatial

characteristics of carbon emissions, as well as the effects of

buildings numbers and population density (11). By mapping

carbon emissions, Oliveira found that urban planning elements

such as urban functional layout, development intensity, road

network density, public green space, and housing environment

affect the distribution and diffusion of energy consumption and

air pollutants, which in turn affect residents’ health (12). Zhang

et al. analyzed the spatial distribution of urban carbon emissions

by mapping land use carbon emissions and proposed a targeted

low-carbon urban planning strategy (8). Since carbon emissions

maps can be used as a scientific means to support low-carbon

healthy urban planning, there is a growing number of studies

focusing on the establishment of carbon emissions maps.

At present, the establishment of carbon emissions maps

mainly includes three methods: (1) Based on statistical data,

a comparative study of the spatial heterogeneity of different

administrative divisions is carried out at the macro level. For

example, the European Union’s Emissions Database for Global

Atmospheric Research (EDGAR) (13), Purdue University’s

Fossil Fuel Data Assimilation System (FFDAS) (14), China

High-Resolution Emission Database (CHRED) (15, 16). The

spatial resolution of the above databases is mainly 10km× 10km

grid, which is not suitable for spatial analysis of specific objects

due to the relatively coarse resolution (14). (2) The greenhouse

gas (GHG) inventory is assigned to a regular grid using gridded

data that approximate the location and intensity of human

activities, such as population (17), nighttime lighting (18),

and gross domestic product (GDP) [(19), Yang et al., 2021].

For example, the Carbon Dioxide Information Analysis Center

(CDIAC) used population density to classify emissions. The

results were shown as a 1◦× 1◦grid carbon emissions map (20).

Zhao et al. simulated the spatial distribution of global carbon

emissions with a resolution of 1 × 1 km through night light

data (21). Gao et al. integrated the data of population, GDP,

and night lighting, and constructed a spatial allocation grid

of carbon emissions of 10 × 10 km. The results showed that

the carbon emissions map generated by the spatial allocation

model constructed with the three kinds of data is closer to

the actual situation (22). However, since the resolution of a

gridded carbon emissions map is usually determined by the

resolution of grid allocation parameters, it lacks accuracy when

applied at the urban scale and is poorly combined with urban

planning (23, 24). For example, the industry is the main source

of carbon emissions, but large enterprises with high energy

consumption are generally located on the edge of cities, with

low population density and low night lighting intensity (25).

Therefore, it is difficult to identify high carbon emissions areas

only through the grid data of population and night lighting

(26). (3) Spatial allocation of carbon emissions by land use

type based on statistical yearbooks or greenhouse gas (GHG)

inventories, also known as vector carbon emissions map. Since

the vector carbon emissions map can maintain the accuracy

of carbon emissions estimation from administrative units to

land patches and can be better integrated with urban planning,

more and more scholars have explored how to establish vector

carbon emissions map. For example, Zhang et al. established

the corresponding relationship between GHG inventory and

different land use types and drew the vector map of land use

carbon emission according to the average carbon emissions

intensity of different land use types, which was used to guide

the low-carbon planning (8). Chuai et al. allocated carbon

emissions from industrial, commercial, and residential sectors

to different land use types according to different allocation

parameters of big data, and obtained the spatial distribution

of land use carbon emissions (27). Liu et al. divided the

carbon emissions in greenhouse gas (GHG) inventory into three

categories: points, lines, and areas, and created an algorithm

to decompose these emissions into basic objects to obtain

a vector carbon emissions map (28). These studies laid the

foundation for the establishment of a vector carbon emissions

map. However, the above-mentioned carbon emissions map

drawingmethodmay need to be improved in threemain aspects:

first, there are more studies on the scale of administrative

divisions, but less attention is paid to the basic unit of the land

patch, which makes the integration with small and medium-

sized urban planning with land patches as the basic unit

poor. Second, the vectorization method for spatial allocation

of carbon emissions at the land patch level has not yet been

established, which makes the results of these studies inaccurate

when applied at the land patch level, thus multi-source data can

be used to find detailed geographic objects as vector elements

for spatial allocation. Third, it is impossible to distinguish the

carbon emissions differences of detailed land use types within

cities, such as urban residential land, rural residential land,

commercial land, business land, etc., there is insufficient research

on the spatial autocorrelation of carbon emissions at the land

patch level.
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In view of the current gap, this study takes Zhangdian

City, China as an example, and uses multi-source data to

explore the vector map and spatial autocorrelation of carbon

emissions at the land patch level. The reliability and accuracy

of the research results are proved by comparison with other

research methods. Specifically, the main contributions of this

study are as follows. First, a vectorized method for spatial

allocation of carbon emissions at the land patch level is proposed

and a map of carbon emissions at the patch level including

detailed land use types is established, which complements

the existing research. In addition, this study also considers

the spatial autocorrelation of carbon emissions at the land

patch level, aiming to make an important contribution to

the existing literature. Overall, this study can provide new

theoretical and practical guidance for high-resolution carbon

emissions simulation, better serve the government to formulate

differentiated carbon emission reduction strategies and provide

support for low-carbon and health-oriented urban planning.

The study begins by emphasizing in the first section the

significance of establishing the vector carbon emissions map and

the knowledge gaps in the literature. The second section explains

the study area, research data, and methods. The third section

divided the findings into two parts: vector carbon emissions

map based on land patches and spatial autocorrelation of carbon

emissions. The fourth section further discusses the applications,

limitations, and further improvements of the results. The fifth

section presents the conclusions.

Materials and methods

Study area

Zhangdian (35◦ 55’-37◦ 17’ N, 117◦32’-118◦31’ E) is the

political, economic, and cultural center of Zibo city, located

in the east of China. At the end of 2021, Zhangdian covers

an area of 360 km². With a permanent population of 795,800

and an urbanization rate of 96%. It has jurisdiction over 13

streets, including Hutian Street, Nanding Town, Sibaoshan

Street, Fengshui Town, Fujia Town, Fangzhen Town, Stadium

Street, Mashang Street, Zhongbu Town, Peace Street, Park

Street, Station Street, and Keyuan Street. Among them, Nanding,

Sibaoshan, and Fengshui have a relatively solid industrial

foundation.Mashang is the core area with themost concentrated

population and activities in Zhangdian, and its economic level is

relatively high, while other areas have relatively low economic

and social capacity. Zhangdian has always been a typical

resource-based city with high energy consumption and high

carbon emissions, facing urgent demand and huge potential

for low-carbon transformation and development. Therefore,

choosing Zhangdian as the study area has certain typicality

(Figure 1).

Research data

The multi-source data used include (1) the 2021 Zibo

statistical yearbook that provides energy consumption and other

economic and social data on Zhangdian. (2) The point of interest

(POI) data of all industrial enterprises in Zhangdian were

obtained, totaling 2,421 items, including enterprise longitude

and latitude information, address name, enterprise name, and

enterprise type, which were obtained from the Baidu Map

platform with high accuracy and effectiveness. (3) Road system

data. The area and length data of different grade roads in

Zhangdian were obtained. (4) Land use type data. The land use

data of Zhangdian were obtained, including urban residential

land, rural residential land, commercial land, industrial land,

road, green land, water, arable land, etc., which were provided

by Zibo Natural Resources and Planning Bureau. (5) Buildings

data. The number of building floors, building area, and building

types on all kinds of land was obtained (Table 1).

Methods

The 2021 Zibo statistical yearbook provides energy

consumption data. First, energy consumption is allocated to

different types of land patches based on different influencing

factors (29, 30). Second, carbon emissions are calculated by

the carbon emissions factor method (31). Third, Mapping the

vector carbon emissions and absorption maps. Finally, spatial

patterns are analyzed by spatial autocorrelation.

Vectorization methods for spatial allocation of
carbon emissions

Industrial emissions allocation method

In this study, according to different allocation methods,

carbon emissions are mainly divided into three major categories:

industrial, road traffic, and other types of carbon emissions

(agricultural, residential and commercial carbon emissions,

etc.). Carbon absorption mainly refers to ecological carbon

absorption. In the 2021 Zibo Statistical Yearbook, enterprises

energy consumption is calculated separately according to

different industries, which is quite different from other

energy consumption (32, 33). In this study, POI information

of all enterprises was obtained through the Baidu Map

platform. These POI points, with precise latitude and longitude

coordinates and enterprise names, can be used as basic objects

for space allocation (34). Based on the energy consumption data

of different industries and the number of enterprises in different

industries provided in the 2021 Zibo statistical yearbook, the

weight is calculated and allocated to different enterprises (27,

35). Among them, the energy consumption data of different

industries contains the sum of the static energy consumption
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FIGURE 1

Location of the area of this study.

TABLE 1 Data sources and description.

Name Description Sources

Industrial POI data Industrial storage land patch spatial location dataset Baidu map

Road systems of Zhangdian Vector data of road traffic system Department of transportation

Land use map of Zhangdian in 2021 Vector map of different land use types Natural resources bureau

Urban population data Population of urban residential lands Public security bureau

Rural population data Population of rural residential lands Public security bureau

Residential land data Area, location, perimeter, green, and function Natural resources bureau

Agricultural planting area Area, location, type, etc. of agricultural planting Natural resources bureau

Architecture data Building outline contains name, number, height, area, perimeter, and floor information Construction bureau

Electricity consumption data Electricity consumption of Zhangdian Statistics bureau

of enterprises. Some enterprises generate energy consumption

in industrial production process, but it is ignored because

the number of such enterprises is small. Overall, the energy

consumption data of different industries can represent industrial

carbon emissions to some extent. The formula of industrial

emissions allocation is shown in Equation (1).

Cij = Cej ×
Eij

Ej
(1)

Where Cij is the carbon emissions of enterprise i of industry

j, Cej is the total carbon emissions of industry j. Eij is the energy

consumption of enterprise i of industry j, Ej is the total energy

consumption of industry j.

Cej = AD × EF (2)

Where Cej is carbon emissions (kg), AD is electricity

consumption (kW h), EF is carbon emissions coefficient

(CO2/kW h). On the one hand, in the 2021 Zibo statistical

yearbook, energy consumption is uniformly converted into

electricity energy consumption (kW H), such as industrial

energy consumption, transportation energy consumption,

residential energy consumption, etc., which can easily
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TABLE 2 The reference value of the tra�c flow of each grade of the road.

Road grade Regional road Urban road Rural road

Traffic flow (Standard vehicles per hour) 4,500 2,067 500

TABLE 3 Carbon absorption coe�cient of land use (tCO2/hm
2.a).

Type Forest land Grassland Water Unused land

Coefficient of carbon absorption 0.6125 0.0205 0.0253 0.005

compare the differences in energy consumption of different

departments. Therefore, the carbon emission coefficient of

energy consumption is consistent. On the other hand, there is

no separate carbon emission coefficient of power consumption

in Zhangdian. This study obtains the data from the China

Energy Statistical Yearbook, which can reflect the local situation

to a certain extent. Therefore, AD is the electricity consumption

provided by the 2021 Zibo statistical yearbook. EF is quoted

from the China Energy Statistical Yearbook, and the value is

1.246 kg CO2/kW h.

Road tra�c emissions allocation method

The road traffic carbon emissions mainly depend on the

driving distance and the number of vehicles (36, 37). Among

them, the driving distance depends on the length of the road.

The number of vehicles depends on the traffic flow, and the

traffic flow depends on the road grade (28). This study divides

roads into the regional road, the urban road, and the rural road.

The traffic flow of the road is calculated according to the average

value, as shown in Table 2.

Firstly, according to the traffic flow and road area of different

roads, the carbon emissions ratio of different roads is calculated.

Secondly, the carbon emissions of each grade road are assigned

to each section according to the weight of the road area (38–

40). The formulas of road traffic carbon emissions allocation are

shown in Equation (3) and Equation (4).

Cij = C × βj ×
Sij

Sj
(3)

Where Cij is the carbon emissions of segment i of the road

grade j, C is the total carbon emissions of the road system, Sij is

the area of segment i of the road grade j, Sj is the total area of

the road grade j, βj is the proportion of carbon emissions in total

traffic emissions of grade j.

βj =
Qj × Sj

∑n
j=1

(

Qj × Sj
) , (n = 3) (4)

Where Sj is the total area of the road grade j, Qj is the traffic

flow of the road grade j.

Other emissions allocation method

Agriculture, residential and commercial carbon emissions

account for a relatively high proportion, and the spatial

distribution is relatively concentrated, with good continuity,

and the calculation method is relatively consistent. Therefore,

agricultural, residential, and commercial carbon emissions were

defined as other types of carbon emissions (28). In this study,

other types of carbon emissions were allocated to arable land,

urban residential land, rural residential land, commercial land,

and other land patches by building type, building area, land use

area, and other parameters.

Agricultural activities carbon emissions include rice,

fertilizer use, intestinal fermentation, and manure management.

The agricultural carbon emissions in this study were obtained

through the agricultural carbon emissions coefficient and

agricultural planting area (41, 42). The formula of agricultural

activities carbon emissions allocation is shown in Equation (5).

Ci = Ce × Ai (5)

Where Ci is the carbon emissions of land patch i of arable

land, Ce is the carbon emissions coefficient of arable land, Ai is

the area of land patch i of arable land.

Residential and commercial sectors carbon emissions were

allocated in similar ways. Taking urban residential land as

an example, the energy consumption of urban residents was

obtained according to the 2021 Zibo statistical yearbook and

then allocated to each residential land based on the buildings

area (2, 43, 44). Among them, the energy consumption of urban

residential land mainly includes buildings, transportation, waste

treatment, etc. Among them, energy consumption accounts for

the largest proportion (30). The actual energy consumption

includes central heating, electricity, water, and gas, which is

mainly used for heating, cooling, lighting, equipment, etc.

Electricity consumption and natural gas consumption are

the main source of carbon emissions, of which electricity

consumption accounts for more than 95 %, while the natural

gas consumption is generally within 1 % (45). Many urban

lands such as commercial land does not even use natural

gas consumption. Other land types, such as rural residential

land, commercial land, etc., were calculated using the same
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method. Therefore, the residential and commercial sectors

carbon emissions can be mainly characterized by electricity

consumption carbon emissions. The carbon emissions of each

land use type were assigned to the corresponding land patches

based on the weight of the buildings area or land area. The

formula of residential and commercial sectors carbon emissions

allocation is shown in Equation (6).

Ci = C ×
Si

∑

Si
(6)

Where Ci is the carbon emissions of land patch i of urban

residential land, rural residential land, commercial land, etc. C

is the total carbon emissions of urban residential land, rural

residential land, commercial land, etc. Si is the area of land

patch i.

Ecological absorption allocation method

The carbon absorption system includes forest land,

grassland, unused land, and water. Different land types have

different carbon absorption coefficients (46). Among them, the

carbon absorption coefficients are determined according to the

IPCC (47) (Table 3), while the area of different land types is

determined according to the 2021 Zibo statistical yearbook and

Zhangdian territorial space planning.

The formula of carbon absorption is shown in Equation (7).

Ci = Cei × Ai (7)

Where Ci is the carbon absorption of land patch i, Cei is the

carbon absorption coefficient of land patch i. Ai is the area of

land patch i. Among them, Ce is quoted from the IPCC.

Mapping land patch level carbon emissions and
absorption based on GIS

In the process of drawing the vector carbon emissions

map, the carbon source vector database is firstly established on

GIS as the basis of carbon emissions allocation. As shown in

Figure 2, the database is divided into four parts: industrial, road

traffic, other types of carbon emissions, and ecological carbon

absorption. Then, using the vectorization method of carbon

emissions spatial allocation, carbon emissions are spatially-

allocated to three basic objects: industry, road, and other land

patches. All data are converted to vector data and adjusted to

the same coordinate. Table 4 shows the detailed allocation results

based on 33,232 land patches in Zhangdian.

Spatial autocorrelation of carbon emissions

Global spatial autocorrelation analysis method

Spatial autocorrelation can explore the spatial distribution

law of carbon emissions, and analyze the spatial correlation

degree between a certain attribute value of a land patch

and its surrounding land patches in the study area, as well

as the statistical distribution law of land patches and the

interdependence between data. It is of great significance for

spatial correlation analysis of carbon emissions at the land patch

level. Therefore, its applications are more and more extensive,

represented by global Moran’s I (48, 49). Moran’s I is mainly

used to test whether there are similarities or differences between

neighboring areas in the whole region (49). The value of Moran’s

I is distributed between [−1, 1] (50). Moran’s I >0 indicates a

positive correlation, which refers to the agglomeration of high

value and high value or low value and low value. The closer the

value is to 1, the stronger the agglomeration degree is. Moran’s

I <0 indicates a negative correlation, which means that the high

value is adjacent to the low value or the low value is adjacent to

the high value. The closer it is to −1, the greater the difference.

Moran’s I is equal to 0, indicating no correlation (51, 52). The

formula of Moran’s I is shown in Equation (8).

I =
n

∑n
i=1

∑n
j=1 wij (xi − x̄)

∑n
i=1

∑n
j=1 wij (xi − x̄)2

(8)

Where n represents the total number of land patches within

the study area,wij is the spatial weight, xi is the variable observed

in patch i, xj is the variable observed in patch j, x is the mean of

the observed value.

Moran’s I is meaningful only after the significance test.

Significance levels in this study were determined by p-value

tests of standardized z-values (53, 54). The formulas of the

significance test are as follows:

Z =
Moran′s I− E(I)

√
VAR(I)

(9)

E (I) = −
1

n− 1
(10)

VAR (I) =
n2w1 + nw2 + 3w2

0

w2
0(n

2 − 1)
(11)

w0 =
∑n

i=1

∑n

j=1
wij (12)

w1 =
1

2

∑n

i=1

∑n

j=1
(wi + wj)

2 (13)

w2 =
∑n

i=1

∑n

j=1

(

wi + wj
)2

(14)

Where E (I) represents the expected value of Moran’s I.

wi and wj represents the sum of row i and column j in the

spatial weight matrix respectively. If the Z value is >1.96,

it indicates that there is a positive spatial autocorrelation at

the significance level of 5%, which is manifested as high-

value or low-value congeneric clustering. If the Z value is

<-1.96, it indicates that there is a negative spatial correlation

at the significance level of 5%, which indicates high-value

and low-value heterogeneous clustering (55, 56). In other

cases, it indicates that the attribute characteristics do not have

correlation and are randomly distributed.
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FIGURE 2

The process of mapping land patch level carbon emissions.

TABLE 4 The detailed allocation results of 33,232 land patches in Zhangdian.

Sources of carbon emissions/absorption Basic objects Corresponding land use types

Manufacturing industries 2,421 points of different industries Industrial land (IL)

Traffic emissions Road system Street and transportation land (STL)

Railway emissions Railway line Railway land (RL)

Rural residents life electricity consumption 2,536 land patches Rural residential land (RRL)

Urban residents life electricity consumption 1,063 land patches Urban residential land (URL)

Public service and management organization 377 land patches Administrative office land (AOL)

572 land patches Science, education, culture and hospital land (SECHL)

Commerce 2,199 land patches Commercial land (CL)

Warehousing and postal services 770 land patches Storage land (SL)

Other activities 1,285 land patches Other land (OL)

Agricultural activities 4,975 land patches Arable land (AL)

Tree activities 6,556 land patches Forest land (FL)

Orchard activities 2,138 land patches Garden land (GAL)

Grass activities 975 land patches Grassland (GSL)

Green space activities 430 land patches Greenland (GEL)

Water activities 984 land patches Water (W)

Local spatial autocorrelation analysis method

The global spatial autocorrelation studies the correlation

within the entire spatial system. However, in the study area,

local land patches may be randomly distributed even if there is

a global correlation (57). The limitation of Moran’s I is that if

there is a positive correlation between carbon emissions in some

regions and a negative correlation in the other region, the two

may offset each other and reduce Moran’s I. The local spatial

autocorrelation analysis, also known as LISA (Local Indicators

of Spatial Association), can test whether there are similar or
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FIGURE 3

Four quadrants of the Moran scatter plot.

different clusters between local areas and surrounding areas by

observing the unstable characteristics of local space (58). On the

one hand, the LISA deeply reflects the internal characteristics

of global autocorrelation, on the other hand, it shows which

regions are similar and which regions are different from

each other. It identifies different spatial association patterns

in different local spaces in the whole world. Specific analysis

can be carried out on high-value agglomeration regions, low-

value agglomeration regions, and high-low-value heterogeneous

agglomeration regions (59). Studies have shown that the local

space autocorrelation analysis is generally analyzed by Moran

scatter plot, LISA clustering, and Getis-Ord Gi∗ statistics (60).
Moran scatter plot. The Moran scatter plot is a two-

dimensional diagram that truly presents the spatial distribution

of the research object (61). In the Cartesian rectangular

coordinate system, the coordinate map is drawn with the

observation vector as the horizontal axis and the weighted

average of the values of the adjacent areas of the observation

values as the vertical axis. The Moran scatter plot includes four

quadrants, each representing four local spatial agglomeration

modes between spatial units and their adjacent units. Among

them, the units in the first quadrant and the third quadrant are

positively correlated with their surrounding unit space, and the

regions where they are located are homogeneous, while the units

in the second quadrant and the fourth quadrant are negatively

correlated with their surrounding unit space, and the regional

heterogeneity is prominent (62) (Figure 3).

LISA clustering. LISA clustering can be used to measure the

degree of spatial agglomeration between the attribute values of

each land patch and its surrounding land patches, and it will

clearly show the distribution characteristics of all land patches

(63). Through the LISA clustering, the type of each land patch

can be counted, and then the relationship between each land

patch and the surrounding land patches can be determined.

Results

Vector carbon emissions and absorption
map based on land patches

The spatial distribution of carbon emissions from land use

after allocation is displayed through the GIS framework, and

a visual map is generated. The total annual carbon emissions

of each land patch in Zhangdian are shown in Figure 4,

and the carbon emissions are distributed between 3.85 and

3.00 × 107 kg, showing a large range of changes. In 2021,

the total carbon emissions of Zhangdian are 4.76 × 109

kg, of which the area of industrial land only accounts for

13.8% of the land area, but the carbon emissions intensity is

much higher than that of other types of land, accounting for

70.16% of the overall carbon emissions, which is the main

source of carbon emissions. Additionally, the urban residential

land carbon emissions account for 7.67%, commercial service

facilities land carbon emissions account for 4.98%, other land

carbon emissions account for 4.85%, science, education, culture

and health land carbon emissions account for 4.48%, public

service and management organization land carbon emissions

account for 3.41%, and other emissions sources account for a

relatively low proportion.

The spatial distribution of carbon emissions shows an

obvious imbalance. As can be seen from the map of the red

area, areas of high carbon emissions are mainly concentrated

in the east and north of the study area, including Sibaoshan,

Hutian, and Fengshui. On the one hand, the industrial land

in these three regions is relatively concentrated. On the other

hand, the carbon emissions of industrial energy consumption

are much higher than that of other land use types and even

much higher than that of core urban areas where population

and human activities are most concentrated, which is the main

source of carbon emissions. From the green area of the map,

it can be seen that the low-carbon emissions areas are mainly

distributed in Zhongbu, Fujia, and Fangzhen on the periphery

of the study area, which has relatively more rural residential land

(Figure 4).

From the perspective of carbon absorption, the spatial

distribution of carbon absorption from land use after allocation

is displayed through the GIS framework, and a visual map

is generated. The total annual carbon absorption of each

patch in Zhangdian is shown in Figure 5, and the carbon

absorption is distributed between 0.03 and 2.00 × 104 kg,

with a relatively small variation range. The total carbon

absorptions of Zhangdian are 4.28 × 106 kg in 2021,

of which the carbon absorption of forest land accounts

for 98.56%, which is the main land use type of carbon
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FIGURE 4

Carbon emissions map of Zhangdian.

absorption in Zhangdian. Other land use types have smaller

carbon uptake.

The spatial distribution of carbon absorption also showed

an obvious imbalance. As can be seen from the map of the red

area, the high carbon absorption areas are mainly concentrated

in Sibaoshan street, Zhongbu, Hutian, and Fengshui in the

east of the study area, as well as Fangzhen, Mashang, and

Fujia in the West. On the one hand, the area of the seven

streets is large. On the other hand, the seven streets are mainly

located at the edge of the core urban area, with large areas

of forest land, garden land, and other land, and the overall

carbon absorption level is relatively high. As can be seen from

the green area of the map, low-carbon absorption areas are

mainly distributed near the core urban areas where population

and human activities are most concentrated, as well as the

parks, road greening, and water system within the core urban

areas, including Keyuan, Park, Peace, Station, and Stadium

(Figure 5).

Spatial autocorrelation of carbon
emissions

Global spatial autocorrelation

When analyzing the global spatial autocorrelation, both the

carbon emission land use type and the carbon absorption land

use type are regarded as the carbon emission land use type, and

the carbon emission value of the carbon absorption land use

type is regarded as a negative number to ensure the uniformity

and reliability of the results. As can be seen from Table 5,

the results showed that the land patch level global Moran’ I

was 0.138, with the Mean was 0.0000. The P < 0.01 indicated

that they had passed the significance test at the 1% level, and

the Z value >1.96 indicated that they had passed the Z test.

The results showed that carbon emissions in Zhangdian had

a significant positive correlation, which conformed to the first

law of geography. In other words, with the increasing distance

between two land patches, the degree of correlation between
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FIGURE 5

Carbon absorption map of Zhangdian.

TABLE 5 The global Moran’ I of land patch level carbon emissions.

Moran’ I Mean Standard error z-value P-value

0.138 0.0000 0.00146 76.92 0.002

them gradually decreases, while with the further increase of the

distance between two land patches, they no longer correlate with

each other, showing the characteristics of random distribution.

Local spatial autocorrelation

The global spatial autocorrelation can only analyze the

correlation of carbon emissions on the whole. In this study,

Moran scatter plot and LISA clustering were calculated by

GeoDa software to further analyze the distribution rules

of carbon emissions from land use in different regions

in Zhangdian.

As can be seen from Table 6, excluding Not Significant and

Neighborless types, the distribution of land use carbon emissions

in Zhangdian is not evenly distributed in the four quadrants.

Among them, the number of “High-High” land patches is 2,342,

accounting for 7.05% of all land patches in Zhangdian. The

number of “Low-High” land patches was 1,184, accounting for

3.56%. The number of “Low-Low” land patches was 5,692,

accounting for 17.13%. The number of “High-Low” land patches

was 2,190, accounting for 6.59%.

The Getis-Ord Gi∗ statistics is consistent with the principle

of LISA clustering, but the scope is more accurate. This tool

is used to identify spatial clusters of statistically significant

high values (hot spots) and low values (cold spots). In effect,

it indicates whether the observed spatial clustering of high

or low values is more pronounced than we would expect

from a random distribution of these same values. It can

be seen from Figure 6 that the red areas are “High-High”

agglomeration areas, mainly the core urban area with the most

concentrated population and activities and the surrounding
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TABLE 6 Quadrants distribution statistics of land patch carbon emissions in Zhangdian.

High-high Low-high Low-low High-low Not significant Neighborless

Number Ratio Number Ratio Number Ratio Number Ratio Number Ratio Number Ratio

2,342 7.05% 1,184 3.56% 5,692 17.13% 2,190 6.59% 21,820 65.66% 4 0.01%

industrial land, including Sibaoshan, Keyuan, Stadium, Peace,

Park, Station, Nanding, Mashang, and Hutian. The area

with the concentration of forest land and grassland showed

the characteristics of “Low-Low” agglomeration, including

Fangzhen, Zhongbu, Fengshui, and Sibaoshan. The orange-red

areas are the “High-Low” agglomeration areas, mainly around

the “High-High” agglomeration areas, which are consistent with

the spatial distribution of the “High-High” agglomeration areas.

The light-blue areas are the “Low-High” agglomeration areas,

mainly around the “Low-Low” agglomeration areas, which

are consistent with the spatial distribution of the “Low-Low”

agglomeration areas. These two types showed the characteristics

of “High-Low” or “Low-High” agglomeration due to the lack

of dominant function of regional land use. This indicates that

there is a spatial diffusion or radiation effect between the “High-

Low” agglomeration area of land patches carbon emissions and

the surrounding land patches, whichmakes the spatial difference

between the two areas smaller and smaller. Additionally, there

are certain similarities between adjacent patches. From the

distribution and changes of colors shown in Figure 6, it can

be seen that the carbon emissions of neighboring land patches

are mostly distributed in the same range, showing a certain

regional agglomeration.

Comparison with other method

Taking Stadium in Zhangdian as an example, the mapping

results of this study are compared with another research method

(27). All maps are based on the same total energy consumption

data from the 2021 Zibo statistical yearbook. The detailed

differences between the two methods are shown in Table 7. This

comparison shows that the estimation results obtained by this

study are more accurate at the land patch level and can better

support urban planning at the medium and micro scale.

The allocation results of each method are shown in

Figure 7. Overall, both maps show a similar spatial distribution

of high carbon emissions in the north and southeast and

low carbon emissions in the middle and east to some

extent. This may have something to do with a large amount

of industrial land in the southeast and north. However,

compared with the grid map shown in Figure 7A, the

vector carbon emissions map in this study provides carbon

emissions of land patches with clear geographical locations

and boundaries, which can provide more intuitive support

for urban planning. The main difference between Figures 7A,B

lies in the clear location and scale of high-carbon emissions

land patches in the southeast region, which happens to be

the industrial land in the region. Through actual investigation,

it is found that these land patches have higher energy

consumption and carbon emissions, which is more consistent

with the results of our method. This comparison shows that

the estimation results obtained by this method are more

accurate at the land patch level. In conclusion, different from

previous allocation methods, the method proposed in this

study considers the influencing factors of different types of

carbon emissions which can make the mapping result more

consistent with the actual situation. It can better identify

the difference in carbon emissions of specific land use

types and estimate the carbon emissions of each land patch

more accurately.

Discussion

Applications

In recent years, how to accurately allocate and visualize

the overall carbon emissions of each land patch has always

been a concern (Yang et al., 2021), which plays an important

role in guiding urban carbon emissions reduction policies

and low-carbon planning (64). Taking Zhangdian as an

example, the specific application is reflected in the following

two aspects. On the one hand, the carbon emissions of

administrative units such as streets, towns, and villages can

be calculated without losing accuracy. By determining the key

carbon emissions administrative regions, the carbon emissions

reduction targets are divided into basic administrative units.

Figure 8 shows the total carbon emissions of 13 streets in

Zhangdian. Sibaoshan has the highest carbon emission in 2021,

with carbon emissions of 1.25 × 109 kg, which is significantly

higher than that of other streets, followed by Hutian with a

carbon emission of 6.71 × 108 kg. Peace has the lowest carbon

emissions, with carbon emissions of 6.37× 107 kg. The carbon

emissions from high to low is Sibaoshan, Hutian, Fengshui,

Nanding, Fujia, Fangzhen, Stadium, Mashang, Zhongbu, Park,

Station, Keyuan, and Peace. Additionally, it is found that the

two towns with high carbon emissions are also important

industrial towns in Zhangdian. These towns are the focus of

Zhangdian to reduce carbon emissions by adjusting industrial

structure or improving energy efficiency. Depending on the
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FIGURE 6

The Getis-Ord Gi* statistics of land patch level carbon emissions.

TABLE 7 Detailed di�erences of the two carbon emissions mapping methods.

Method Allocation weight Carbon

emissions from

roads

Carbon absorption Basic unit Land use type Source

(a) Energy consumption data, population,

building area, industry categories, etc.

No No 300× 300m 4 (29)

(b) Energy consumption data, land area,

population, building area, road area,

road length, traffic flow, industry

categories, etc.

Yes Yes Land patches 16 This study

proportion of carbon emissions, they should be responsible for

about 60% of the overall carbon emissions reduction target

of Zhangdian.

Figure 9 shows the total carbon absorption of 13 streets

in Zhangdian. In 2021, Sibaoshan had the highest carbon

absorption, with 1.54 × 106 kg. The second is Fangzhen, with
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FIGURE 7

Comparison of the carbon emissions mapping results with other method. (A) Gridded carbon emissions map with 300 × 300m. (B) Vector

carbon emissions map of this study.

a carbon absorption of 6.60 × 105 kg. Peace has the smallest

carbon absorption, with a carbon absorption of 3.68 × 102 kg.

The carbon absorption from high to low is Sibaoshan, Fangzhen,

Fengshui, Hutian, Zhongbu, Fujia, Nanding, Mashang, Stadium,

Station, Keyuan, Park, and Peace. Additionally, it was found

that the two towns with higher carbon absorption were

also important forest land reserves in Zhangdian. However,

compared with Sibaoshan, Fangzhen has a lower vegetation

coverage rate, the highest net emissions, and the highest

environmental pressure. Therefore, specific measures must be

seriously considered and implemented.

On the other hand, the characteristics of carbon emissions of

different land use types in different streets can be compared, and

further targeted urban planning suggestions can be put forward.

According to Figure 10, Fengshui has the highest proportion

of industrial carbon emissions, accounting for 89.14%, far

higher than the average level of 70.16% in Zhangdian. The top

five streets with the highest proportion of industrial carbon

emissions include Sibaoshan, Hutian, Fengshui, Nanding, and

Fujia, account for 83.56, 70.53, 89.14, 78.67, and 77.87%

respectively, both higher than the average level of Zhangdian.

The streets with low carbon emissions, such as Stadium, Station,

Keyuan, Park, and Peace, accounting for relatively low industrial

carbon emissions, which are 51.25, 29.37, 11.48, 16.21, and

0.81% respectively, lower than the average level of Zhangdian.

These streets are in the core urban areas with the most

concentrated population and activities, and the proportion of

buildings carbon emissions such as residential buildings and

commercial buildings are relatively high. Specifically, among

the carbon emissions of different land use types in the 13

streets of Zhangdian, Mashang has the highest proportion of

urban residential land (URL) carbon emissions, accounting for

26.98%, and Fengshui has the highest proportion of industrial

land (IL) carbon emissions, accounting for 89.14%, Peace has

the highest proportion of administrative office land (AOL)

carbon emissions, accounting for 31.57%, Park has the highest

proportion of science, education, culture and hospital land

(SECHL) carbon emissions, accounting for 23.61%, Keyuan

has the highest proportion of commercial land (CL) carbon

emissions, accounting for 21.96%, Stadium has the highest

proportion of storage land (SL) carbon emissions, accounting

for 3.02%, and Fangzhen has the highest proportion of street
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FIGURE 8

Carbon emissions of subdistricts in Zhangdian.

and transportation land (STL) carbon emissions and Other land

(OL) carbon emissions, The proportion is 2.17 and 11.02%

respectively. Railway land (RL) carbon emissions in Keyuan is

the highest, accounting for 16.67%. The proportion of other land

types is relatively low, <1%.

Specific planning suggestions include: first, increasing

vegetation coverage is not only the need to reduce carbon

emissions but also the need to improve the living environment.

Studies have confirmed that the concentration of pollutants such

as carbon emissions has a strong positive correlation with the

morbidity and mortality of respiratory diseases, cardiovascular

and cerebrovascular diseases (65). Therefore, it is suggested that

in the urban centers, such as Stadium Street, Peace Street, Park

Street, Station Street, and Keyuan Street, the huge contradiction

between the demand for artificial land and vegetation land

should be fully considered, and carbon emissions can be

absorbed and the pollutant concentration reduced by increasing

the roof greening, while in the suburbs, such as Hutian Street,

Nanding Town, and Sibaoshan Street, carbon absorption can

be improved by increasing the area of vegetation (66, 67).

Second, effective physical activity is one of the important ways

to prevent and reduce chronic diseases. Walking can not only

reduce traffic carbon emissions but also reduce the incidence of

chronic diseases and dependence on drug control. Low-carbon

and health-oriented urban planning should consider physical

environments that are suitable for walking, cycling, and physical

exercise, and ensure that physical exercise, walking and cycling

are easily accessible to all households by encouraging people

to spend more time outdoors by adding more comfortable

pedestrian-level open Spaces (68, 69). Taking the planning of

Jinjing Avenue in Heping Street as an example, the low-carbon

and health-oriented urban planning redesigns the backward

space of the building, integrates green space, slow walking space

and bicycle path, and forms a high-quality traffic space with

pleasant scale, which promotes more physical activity, so as to

prevent and reduce diseases (Figure 11).

Third, the concentration of pollutants such as carbon

emissions in cities has important effects on respiratory diseases.

Low-carbon and health-oriented urban planning can affect the

concentration and spatial distribution of pollutants and have

certain effects on respiratory health results by adjusting the built

environment factors, such as optimizing the layout of industrial

land and residential land, controlling the building form,

developing ventilation paths, etc. (70, 71). In Zhangdian, low-

carbon and health-oriented urban planning shouldmake full use

of green space, follow the dominant wind direction, and create
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FIGURE 9

Carbon absorption of subdistricts in Zhangdian.

a multi-level ventilation corridor system. In the ventilation

corridor area, green Spaces such as water system, park and

woodland should be strictly protected, and the construction

scale should be strictly controlled, especially the construction

increment of the main air inlet, and the control of building

height, building spacing and density should be strengthened. In

addition, the design should also focus on areas with low wind

speed, strong heat island and pollution prone agglomeration

to further reduce urban carbon emissions. Fourth, industries

need to be removed from areas with high population density

(72). Peace, Stadium, Station, and Park are the core urban areas

of Zhangdian. Since the proportion of industrial land is much

lower than in Sibaoshan, carbon emissions are significantly

lower and the pressure of carbon emissions reduction is also

relatively lower. Hutian and Sibaoshan have similar proportions

of industrial land, while Sibaoshan has higher vegetation

coverage and lower population density. Therefore, differentiated

carbon reduction strategies need to be proposed. Overall, the

adjustment of industrial structure is undoubtedly the most

critical factor to reduce carbon emissions, improve the living

environment, and promote the public’s physical and mental

health (73, 74). As for the other streets, although most industrial

lands are distributed in these zones, they are far from the core

urban areas and have a higher coverage of vegetation, resulting

in relatively low environmental pressures compared to other

areas (75). Therefore, each street should take differentiated

measures according to the characteristics of the region and the

main problems faced.

Furthermore, the vector carbon emissions map can provide

the carbon emissions of each land patch and the impact factors of

carbon emissions. This is important for low-carbon and health-

oriented urban planning because the map can visualize how and

why the function, form, density, and other indicators of existing

land patches affect carbon emissions and public health. Studies

have proved that land use type, building density, and floor area

ratio have important effects on carbon emissions and public

health (76–79). However, the quantitative relationship between

them and the underlying mechanism remains unclear (80). The

vector carbon emissions map provides sufficient data to further

study the relationship between carbon emissions and land use

characteristics (64). These data can also provide additional

support for urban planning to achieve carbon reduction through

land patch control.

Limitations and further improvements

Uncertainties and shortcomings also exist. Firstly, there

may be a certain position deviation when the industrial POI
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FIGURE 10

Carbon emissions ratio of land patch in di�erent streets of Zhangdian.

point or road system corresponds to the relevant land patches.

Secondly, when allocating carbon emissions from residential and

commercial sectors, this study assumes that all floors of the

same type of land use are in use, and the energy consumption

level of the same type of building is the same, which may be

in some contrast with reality. Thirdly, the carbon emissions

of Zhangdian are calculated according to the proportion of

energy consumption in Zhangdian in the 2021 Zibo statistical

yearbook, which may lead to some deviations. Finally, the

calculation of carbon emissions is mainly based on the 2021

Zibo statistical yearbook, which only includes carbon emissions

from energy consumption. According to the IPCC, carbon

sources also include emissions from industrial processes, waste

disposal, land-use change, and forestry change. Therefore, the

total carbon emissions considered in this study may be slightly

lower than the actual value.

Overall, our study significantly improves spatial resolution

compared to previous studies. However, accuracy still needs to

be improved, which will involve large-scale field investigations

in the future. Future research should also update the basic big

data related to the spatial distribution of carbon emissions, and

gradually build the time series of emissions maps to provide

greater support for the research on the spatial distribution of

carbon emissions and policy implementation. At the same time,

all land use types of the whole region need to be considered,

with special attention to the detailed land use types of urban

areas containing major human activities, which requires more

accurate parameters and allocation algorithms.
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FIGURE 11

Low-carbon and health-oriented Jinjing Avenue design scheme.

Conclusions

In this study, the vector maps and spatial autocorrelation of

carbon emissions at the land patch level in Zhangdian, China

were explored using multi-source data. The conclusions are

as follows.

(1) The vector carbon emissions map drawn by this method

can accurately identify key emissions areas. In 2021, the

total carbon emissions of Zhangdian are 4.76 × 109 kg,

among which industrial land carbon emissions accounted for

70.16%, mainly distributed in the east and north of the study

area, including Sibaoshan, Hutian, and Fengshui. In 2021, the

total carbon absorption of Zhangdian is 4.28× 106 kg, among

which forest land carbon absorption accounted for 98.56%,

mainly distributed in Sibaoshan street, Zhongbu, Hutian, and

Fengshui in the east of the study area, as well as Fangzhen,

Mashang, and Fujia in the West.

(2) The results show that the Moran’ I of carbon emissions at

the land patch level is 0.138, which is a significant positive

correlation. Among them, the number of “High-High” land

patches is 2342, accounting for 7.05% of all land patches in

Zhangdian. The number of “Low-High” land patches was

1,184, accounting for 3.56%. The number of “Low-Low” land

patches was 5,692, accounting for 17.13%. The number of

“High-Low” land patches was 2190, accounting for 6.59%.

(3) Sibaoshan has the highest carbon emissions in 2021, with

carbon emissions of 1.25 × 109 kg, which is significantly

higher than that of other streets, followed by Hutian with

carbon emissions of 6.71 × 108 kg. Peace has the lowest

carbon emissions, with carbon emissions of 6.37× 107kg.

The carbon emissions from high to low is Sibaoshan,

Hutian, Fengshui, Nanding, Fujia, Fangzhen, Stadium,

Mashang, Zhongbu, Park, Station, Keyuan, and Peace. In

2021, Sibaoshan had the highest carbon absorption, with

1.54 × 106kg. The second is Fangzhen, with a carbon

absorption of 6.6 × 105kg. The Peace has the smallest

carbon absorption, with a carbon absorption of 3.68 × 102

kg. The carbon absorption from high to low is Sibaoshan,

Fangzhen, Fengshui, Hutian, Zhongbu, Fujia, Nanding,

Mashang, Stadium, Station, Keyuan, Park, and Peace.

(4) This method can better identify the differences of high carbon

emission land use types in different regions. URL carbon

emissions of Mashang is the highest, accounting for 26.98%.

IL carbon emissions in Fengshui is the highest, accounting for

89.14%; AOL of Peace is the highest, accounting for 31.57%.

SECHL carbon emissions of Park is the highest, accounting

for 23.61%. CL carbon emissions of Keyuan is the highest,

accounting for 21.96%. SL carbon emissions of Stadium is

the highest, accounting for 3.02%. STL carbon emissions and

OL carbon emissions in Fangzhen are the highest, accounting

for 2.17 and 11.02%, respectively. RL carbon emissions in
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Keyuan are the highest, accounting for 16.67%. In other land

use types, carbon emissions are relatively low, accounting

for <1%.

The results of this study can provide valuable guidance for

emissions reduction policies and low-carbon healthy urban

planning. For city managers, the carbon emissions of each

administrative unit can be calculated according to the map to

identify key areas for carbon reduction. For urban planners, it

can provide additional support for urban planning to achieve

carbon reduction and public health.
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