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ABSTRACT
Colorectal cancer is one of the most commonmalignancies and is the second leading cause of cancer death
worldwide. Generally, there are three categories of colorectal cancer development mechanism—genetic,
epigenetic and aberrant immunological signaling pathways—all of which may be initiated by an imbalanced
gut microbiota. Epigenetic modifications enable host cells to change gene expression without modifying the
gene sequence.Themicrobiota can interact with the host genome dynamically through the interface
presented by epigenetic modifications. In particular, bacterially derived short-chain fatty acids have been
identified as one clear link in the interaction of the microbiota with host epigenetic pathways.This review
discusses recent findings relating to the cross talk between the microbiota and epigenetic modifications in
colorectal cancer.
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INTRODUCTION
Colorectal cancer is the second most common can-
cer in women and the third in men worldwide [1].
Multiple genetic mutations and epigenetic modifi-
cations contribute to the pathogenesis of colorec-
tal cancer, which were first described in a milestone
study by Fearon and Vogelstein [2]. However, the
worldwide geographical variation in colorectal can-
cer incidence is remarkable [1]. Classical Japanese
migration studies and numerous in vitro studies have
all provided convincing evidence that environmen-
tal factors are responsible for the tumorigenesis of
colorectal cancer, rather than genetic dysfunction.

Commensal microbes, present at different mu-
cosal surfaces of themammalian host, play an impor-
tant role in processing environmental signals (e.g.
diet). The gut microbiota comprises approximately
1014 bacterial cells that mostly exhibit commensal-
ism with the host [3], and they are undoubtedly sig-
nificant for host health and disease. Numerous stud-
ies in patients and experimental animals (mice) have
linked the microbiota to colorectal tumorigenesis.
Advances in sequencing and computational technol-
ogy have facilitated the determination of the role of

the gut microbiota in colorectal cancer. However,
the precisemechanismsbywhich this process occurs
remain poorly understood. It has been proposed
that the microbiota contributes to carcinogenesis
via three major routes: changing host cell prolif-
eration or turnover, influencing host cell immune
function, and metabolizing dietary factors and host-
derived products [4,5]. In colorectal cancer, the mi-
crobiota promotes tumorigenesis through altered
host–microbiota interactions anddysbiosis. Accord-
ingly, germ-free (GF) status and wide-spectrum an-
tibiotic treatment significantly reduced tumor num-
bers in chemical and genetic experimental models
of colorectal carcinogenesis [6–9]. Studies showed
that microbiota-derived metabolites participate in
beta-oxidation andmany othermetabolic processes.
In addition, accumulated data indicate that these
metabolites can interact with epigenetic modifica-
tions in the host, thus enabling manipulation of the
host chromatin’s state and functionality.

Epigeneticmodifications are centralmechanisms
involved in directing transcriptional responses to
environmental cues. Epigenetics has become an im-
portant area of research in the field of cancer biology,
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because of our increasing understanding of the
specific epigenetic mechanisms involved in gene
expression regulation. Epigenetic modifications
are heritable, potentially reversible and regulate
gene expression through DNA modification,
histone modification and non-coding RNAs. A po-
tentially significant interface provided by epigenetic
machinery links the microbiota to a dynamic inter-
action with the host genome. Thus, understanding
how epigenetic modifications are influenced by
the intestinal microbiota could provide potential
therapeutic targets to prevent and treat colorectal
cancer. In this review, we discuss the mechanisms
of epigenetic modulation in the development and
progression of colorectal cancer, which may be
influenced by the gut microbiota and microbial
metabolites, and may therefore be amenable to
prevention or therapeutic intervention.

EPIGENETICS
Eukaryotic cells package their DNA around histone
proteins, thus forming a higher-order structure
called chromatin. The basic repeating units within
chromatin are nucleosomes, which contain DNA
wound around a histone octamer. Nucleosomes
are linked by histone H1 and can perform further
condensation of the chromatin structure [10]. In
general, condensed chromatin (heterochromatin) is
considered to repress gene expression as it physically
limits the recruitment of the transcriptional complex
to the DNA, while open chromatin (euchromatin)
is more commonly considered to enable active
gene expression [11]. Epigenetics broadly refers
to the dynamic and reversible modification of a
cell’s transcriptional potential without changing
the genetic sequence. Epigenetics encompasses
ATP-dependent chromatin remodeling, and regu-
lation by covalent nucleosomal modifications and
non-coding RNAs [12].

Covalent nucleosomal modifications, as well
as ATP-dependent remodeling enzymes, enable
chromatin flexibility in response to endogenous
and environmentally derived signals. Thus, various
processes—such as DNA replication, repair, or
transcription—can be regulated by the chromatin
structure through local condensation or relaxation
[13]. The most well-characterized covalent epige-
netic modifications are DNA methylation and his-
tonemodifications, such as acetylation,methylation,
phosphorylation, SUMOylation (SUMO, small
ubiquitin-like modifier) and ubiquitination. These
modifications, termed the ‘histone code’, regulate
the recruitment of the transcriptionalmachinery and
cofactors, and, thus, epigenetics is thought to be a
central mechanism by which the environment influ-

ences mammalian transcriptional potential in health
and disease states [14]. These epigenetic modifica-
tions are catalyzed and balanced by various mod-
ifying enzymes, such as DNA methyltransferases
(DNMTs), histone acetyltransferases (HATs)/
histone deacetylases (HDACs) and histone
methyltransferases (HMTs)/histone demethylases
(HDMs). Recently, HDACs have been identified
as targets of microbiota-derived metabolites and
are therefore discussed in more detail below. Non-
coding RNAs, including microRNAs (miRNAs),
small interfering RNA and long non-coding RNA,
also play important roles in epigenetics [15].

The study of gene mutations in colorectal cancer
established our first understanding of the molecular
alterations in colorectal cancer and has led to in-
creasing numbers of studies of epigenetic alterations
in cancer. The link between epigenetic modifica-
tions and cancer was first made in 1983 [16]. The
epigenetic mechanisms that have a role in cancer
development include: DNA methylation, histone
modifications, miRNAs and non-coding RNAs, and
nucleosome positioning [17]. Therefore, in this
review, we discuss the impact of the gut microbiota
on these epigenetic modifications during colorectal
carcinogenesis.

DIET AND GUT MICROBIOME
METABOLITES
Themost important environmental factor associated
with colorectal cancer is diet. Epidemiological stud-
ies have demonstrated that the Western diet, rich
in meat and fat, is a risk factor for colorectal can-
cer, whereas diets rich in fiber, particularly of cereals
and whole grains, protect against colorectal cancer
[18–20].Complex carbohydrate fibers are themajor
undigested dietary residues that enter the colon and
provide an energy source for the microbiota. High-
fiber foods contain complex phytochemicals that
can be metabolized by the gut microbes into short-
chain fatty acids (SCFAs), including acetate, bu-
tyrate and propionate. Polyphenolic derivatives can
interact with human intestinal epithelial cells and
may modify epigenetic function to control gene ex-
pression [19]. Acetate is the most abundant SCFA,
which is producedbymost intestinal bacteria as a fer-
mentation product. Propionate is mostly produced
through the succinate pathway by Bacteroidetes
and by some Firmicutes that belong to the Neg-
ativicutes class (such as Phascolarctobacterium suc-
cinatutens, Dialister spp. and Veillonella spp.) [21].
Butyrate is formed via the butyryl-CoA:acetate
CoA-transferase route by some Firmicutes (includ-
ing Faecalibacterium prausnitzii, Roseburia spp., Eu-
bacterium rectale, Eu. hallii and Anaerostipes spp.)
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[22–24]. Butyrate is preferentially used as an energy
source by intestinal epithelial cells. Intracellular bu-
tyrate and propionate (but not acetate) can inhibit
the activity of HDACs in gut epithelial cells and im-
mune cells, promoting the hyperacetylation of his-
tones and certain transcription factors that are in-
volved in signal transduction, and thus playing a vital
role in cancer development [25,26]. Fecal butyrate
levels might be a biomarker of cancer risk, as well as
cancer progression and severity [27]. Patients with
advanced colorectal cancer have decreased butyrate
producing bacteria and lower levels of SCFAs com-
pared with healthy controls [28–30].

Compared with carbohydrate, the quantities of
protein consumed in the diet are commonly lower,
and its digestion and absorption by the small intes-
tine is more efficient (>95%) [31]; therefore, the
proteolytic fermentation quantities are smaller than
those of saccharolytic fermentation. However, diets
rich in meat can generate more inflammatory and
carcinogenic metabolites via proteolytic fermenta-
tion, notably phenols, ammonia, branched-chain
SCFAs, and other nitrogen-rich metabolites [32].
Hydrogen sulfide is produced by sulfate-reducing
bacteria, such as Desulfovibrio vulgaris, in response
to sulfur compounds derived from diets with high
protein and fat contents. Experimental studies con-
cluded that hydrogen sulfide is proinflammatory
[33] and genotoxic at physiological concentrations
[34]. Aromatic amino acids can also be released by
protein fermentation, and have shown the ability to
damage cellular structures and increase permeability
in experimental studies [35].High-fat diets generate
bile acids, and primary bile acids can be converted
to potentially carcinogenic secondary bile acids by
gut bacteria [36]. The inflammatory and prolifera-
tive effects induced by the consumption of meat and
bile acids can be prevented by the simultaneous con-
sumption of resistant starch (RS) [37].

Recent studies have focused on the link be-
tween diet, the gut microbiota and colorectal can-
cer [29,38]. An imbalanced diet influences the struc-
ture and function of the gut microbiota, leading to
increased levels of metabolites that can induce in-
flammation and proliferation, ultimately increasing
the risk of colorectal cancer. In this review, we will
focus on how thesemetabolites influence epigenetic
modification during colorectal cancer initiation and
progression.

THE IMPACT OF GUT MICROBIOTA ON
EPIGENETIC MODIFICATIONS
miRNAs
miRNAs are small non-coding RNAs (18–25 nt)
found in plants, animals and some viruses, which

regulate the translation of target genes by inducing
the degradation of mRNAs or inhibiting translation.
Changes in miRNA expression have been observed
in colorectal cancer. For example, the expression of
miR-4478 and miR-1295b-3p in stool specimens of
patients with early colorectal cancer (I, II) was sig-
nificantly lower than that of the normal group [39].

A recent study found that fecal miRNAs could af-
fect the composition of the gut microbiota, indicat-
ing that host cells can regulate themicrobial commu-
nity. miRNAmimics were synthesized and added to
a culture of Fusobacterium nucleatum and Escherichia
coli. The transcripts of bacterial genes and bacte-
rial growth were significantly altered after miRNA
treatment.The abundance of miRNAs was inversely
proportional to the microbial abundance in mice.
This suggested that microbes may take up miRNAs,
which in turnmay affect themicrobes [40].miRNA-
21 and miRNA-200b are two carcinogenic miR-
NAs that are frequently upregulated in colorectal
cancer cells. Compared with untreated cells, Leu-
conostoc mesenteroides significantly reduced the ex-
pression levels of miRNA-21 and miRNA-200b in
conditioned medium-treated HT-29 cells. These
data suggested that L. mesenteroides could act as an
anti-oncomiRNA in HT-29 cells [41].

Several miRNAs associated with colorectal can-
cer, such as mir-182, mir-503 and mir-17∼92,
can regulate multiple genes and pathways. These
miRNAs can promote carcinogenesis and disease
progression.Metabolites frommicrobial sources can
change the expression of host genes in the colon, in-
cluding miRNAs. The levels of MiR-92a were seven
times higher in sporadic human colon cancer tis-
sue than in the adjacent normal colon. Butyrate-
induced p57 expression could be inhibited by
exogenous miR-92a, thus reversing the beneficial
function of butyrate on the proliferation and apop-
tosis of colon cancer cells [28].The lectin Fap2, pro-
duced by Fusobacterium fermentation, binds to gly-
cans produced by colorectal cancer and attaches to
tumor tissues. Interestingly, the glycan biosynthe-
sis pathway is enriched in miRNA targets related to
colorectal cancer-associated bacteria. The increased
production of glycan might increase the replenish-
ment of certain bacteria, such as Fusobacterium, in
tumor sites. This result indicates a potential new
mechanism whereby miRNAs can attract specific
microbes to the tumor microenvironment by reg-
ulating glycan biosynthesis, thereby promoting tu-
morigenesis [42]. Yuan et al. identified 76 miRNAs
from colorectal cancer tumor tissues and normal tis-
sues, including oncogenicmir-503,mir-182 andmir-
17∼92 clusters. These known oncogenic miRNAs
were associatedwith the relative abundanceofmulti-
plemicrobial populations, including Proteobacteria,
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Firmicutes and Bacteroidetes. In tumor and nor-
mal tissues, there were differences in bacterial
function associated with differentially expressed
miRNAs. Akkermansia is associated with miRNAs
related to colorectal cancer pathways, while Rose-
buria, Fusobacterium and Providencia are associated
withmiRNAs related to other cancer pathways. One
of the main findings was that colorectal cancer-
related bacteria were associated with miRNAs that
regulate genes involved in microbial interactions.
For example, these miRNAs were involved in regu-
lating the production of glycan, which is vital to re-
cruit pathogenic bacteria to the tumor [43].

DNA METHYLATION
DNA methylation is an important epigenetic mod-
ification that is associated with tumor formation.
Methylation can alter the activity of aDNA fragment
without changing the sequence. DNA methylation
of a promoter usually inhibits gene transcription.
Genes encoding secreted frizzled-related proteins
(SFRPs) frequently demonstrate promoter hyper-
methylation and transcriptional silencing in patients
with colorectal cancer [44]. Probiotics such as
Fa. prausnitzii, Eu. rectale and Lactobacillus
were significantly reduced after azoxymethane
(AOM)/dextran sulfate sodium (DSS) treatment,
compared with those in the control. The numbers
of pathogenic bacteria, including Desulfovibrio
sp. and Enterococcus spp., were significantly in-
creased after AOM/DSS treatment compared
with those in the control. These events increased
the activity of DNMTs, which silenced a portion
of tumor suppressor genes, such as SFRP2, by
methylation of its promoter [45]. An increased
Firmicutes/Bacteroidetes ratio led to reduced
inflammation and increased interleukin (IL)-6 gene
expression, but also increased DNA damage and
MutL homolog 1 (MLH1) methylation status, thus
decreasing specific gene expression [46].

Mima et al. used a molecular pathological epi-
demiology database of 1069 patients with colorectal
cancer to measure F. nucleatum DNA in the tumor
tissue. They found that the amount of F. nucleatum
DNA was associated with shorter colorectal cancer-
specific survival [47]. Higher F. nucleatum DNA
levels were associated with CIMP (CpG island
methylator phenotype)-high and LINE-1 hy-
pomethylation, and these changes in key tumor
molecular characteristics were associated with
clinical outcomes of colorectal cancer [47]. An-
other study demonstrated the influence of gut
microbes on the epigenetic regulation of host
genes. The researchers studied Toll-like receptor 2

(TLR2)-knockout mice for DNA methylation and
gene expression in the colonic mucosa. Two genes
involved in the immune process, Anpep (alanyl
aminopeptidase, membrane) and Ifit2 (interferon
induced protein with tetratricopeptide repeats 2),
were found in the colonic mucosa of Tlr2−/− mice,
and methylation levels in their promoter regions
were increased. Epigenomic and transcriptomic
modifications are related to changes in the compo-
sition of mucosa microorganisms. Some microbial
species, including members of the Firmicutes, dif-
fered markedly in the abundance between wild-type
and Tlr2−/− animals. This suggested that the alter-
ation of the mucosal microbial composition caused
by the deficit of Tlr2 could lead to the changes in
epigenetic modifications, one of which affects the
level of gene transcription [48].

In a comparison of the gut microbes in GF
and conventional mice, the developmental estab-
lishment of intestinal DNA methylation patterns
was significantly inhibited in the absence of gut
microbes. This was not caused by low levels of
DNMT1 activity. It is thought that methylation
deficits are caused by a general reduction of one-
carbonmetabolites, whose syntheses rely on gut mi-
crobial products.Thus, bacteria play amore complex
guiding role, rather than simply promoting methy-
lation. To confirm the direct link between DNA
methylation and intestinal flora, Yu et al. conducted
fecal microbiota transplant (FMT) experiments to
conventionalize GFmice.The reconstructed gutmi-
crobiota significantly increasedDNAmethylation at
multiple CpG sites of 3′CpG islands [49].

HISTONE MODIFICATION
Histone proteins are major components of chro-
matin, wrapping DNA into nucleosomes and fold-
ing it into higher-order structures. Histones can
be modified by covalent post-translational modifi-
cations (PTMs), termed the ‘histone code’, which
determine the repression or activation of gene ex-
pression [50]. Histone acetylation is catalyzed by
specificHATs called lysine acetyltransferases, which
transfer an acetyl group from acetyl coenzyme A
(acetyl-CoA) to lysine resides [51]. Acetylation is
primarily associated with gene activation, which in-
creases DNA accessibility to transcription factors.
HDACs have opposite function compared to HATs
since they remove the acetyl (acyl) moiety from ly-
sine residues. Histone methylation is also an im-
portant epigenetic process, which recruits certain
transcription factors to the chromatin. Enzymes that
catalyze epigeneticmodifications are sensitive to en-
dogenous metabolites [52]. For example, HDACs
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can be inhibited by butyrate and propionate, which
are produced by gut microbes. A mechanism has
been reported in which butyrate acts by binding to
theZn2+ in the catalytic site ofHDACs,which is sen-
sitive to themolecular structure [53]. To investigate
whether intestinal bacteria and their metabolites in-
fluence host chromatin states, Krautkramer et al.
examined histone modification states in GF, con-
ventionally raised (ConvR) and conventionalized
(ConvD) mice [54]. They investigated 55 unique
and combinatorial acetylated and methylated his-
tone PTM states in proximal colon, liver and white
adipose tissue (WAT). Colonization of the micro-
biota induced critical increases in H4 acetylation in
all three tissues, and this effect was even more sig-
nificant in ConvD mice. H3 methylation patterns
also changed after microbiota colonization. There
was a significant increase in H3K27me3+K36un in
all three tissues from the ConvD mice compared
with that in their GF controls. Thus, acetylated and
methylated chromatin states of the host tissue can
be affected by the gut microbiota in a site-specific
and combinatorial fashion.Their results strongly in-
dicated that the gut microbiota is a driver of host
tissue chromatin regulation. The host diet affects
the composition and metabolism of the gut micro-
bial community [55,56], and research has demon-
strated that microbes regulate host chromatin states
in a diet-dependent manner: The consumption of a
‘Western-type’ diet prevents the chromatin changes
that aremediated by the gutmicrobiota that occur in
a polysaccharide-rich diet.

The 18 known HDACs are classified into four
groups based on their subcellular location and ho-
mology to yeast HDACs [57]. HDAC1, HDAC2
and HDAC3 are class I HDACs. Their expressions
were originally characterized in intestinal epithe-
lial cells (IECs), and they play an important role
in intestinal development and cancer [58,59]. As
an inhibitor of HDACs, butyrate can modulate hi-
stone acetylation, thereby regulating the transcrip-
tional activity of several genes and decreasing the
incidence of colorectal cancer. However, the medi-
ators of this mechanism are poorly understood. In
addition, HDAC expression in IECs coordinates in-
testinal homeostasis, which depends on commen-
sal bacteria [60]. Specifically, the loss of IEC in-
trinsic HDAC3 (HDAC�IEC) resulted in increased
H3K9 Ac levels, decreased antimicrobial defense
genes, the loss of Paneth cells, impaired IEC func-
tion and alterations to intestinal microbe compo-
sition. In contrast to the inhibitory function of
butyrate, HDAC�IEC mice showed increased sus-
ceptibility to intestinal damage and inflammation.
However, the generation of GFHDAC�IEC mice re-
vealed that Paneth cell homeostasis and intestinal

barrier functionwere largely restored, indicating that
HDAC3 coordinates commensal microbe-derived
signals to maintain normal host–commensal rela-
tionships; however, the specific mechanisms remain
to be determined, together with the precise mech-
anism of butyrate-mediated HDAC inhibition. Pre-
vious studies have indicated that butyrate regulates
genes by modulating the promoter regions contain-
ing Sp1 sites or putative butyrate-responsive ele-
ments (BREs). For example, calretinin (CALB2),
a member of the EF-hand family of Ca2+-binding
proteins, has been found in most poorly differenti-
ated colon carcinomas. Its expression in colon can-
cer cells is negatively regulated by butyrate through
aBREflanking theTATAbox, indicating the chemo-
preventive activity of butyrate [61].

Although the precise mechanism remains un-
known, butyrate has been considered to reduce
colonic inflammation, which is a critical risk factor
for colorectal cancer, and is also linked to aberrant
epigenetics in colorectal carcinogenesis. Indigestible
RSs are substrates for gut-microbial metabolism
and have been shown to protect against intesti-
nal inflammation. Liu et al. investigated the effects
of RS type 4 (RS4)-derived butyrate on the epi-
genetic inhibition of proinflammatory genes, and
found that RS4-fed mice had higher cecal butyrate
and increased H3K27me3 in the promoter of nu-
clear factor-kappa-B1 (NF-κB1) in the colon tissue.
In vitro, the H3K27me3-enrichment was negatively
regulated with the regulation of NF-κB1 in sodium
butyrate-treated human colon epithelial cells [62].
Free fatty acid receptor 2 (FFAR2, also named G
protein-coupled receptor 43 (GPR43)) is activated
by SCFAs such as butyrate, and regulates colonic in-
flammation. In the AOM/DSS and ApcMin/+/DSS
mice models, Pan et al. showed that FFAR2 de-
ficiency promoted colon adenoma development.
FFAR2-deficient mice showed enhanced cAMP-
protein kinase A (PKA)-cAMP responsive element
binding protein (CREB) pathway activity that led
to the overexpression of HDACs. H3K27me3 and
H3K4me3 histone marks bind to the promoter re-
gions of inflammation suppressors (e.g. Sfrp1 (se-
creted frizzled-related protein 1), Dkk3 (Dickkopf
Wnt signaling pathway inhibitor 3) and Socs1 (sup-
pressor of cytokine signaling 1)), leading to down-
regulation of these genes in FFAR2-deficient mice.
In addition, FFAR2 is vital for butyrate to sup-
press HDAC expression and induce the hyperme-
thylation of inflammation suppressor genes, which
suggested that FFAR2 is an epigenetic tumor sup-
pressor [63]. Zheng et al. revealed that SCFAs, par-
ticularly butyrate, enhanced IEC barrier formation,
and induced the epithelial anti-inflammatory IL-10
receptor alpha subunit (IL-10RA) mRNA and the
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IL-10RA protein by activating the signal transducer
and activator of transcription 3 (STAT3) path-
way and inhibiting HDACs. They also found that
butyrate represses permeability-promoting claudin-
2 tight junction protein expression via an IL-
10RA-dependent mechanism [64]. Antimicrobial
peptides (AMPs) are synthesized and secreted by
immune and epithelial cells, and are essential for
barrier defense, and reducing susceptibility to infec-
tion by modulating the expression of cytokines and
chemokines; thus, they play a role in inflammatory
diseases and cancer. Butyrate regulates the expres-
sion of AMPs in humans. Animal and human clini-
cal studiesof butyratedemonstrated that the increas-
ing expression of AMPs in the colon protects against
infection, thus establishing a mucosal barrier to pre-
vent inflammation [65].

Paradoxically, butyrate can promote IEC pro-
liferation under different situations. One molecu-
lar pathway depends on the butyrate concentration
and the metabolic state of the cell. Near the base of
colonic crypts, concentrations of butyrate (0.5mM)
are low and have no HDAC inhibitory effect. This
butyrate is generally metabolized in the mitochon-
dria to enhance cell proliferation through energetics.
Higher butyrate concentrations (5mM) are present
near the lumen to stimulate colonocytemetabolism.
Meanwhile, unmetabolized butyrate can spill into
the nucleus and act as an HDAC inhibitor, stimu-
lating differentiation and apoptosis, and inhibiting
the proliferation of cancer cells [66,67]. This phe-
nomenon is the so-called ‘butyrate paradox’. Thus,
it is not surprising that certain studies [7] do not
fit well with the concept that butyrate suppresses
tumorigenesis.

THE MICROBIOTA CONTROLS T CELL
DIFFERENTIATION THROUGH
EPIGENETIC REGULATION
The intestinal immune system plays a critical role in
resisting invading pathogens; however, it can peace-
fully accommodate commensal microbes. This de-
pends on two subtypes of T cells: T helper cells,
which inhibit the gut bacteria, and regulatory T
(Treg) cells that provide tolerance to the com-
mensal microbes [68–71]. The commensal micro-
bial community affects the delicate balance between
pro- and anti-inflammatory mechanisms. Recent re-
search shows that the microbiota controls T cell
differentiation through epigenetic regulation, espe-
cially through histone modification. The majority
of Treg cells expressing transcription factor fork-
head box p3 (Foxp3) are generated in the thy-
mus (tTreg); however, Tregs may also be gener-

ated at peripheral sites (pTregs) and play a vital
role in repressing inflammatory responses in the
gut [72]. In mice, an SCFA (butyrate), produced
by commensal microbes during starch fermenta-
tion, promoted the extrathymic generation of Treg
cells through its function as an HDAC inhibitor,
which increased Foxp3 protein acetylation but not
FOXP3 messenger RNA levels [73]. Acetylation of
Foxp3 enhanced its stability and function [74–76].
This regulation is dependent on the intronic en-
hancer, CNS1 (conserved-non-coding sequence 1),
which is essential for extrathymic Treg cell differen-
tiation [72,77]. Several studies have shown that in-
dividual commensal bacteria, from different phyla,
are able to induce colonic pTreg cells [70,78–80].
Clostridia, a major class of commensal microbes,
can induce colonic pTregs via their fermentation
product, butyrate,whichenhanceshistoneH3acety-
lation in the promoter and CNS1 of the Foxp3
locus [78]. Other SCFAs, such as acetate and pro-
pionate, induce colonic Treg cells by activating
GPR43 [81].Bacteroides, such asBacteroides thetaio-
taomicron and B. fragilis, induce specific colonic
Tregs through polysaccharide A [79,82,83]. Inter-
estingly, a divergent hypothesis regarding the in-
teraction between pTregs and microbial metabo-
lites has been raised recently. The CNS1 element
was deleted in the Foxp3 locus to selectively de-
plete pTregs, and metagenomics analysis was used
to compare pTreg-deficient with pTreg-sufficient
mice. The results showed that >80% of metabolites
were significantly reduced in both the intestinal lu-
men and serum, which led the researchers to fur-
ther identify differences in certain specific border-
dwelling microbes [84]. Although the mechanism
requires further elucidation, this correlation is very
interesting.

THE MICROBIOTA IN CANCER
PREVENTION AND THERAPY
Most commercial drugs for colorectal cancer ther-
apy are chemicals that were originally designed
to suppress cancer cell growth or eliminate can-
cer cells. However, many of these drugs can cause
serious side effects. Probiotics have been widely
accepted as health supplements. Engineered benefi-
cial microbes may show increasing antitumor prop-
erties. These microbes are commensal residents in
the gut; therefore, they are much less likely to cause
severe side effects than drugs [85]. Lactobacillus
bulgaricus in yogurt, perhaps themost famous exam-
ple of probiotics, can promote lactose digestion, en-
hance gut function and stimulate the intestine’s im-
mune system. Bifidobacteria and Streptococci are also
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common in food and drink. FMTs can also be
considered as probiotics and have been success-
fully applied to treat recurrent Clostridium difficile
infections. Treatment of recurrent C. difficile in-
fection with donor feces was more efficient than
vancomycin [86]. By contrast, gavage with fecal
samples from colorectal cancer patients could pro-
mote the development of intestinal cancer in both
GF and conventional mice. Specifically, stools from
patients with colorectal cancer increased the num-
ber of tumors, the grade of intestinal dysplasia and
proliferation, levels of inflammatory cytokines, and
proportions of Th1 and Th17 cells in the colon
compared with feces of patients without colorectal
cancer [87].

There is evidence that certain microbial pop-
ulations are effectively in preventing or treating
cancer, such as Bifidobacterium and Bacteroides.
Cytotoxic T lymphocyte antigen-4 (CTLA-4)
antibodies have been successfully used in can-
cer immunotherapy. The antitumor effects of
CTLA-4 blockade depend on specific Bacteroides
species. In mice and patients, T cells induced by
B. thetaiotaomicron or B. fragilis were related to the
immunotherapeutic efficacy of CTLA-4 blockade.
Tumors in antibiotic-treated or GF mice did not
respond to CTLA-4 blockade. This deficiency can
be overcome by gavagewithB. fragilis, by immuniza-
tion with B. fragilis polysaccharides or by adoptive
transfer of B. fragilis-induced T cells [88]. Sivan
et al. compared the growth of melanomas in mice
with different symbiotic floras and investigated the
differences in spontaneous antitumor immunity.
The differences were reduced after cohousing or
fecal microbiota transplantation. They identified a
link between Bifidobacterium and antitumor activity.
Treatment of Bifidobacterium alone and the specific
antibody of programmed cell death protein 1 ligand
1 (PD-L1) improved the control of tumors to
some extent, and the combined treatment almost
eliminated tumor growth.Thus, manipulation of the
microbiota may modulate cancer immunotherapy
[89].

Prebiotics are defined as digestible food ingre-
dients that selectively enhance the growth and/or
activity of certain intestinal flora, thereby benefit-
ing health. Although all prebiotics contain fiber, not
all fibers are prebiotics. Increased fiber consumption
may reduce the risk of colorectal cancer. Insoluble
fibers accelerate colon transport to reduce carcino-
gen exposure, while soluble fiber is fermented by
gut microbes into SCFAs. In normal colon cells, bu-
tyrate is the main source of energy for homeostasis.
In cancer cells, glucose is a major source of energy
because of theWarburg effect. Butyrate is still trans-
ported into cancer cells through monocarboxylate

transporters; however, there is nometabolism in the
mitochondria, which leads to the accumulation of
butyrate in the nucleus, which plays a role in the epi-
genetic regulation of cell proliferation and apoptosis
as anHDAC inhibitor [90]. A recent powerful study
recruited native African and African Americans to
participate in a 2-week dietary intervention. Native
Africans have a lower colorectal cancer rate (under 5
per 100 000) when switching from traditional high-
fiber diets to low-fiber Western diets, while African
Americans have a higher rate (>65 per 100 000)
when switching fromWestern diets to high-fiber tra-
ditional diets. Changes in diet affect the intestinal
flora, resulting in changes inmetabolites, such as SC-
FAs, and intestinal biomarkers of cancer risk [91].

Chemotherapy failure is the major reason for
recurrence and poor prognosis in colorectal can-
cer patients. In our recent study, we found that F.
nucleatum was abundant in colorectal cancer tis-
sues in patients with postchemotherapy recurrence,
and F. nucleatum promoted colorectal cancer resis-
tance to chemotherapy. Mechanistically, F. nuclea-
tum targeted TLR4 and MYD88 innate immune
signaling and specific microRNAs to activate the au-
tophagy pathway, thereby altering colorectal can-
cer’s chemotherapeutic response [92].

In the era of precision medicine, the integration
of molecular pathology and epidemiology has led
to the emergence of the transdisciplinary field of
‘molecular pathological epidemiology’ (MPE) [93].
The MPE approach can connect potential risk fac-
tors to the molecular pathology of a disease, and
can contribute to precision medicine and precision
prevention [94]. Colorectal cancer has been com-
monly studied inMPE research [93,95].The gutmi-
crobiota plays an important role in malignant dis-
eases; therefore, the field of microbiology can be
readily integrated into the framework of MPE [96].
Gutmicrobiota influences the tumor response to im-
munotherapy and chemotherapy [92,97]; therefore,
the analysis of the microbiota, diet, and colorectal
carcinoma subtypes may be relevant to treatment
decision-making.

CONCLUSION AND PERSPECTIVES
The gut microbiota plays a crucial role during col-
orectal carcinogenesis by either directly or indirectly
affecting epigenetic modifications (Fig. 1). Mucosal
inflammation, impaired barrier function and dys-
biosis may result from dysregulation of the epige-
netic cross talk between the host and microbiota.
Recent studies have revealed new approaches to
test host–microbiota interactions; however, our un-
derstanding of how epigenetic modifications par-
ticipate in these interactions is just beginning. The
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Figure 1. The gut microbiota influences epigenetic modifications in colorectal carcinogenesis. Commensal bacteria, such as Clostridia, can induce
colonic pTregs via their fermentation product, butyrate, an HDAC inhibitor, which enhances histone H3 acetylation in the promoter and CNS1 of the Foxp3
locus. Meanwhile, acetate and propionate promote the accumulation of colonic Treg cells by activating GPR43. Both induce colonic Foxp3+CD4+Treg
cells, which have a key role in limiting inflammatory responses during carcinogenesis. Butyrate increases histone methylation in the promoter of
NF-κB1, thus downregulates expression of NF-κB1. SCFAs induce the epithelial anti-inflammatory IL-10 receptor alpha subunit (IL-10RA) mRNA and
antimicrobial peptides (AMPs) via their HDAC inhibitor functions. Thus, together with reduced NF-κB1, SCFAs inhibit colonic inflammation through
epigenetic modification. In colon cancer cells, miRNAs alter the abundance of bacteria, such as F. nucleatum and E. coli. In contrast, bacteria (e.g. L.
mesenteroides) can also influence the expression levels of miRNAs in colon cancer cells. In addition, commensal bacteria can influence gene expression
by increasing DNA methylation at multiple CpG sites in colorectal cancer cells.

identification of bacteria-derived metabolites that
can induce and/or promote colorectal cancer devel-
opmentwill be important future discoveries that will
dramatically affect therapy. Microbes engineered to
express specific genes or produce specific metabo-
lites might be delivered to the gastrointestinal tract
to treat or prevent cancer. Gut microbes also have
the ability to modify the efficacy of chemothera-
peutic drugs or immune checkpoint inhibitors. In-
tegrating the gut microbiota into MPE research can
contribute to precision medicine and prevention.
Furthermore, by manipulating both the microbiota
and the diet, we may achieve novel therapies that
function via epigeneticmodifications to fight against
colorectal cancer development.
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