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Abstract

Background: Albendazole (ABZ), a benzimidazole (BZ) anthelmintic (AH), is commonly used for treatment of soil-
transmitted helminths (STHs). Its regular use increases the possibility that BZ resistance may develop, which, in veterinary
nematodes is caused by single nucleotide polymorphisms (SNPs) in the b-tubulin gene at positions 200, 167 or 198. The
relative importance of these SNPs varies among the different parasitic nematodes of animals studied to date, and it is
currently unknown whether any of these are influencing BZ efficacy against STHs in humans. We assessed ABZ efficacy and
SNP frequencies before and after treatment of Ascaris lumbricoides, Trichuris trichiura and hookworm infections.

Methods: Studies were performed in Haiti, Kenya, and Panama. Stool samples were examined prior to ABZ treatment and
two weeks (Haiti), one week (Kenya) and three weeks (Panama) after treatment to determine egg reduction rate (ERR). Eggs
were genotyped and frequencies of each SNP assessed.

Findings: In T. trichiura, polymorphism was detected at codon 200. Following treatment, there was a significant increase,
from 3.1% to 55.3%, of homozygous resistance-type in Haiti, and from 51.3% to 67.8% in Kenya (ERRs were 49.7% and
10.1%, respectively). In A. lumbricoides, a SNP at position 167 was identified at high frequency, both before and after
treatment, but ABZ efficacy remained high. In hookworms from Kenya we identified the resistance-associated SNP at
position 200 at low frequency before and after treatment while ERR values indicated good drug efficacy.

Conclusion: Albendazole was effective for A. lumbricoides and hookworms. However, ABZ exerts a selection pressure on the
b-tubulin gene at position 200 in T. trichiura, possibly explaining only moderate ABZ efficacy against this parasite. In A.
lumbricoides, the codon 167 polymorphism seemed not to affect drug efficacy whilst the polymorphism at codon 200 in
hookworms was at such low frequency that conclusions cannot be drawn.

Citation: Diawara A, Halpenny CM, Churcher TS, Mwandawiro C, Kihara J, et al. (2013) Association between Response to Albendazole Treatment and b-Tubulin
Genotype Frequencies in Soil-transmitted Helminths. PLoS Negl Trop Dis 7(5): e2247. doi:10.1371/journal.pntd.0002247

Editor: Jennifer Keiser, Swiss Tropical and Public Health Institute, Switzerland

Received November 28, 2013; Accepted April 16, 2013; Published May 30, 2013

Copyright: � 2013 Diawara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study received support from the Atlanta Research and Education Foundation, Inc. in collaboration with the Centers for Diseases Control and
Prevention, United States of America; from the Centre for Host-Parasite Interactions, McGill University, and the Partnership for Child Development (PCD) at
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Introduction

Ascaris lumbricoides (roundworm), Trichuris trichiura (whipworm)

and Necator americanus/Ancylostoma duodenale (hookworms) are the

most common species of soil-transmitted helminths infecting

humans worldwide. More than a billion people are infected with

at least one species and 300 million are estimated to have severe

infections with more than one of these parasites [1]. These

infections are endemic in tropical and sub-tropical regions of the

developing world and are associated with poverty, lack of clean

water, and poor sanitation [2]. School-age children are the most at

risk of infection with STHs and early childhood infections

contribute significantly to debilitation [3]. Infected children can

be malnourished and experience stunting growth and intellectual

retardation, with cognitive and educational deficits [1]. Because of

all these characteristics and according to estimates by the World

Health Organization (WHO) [4], STHs are included in the group

of the so-called neglected tropical diseases (NTDs). The main

intervention to control STH infections at a community level is

based on periodic mass drug administration (MDA) of the
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benzimidazole (BZ) anthelmintic (AH) drugs, albendazole (ABZ)

or mebendazole (MBZ) [5], that reduce the prevalence and

intensity of infections [6]. However large-scale chemotherapy

programmes with these drugs have the potential to exert selection

pressures on the causing parasites, which may favour the

development of drug resistance. Recently, expansion of MDA

programmes for STHs have highlighted the need to monitor for

the possibility that resistance may develop [7,8]. This development

would have important adverse consequences on the benefits

provided by deworming programmes [9,10]. BZ resistance in

other parasitic nematodes is caused by a single nucleotide

polymorphism (SNP) in the b-tubulin gene at codon positions

200 (TRA), 167 (TRA), or 198 (ARC) [11–13]. The frequency

and relative importance of these different SNPs varies among the

nematode species studied to date [13–15]. Molecular markers have

been developed to identify SNPs in A. lumbricoides, T. trichiura and

hookworms and wild-type and mutant-type control plasmids have

been constructed to obtain the genotype profiles of ‘‘susceptible-

type’’ parasites (which do not have mutations at position 200, 167

and 198) and ‘‘mutant-type’’ parasites (that contain mutations in

one of these three positions) [16]. The codon 200 polymorphism

has been identified in T. trichiura populations collected from

untreated subjects in Kenya and from treated subjects in Panama

[17], and in hookworms collected in Haiti in an area periodically

treated with ABZ [16]. In the present report, our aim was to

investigate the field efficacy of ABZ against STH infections in

countries where polymorphism in b-tubulin had previously been

identified, and to assess the frequency of each SNP prior to, and

after ABZ treatment within each country and for each of the three

main nematode species.

Materials and Methods

Study Design and Study Areas in Haiti, Kenya and
Panama

Three cross-sectional studies were carried out between 2008

and 2010 in three countries located in different geographical areas,

including Haiti in the Caribbean, Kenya in East Africa and

Panama in Central America. These studies were integrated into

the following control and evaluation programmes of ABZ use: a

national health programme to fight lymphatic filariasis (LF) and

intestinal worms in Haiti (in collaboration with the Hôpital Ste.

Croix and the Centers for Disease Control (CDC)); school health

and nutrition programmes in Kenya, and health and nutrition

programmes in Panama. Thus, each study included a treatment

with ABZ, stool examinations, and genotyping of the b-tubulin

gene in eggs collected before and after ABZ treatment to assess the

drug efficacy against STHs and to examine at each time point the

frequency of possible SNPs associated with ABZ resistance in

nematodes of veterinary importance. The study designs in Kenya,

Panama and Haiti (Figure 1) were different because each study

was part of a separate national and local MDA programme. Thus,

different protocols were applied rather than a purposely designed

multi-study site single protocol.

Study in Haiti
The study in Haiti included stool collections prior to, and after a

drug treatment given in 2009. In Haiti, the study sites were located

in the West and Southeast Haitian departments known to be naive

for MDA with ABZ. Individuals from five endemic communities

who reached the inclusion criterion (older than two years old) were

randomly selected. All potential participants were informed by a

trained community leader of the purpose and methods of the study

and gave their oral consent (in the case of children, consent was

obtained from a parent). A total of 353 stool samples were

collected and analyzed prior to ABZ treatment. Treatment was

then distributed to all people of each community (400 mg ABZ

and 6 mg/kg diethylcarbamazine (DEC)). ABZ was supplied as a

donation from GlaxoSmithKline (GSK). Participants in the study

were not observed during the treatment administration. However,

the compliance to treatment was evaluated post-treatment by a

questionnaire and relied on self-reported information of each

participant, and on pre and post-treatment egg counts. Samples

from participants who were not treated with ABZ were not

included in the analysis. Follow-up faecal samples (n = 317) were

collected two weeks after the drug treatment.

Study in Kenya
School-aged children from two schools located in Kwale District

were enrolled in the study. Although the schools were selected

because at the time of the study they were not involved in any

other STH deworming programmes, pupils had received ABZ and

DEC six month prior to our study for LF treatment. Stool samples

were collected prior to ABZ treatment in both schools (n = 128)

and then all children received 400 mg ABZ under the supervision

of the school teachers. The drug was provided by the Kenyan

Ministry of Health and was manufactured by GSK. Seven days

later, a follow-up collection was undertaken (n = 92). In one of the

schools, the stool collections before and after ABZ treatment were

done over two consecutive days and the results averaged.

Study in Panama
The field study was conducted in the region of Comarca Ngäbe-

Buglé [18]. Stool samples were collected from pre-school children

at different time points over a period of 16 months from July 2008

to October 2009. Two treatments with ABZ, as a suspension

(200 mg: one to two years of age; 400 mg: three to five years of

age) were distributed, once in 2008 and the second. nine months

later in 2009 [19]. The drug was provided by the Panamanian

Ministry of Health. In the present study, we only analyzed the

faecal samples collected prior to treatment and three weeks after

Author Summary

The soil-transmitted helminths (STH) Ascaris lumbricoides,
Trichuris trichiura and the hookworms Ancylostoma duo-
denale and Necator americanus are endemic in many
tropical countries. Regular treatment with albendazole or
mebendazole is the major means for controlling STHs.
However, repeated treatment with the same class of
benzimidazole anthelmintics has caused resistance in
veterinary parasites, characterized by mutations at either
codon 200, 167 or 198 in the b-tubulin gene. There is a
concern that resistance may develop in human STH. Drug
efficacy and mutation frequencies were assessed in T.
trichiura, A. lumbricoides and hookworms collected in Haiti,
Kenya and Panama prior to and after albendazole
treatment. In T. trichiura from Haiti and Kenya, a significant
increase of the frequency of the mutation at codon 200
was identified after treatment and drug efficacy was
mediocre. Against A. lumbricoides, albendazole efficacy
was good, even though the frequency of a mutation at
codon 167 was relatively high, suggesting that, in this
nematode, the codon 167 polymorphism does not impact
efficacy. In hookworms, the mutation at codon 200 was
identified, but at low frequencies and the response to
albendazole was good. We conclude that monitoring for
possible resistance in control programmes should be
undertaken.

Albendazole for STHs Control and b-Tubulin SNPs
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Figure 1. Flow chart of the study designs in Haiti, Kenya and Panama. *The number of eggs genotyped is different from the number of eggs
collected. This is due to failures in DNA extraction, PCR amplification or Pyrosequencing. x̄ represents the mean number of eggs sampled per host;
SD = standard deviation. The dashed lines mean that the connection between the two boxes is not direct.
doi:10.1371/journal.pntd.0002247.g001
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treatment in 2009 since the baseline prevalence for STHs was very

low in the 2008 samples. Prior to this second ABZ treatment, stool

samples were collected from 270 pre-school aged children and

follow-up samples were available from 222 children. Children

were observed while received the ABZ treatment, and only

samples from treated children were included in the analysis.

Ethics Statement
In the three studies, all instances of consent were informed.

Ethical approval for Haiti was obtained from the Institutional

Review Board of the Centers for Diseases Control and Prevention,

Atlanta, Georgia, US (Dr. Patrick Lammie), and the Ethics

Committee of the Hôpital Ste Croix, Haiti and included the

collection of stool samples, examination of stool samples for

helminth eggs and DNA analysis of helminth eggs.

Informed consent was obtained from all adult participants and

from parents or legal guardians of all minors. A parent or legal

guardian gave consent in every case of child participation. Based

on past experience, it was likely that some people in the

communities would not be able to read. A waiver of written

informed consent on the basis that the research presented no more

than minimal risk of harm to the subjects and involved no

procedures for which written consent is normally required outside

the research context in this setting, was requested and approved.

The use of oral consent was previously approved by the IRB.

Subjects were offered a written copy of the IRB approved consent

form. The contents of the approved consent form were explained

to each household, following which verbal consent was obtained.

The reader of the consent form and a witness signed a copy of the

form to indicate the subject’s agreement.

The study in Kenya was approved by the Kenya Medical

Research Institute (KEMRI) Ethical Review Committee. The

informed consent process, which was approved by the KEMRI

IRB specifically stated that the study was included in the national

programme on surveillance of disease control and followed

established government procedure. The school heads organized

meetings with their parent teacher association to obtain agreement

for the project. An information sheet was provided. It was

emphasized that the participation in the study by children was

voluntary and that they may refuse to participate. All children

were treated with ABZ and praziquantel in the study. Finally, all

samples were anonymised. As part of a national control

programme, informed consent was not documented for each

individual. The content of the study was verbally explained in

detail to parents/guardians, teachers and children from each

school. It was done orally as it was necessary to have this explained

in local languages. The use of oral consent was previously

approved by the IRB. A parent or legal guardian gave oral

informed consent in every case of child participation.

The study in Panama was approved by the McGill University

Review Board in Canada, the Instituto Conmemorativo de Gorgas

and local indigenous leaders in Panama. Written informed consent

was obtained from primary caregivers for their own participation

as well as that of their children. They were provided with an

explanation of the study, its significance, and of participant

requirements and rights. They were given an opportunity to ask

questions in Spanish and in the local language. A parent or legal

guardian gave consent in every case of child participation.

Stool Sample Procedure and Examination
In all studies and for each intervention (before and after ABZ

treatment), labelled containers were distributed to each participant

and collected the following morning from the community leader in

Haiti, schools in Kenya, and each participant’s home in Panama.

Three diagnostic techniques: McMaster, Kato-Katz, and FLO-

TAC were used to identify STH eggs and determine the number

of egg per gram (epg) in the faecal material collected before and

after ABZ treatment.

In Haiti we used a modified McMaster technique on each

collected sample. One gram of faeces was suspended with water

and the solution was stirred until it was completely broken apart.

The mixture was poured through surgical gauze into a centrifuge

tube. After centrifugation for 10 min at 15,000 rpm, the

supernatant was poured off and the tube containing the sediment

was filled with saturated sucrose solution and then gently stirred.

After 10 min, an aliquot of the flotation fluid from the upper

surface of the solution was transferred into each compartment of a

McMaster chamber. The eggs were counted in both chambers

using a low power objective (610). The number of epg of faeces

was obtained by multiplying the total number of eggs counted in

the two chambers by 50 [20].

In Kenya, the McMaster (as described above) and Kato-Katz

techniques [21] were used on samples from one school and Kato-

Katz alone was used in the other school. For Kato-Katz, the

number of eggs counted was multiplied by 24 to obtain the epg

[21].

In Panama, the identification of eggs and the assessment of epg

were performed using Kato-Katz [21] and FLOTAC [22,23], as

previously described [19].

One of the primary objectives of the study was to assess the

frequency of SNPs associated with resistance to ABZ (seen in the

veterinary nematode Haemonchus contortus) in the b-tubulin gene of

STHs collected from untreated and treated subjects. Thus, from

the three studies, eggs from positive subjects were recovered using

a saturated sucrose solution with centrifugation, and recovered

eggs were preserved in 70% alcohol until use for molecular

analysis.

Examination of the b-tubulin Gene and Assessment of
SNPs

DNA Isolation from Individual Eggs of STHs. Eggs

previously preserved in 70% alcohol were washed in distilled

water and separated by species under a dissecting microscope.

Individual eggs were isolated with a 10 ml pipette and then placed

into a PCR tube. Genomic DNA of each individual egg was then

extracted according to a protocol elaborated by Lake and

colleagues [24] and adapted to STHs. One hundred millilitres of

lysis buffer (50 mM KCl, 10 mM Tris pH 8.3, 2.5 mM MgCl2,

0.45% Nodidet P-40, 0.45% Tween 20, 0.01% gelatine) was

previously prepared, and an aliquot of 1 ml of this lysis buffer was

taken to which 10 ml proteinase K (10 mg/ml) and 10 ml b-

mercaptoethanol (Sigma-Aldrich, St Louis, MO, USA) were

added. The solution of lysis buffer with proteinase K and b-

mercaptoethanol was placed at 220uC for one week. Individual

eggs were placed into a labelled PCR tube and 15 ml of the

mixture was added. The tube was subsequently frozen at 280uC
for 30 min and then incubated at 60uC for 2 h. This procedure of

freezing and heating the egg solution helps the digestion of the

eggshell to facilitate DNA extraction. The proteinase K was

inactivated by heating to 94uC for 15 min.

Genotyping of b-tubulin Gene Positions 167, 198 and 200

in A. lumbricoides, T. trichiura and Hookworms. After

DNA extraction, all samples were subjected to PCR to amplify

small fragments surrounding the SNP at codon positions 167, 198,

and 200 in the b-tubulin genes of A. lumbricoides (FJ501301.1,

GenBank acc. number), T. trichiura (AF034219.1 GenBank acc.

number) and hookworms (EF392851.1 GenBank acc. number). All

primers used for genotyping with the Pyrosequencer were designed

Albendazole for STHs Control and b-Tubulin SNPs
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with the PyroMark Assay Design Software (Qiagen, version 2.0) to

amplify single egg DNA. To allow for nested PCRs on single eggs,

some primers were different from those used in our previous study

[17] in which the DNA concentrations were higher. For PCR, 2 ml

of lysate was used as template in a 20 ml reaction containing 2 ml

106PCR buffer, 1 ml [50 mM] MgSO4, 1 unit Platinum Taq

DNA Polymerase High Fidelity, 1 ml of sense and antisense

primers [10 mM] (details in Supplementary Table S1) 1 ml dNTP

mix [10 mM], and distilled water to 20 ml. PCR reactions were

performed with the following cycling parameters: 94uC for 3 min

followed by 30 cycles of 94uC, 59uC for 45 s and 68uC for 1 min

with a final extension step at 68uC for 5 min. A second PCR

reaction using the earlier PCR product as template was necessary

to visualize the product on an agarose gel. The reaction contained

5 ml 106PCR buffer, 2 ml [50 mM] MgSO4, 1 unit Platinum Taq

DNA Polymerase High Fidelity, 1 ml of sense and antisense

primers [10 mM], 1 ml dNTP mix [10 mM], and distilled water to

give a final volume of 50 ml. The same primers were used for each

species amplified except for the antisense primer for codon

position 198–200 of A. lumbricoides (59 CAGATGTCGTA-

CAAAGCCTCATT 39, position). For genotyping, all antisense

primers were biotinylated at their 59end as described [17]. The

amplification conditions were 94uC for 3 min followed by 40

cycles of 94uC, 59uC for 45 s and 68uC for 1 min with a final

extension step at 68uC for 5 min. Sequencing primers for SNP

analysis were used to genotype all PCR products at the codon

positions 167, 198 and 200 in a Pyrosequencer (Biotage AB,

Charlottesville, VA, USA) (Supplementary Table S1). Parasites

genotyped did not necessary come from the same subjects sampled

before and after treatment. Eggs were extracted from as many

hosts as possible, though finding sufficient number post-treatment

was restricted by low egg density. Therefore all eggs, from the

same community or school, were pooled, before analysis of

genotypes of individual eggs. The number of eggs isolated and

genotyped are presented in the flow-chart (Figure 1).

Statistical Analysis
The treatment efficacy on A. lumbricoides, T. trichiura and

hookworms was evaluated by the egg reduction rate (ERR) for

each diagnostic method applied in each country: McMaster (in

Haiti, and Kenya), Kato-Katz (In Kenya and Panama) and

FLOTAC (in Panama). The ERR was calculated, at the group

level, as the ratio of the difference between the arithmetic mean of

the pre- and post-treatment faecal egg count (FEC) to the pre-

treatment arithmetic mean, expressed as a percentage, i.e.

ignoring individual variability [25]. The negative individuals at

baseline were still sampled at the post-treatment collection and the

resulting data were included for the calculation of ERR.

Uninfected subjects were included in the mean of the FEC.

Confidence intervals of each ERR estimate were determined using

a bootstrap resampling method (with replacement) over 10,000

replicates in R (version 2.15.0, Vienna Austria, http://www.R-

project.org).

Genotype frequencies of SNPs at positions 167, 198 and 200 in

A. lumbricoides, T. trichiura and hookworms obtained at the pre-

treatment collections were compared with the genotype frequen-

cies of the same SNPs obtained at the post-treatment collections

using Fisher’s exact test within GraphPad Prism (GraphPad

software, San Diego, CA, USA).

Deviation from Hardy-Weinberg equilibrium (HWE) was

analyzed for the b-tubulin gene at position 200 in T. trichiura

using Arlequin version 3.1 software [26], where the p-value was

calculated based on the Markov-chain method [27]. Deviations

from the HWE were not determined for A. lumbricoides or

hookworm for reasons explained below. When a departure from

HWE was observed in T. trichiura, we estimated the maximum

likelihood frequency of a null allele at position 200. This estimate

was calculated using an Expectation-Maximization Algorithm of

Dempster and colleagues [28] (EM Algorithm, http://132.206.

161.123/em.html).

Results

Genotype Frequencies for the b-tubulin Gene in T.
trichiura

In T. trichiura, the three codon positions 167, 198, and 200 were

found to be polymorphic in samples collected from untreated and

treated subjects in Haiti, Kenya, and Panama.

In Haiti we analyzed 65 individual T. trichiura eggs from 30

untreated subjects and 38 from 14 treated subjects. We recorded

11% and 47% experimental failure (includes DNA extraction,

PCR amplification and Pyrosequencing) in pre- and post-

treatment samples, respectively. Before treatment the TRA SNP

Figure 2. Genotype frequencies of the b-tubulin gene position
200 in T. trichiura from Haiti and Kenya. Genotype frequencies of T.
trichura collected in Haiti (A) and in Kenya (B); Number of individual T.
trichiura eggs genotyped according to the available material, in Haiti
was 65 in the untreated group (pre-Tx) and 38 in the treated group
(post-Tx), in Kenya was 40 in the untreated group and 90 in the treated
group. Sequences were diploid, TT indicates the homozygous
susceptible-type TTC/TTC, TA the heterozygous TTC/TAC and AA, the
homozygous resistance-type TAC/TAC; Tx = treatment, *Indicates a
significant difference (p,0.001) in genotype frequency between the
pre- and post treatment groups. P-values were obtained by Fisher’s
exact test.
doi:10.1371/journal.pntd.0002247.g002

Albendazole for STHs Control and b-Tubulin SNPs
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at codon position 200 (SNP200) was identified at low frequency;

3.1% of individual eggs genotyped were homozygous resistance-

type (AA) and 23.1% were heterozygous (TA). After treatment,

there was a significant increase in the frequency of the

homozygous resistance-type, from 3.1% to 55.3% (p,0.001),

and a statistically significant decrease of the homozygous

susceptible-type, from 75.4% to 21.1% (p,0.0001) (Figure 2A).

The ARC SNP at codon position 198 was also found and showed

a statistically significant change in frequency following treatment.

However, the changes at codon 198 were less pronounced than at

codon 200. After treatment, there was a significant increase of

homozygous resistant-type from 3.1% to 13.2% (p,0.001), and a

significant decrease of homozygous susceptible-type from 73.8% to

63.2% (Figure 3).

In Kenya, 40 individual T. trichiura eggs from 20 untreated

subjects and 90 eggs from 31 treated subjects were genotyped. We

recorded 30% and 5% experimental failure in pre- and post-

treatment samples, respectively. Only the codon 200 SNP was

polymorphic. The same trend observed in Haiti was seen with a

statistically significant increase, from 51.3% to 68.5% (p = 0.019)

of homozygous resistance-type, and a significant decrease, from

48.6% to 21.4% (p = 0.019) of homozygous susceptible-type after

treatment (Figure 2B).

In Panama we genotyped 19 ‘‘pre-treatment’’ T. trichiura eggs

from 10 subjects, which were collected 9 months after an earlier

treatment, and 49 post-treatment eggs from 21 subjects collected 3

weeks after this second ABZ treatment. We observed homozygous

resistance-type (78.9%) and homozygous susceptible-type (21.1%),

at codon 167, in the pre-treatment collection. For codons 198 and

200, 84% of the pre-treatment T. trichiura egg samples failed the

PCR amplification and therefore it was not possible to assess the

genotype frequencies for these positions. At the post-treatment

collection, the codon 167 polymorphism was still present in the

treatment survivors as homozygote resistance-type in 16.3% of

individual eggs genotyped. For codons 198 and 200, we observed a

predominance of homozygous susceptible-type genotypes, 97.6%

and 88.1% respectively; and a low frequency of heterozygous,

2.4% (for each position) and homozygous resistance-type, 9.5%

(for codon 200).

Genotype Frequencies of b-tubulin Gene Positions 167,
198 and 200 in A. lumbricoides

In A. lumbricoides, the codon position 167 of the b-tubulin gene

was polymorphic in parasites collected from untreated and treated

subjects in Haiti, Kenya and Panama, whereas the codon positions

198 and 200 were monomorphic. The SNP at position 167

identified was confirmed by conventional Sanger sequencing and

real time PCR (data not shown).

In Haiti, we genotyped 37 individual A. lumbricoides eggs from 13

untreated subjects and five eggs from three treated subjects. We

recorded 49% and 28% experimental failure in pre- and post-

treatment samples. Prior to treatment, homozygous resistance-type

(40%) and heterozygous (60%), at codon 167, were present in the

population; however, only heterozygotes were detected after

treatment.

In Kenya, 22 individual A. lumbricoides eggs from 6 untreated

subjects and 19 eggs from 4 treated subjects were genotyped. We

recorded 15% and 17% experimental failure in pre- and post-

treatment samples, respectively. The predominant genotype

frequency identified was the homozygous resistance-type (72.7%)

at codon 167. After treatment, there was no significant difference

in the homozygous resistance-type frequency; however, as

observed in A. lumbricoides collected in Haiti, at codon 167 there

was a statistically significant increase of heterozygotes from 4.5%

to 21.1% (p,0.001), and also a significant decrease of homozy-

gous susceptible-type from 22.7% to 5.3% (p,0.001).

In Panama, 53 individual eggs were genotyped from 28

untreated subjects and 70 eggs from 20 treated subjects. We

recorded 57% of experimental failure only in pre-treatment

samples. As seen previously in Haiti and Kenya, the most

abundant genotype at codon 167 was homozygous resistance-type

(97.7%). In this population the lowest genotype frequency was

identified as homozygous susceptible-type (2.3%). After treatment,

the percentage of both genotypes did not change significantly

(96.7% and 3.2%, respectively) (Table 1).

Genotype Frequencies of b-tubulin Gene Positions 167,
198 and 200 in Hookworms

In hookworms, the codons 167 and 198 of the b-tubulin gene

were monomorphic in all samples genotyped from Haiti, Kenya

and Panama. Codon 200 polymorphism (TAC) was detected in 2

eggs collected in Kenya. In Kenya, 86 individual eggs from 28

untreated subjects and 127 eggs from 34 treated subjects were

genotyped. We recorded 19% and 4% experimental failure in pre-

and post-treatment samples, respectively. In the pre-treatment

collection we identified homozygous resistance-type at low

frequency (2.3%) and a predominance of homozygous suscepti-

ble-type (97.7%). After treatment the frequencies did not change

significantly. In Haiti, we examined 84 hookworm eggs from 31

untreated subjects and 14 from five treated subjects and we did not

identify any polymorphism at the SNP sites of interest. We

recorded 19% and 63% of experimental failure for the samples

from the pre- and post-treatment, respectively. In Panama, all 23

eggs analyzed from nine untreated subjects and 59 from 29 treated

subjects were homozygous susceptible-type for all three positions.

We recorded 71% and 24% of experimental failure for the

samples from the pre- and post-treatment, respectively.

Figure 3. Genotype frequencies of the b-tubulin gene position
198 in T. trichiura from Haiti before and after ABZ treatment.
Genotype frequencies of T. trichura collected in Haiti. The number of
individual T. trichiura eggs genotyped, according to the available
material, was 65 in the untreated group (pre-Tx) and 38 in the treated
group (post-Tx). Sequences were diploid, AA indicates the homozygous
susceptible-type GAA/GAA, AC the heterozygous GAA/GCA and CC, the
homozygous resistance-type GCA/GCA; Tx = treatment, *Indicates a
significant difference (p,0.001) in genotype frequency between the
pre- and post treatment groups. P-values were obtained by Fisher’s
exact test.
doi:10.1371/journal.pntd.0002247.g003

Albendazole for STHs Control and b-Tubulin SNPs

PLOS Neglected Tropical Diseases | www.plosntds.org 6 May 2013 | Volume 7 | Issue 5 | e2247



Drug Efficacy
The arithmetic means of the faecal egg count (FEC) per gram

are presented in Table 2. The standard error of the mean obtained

shows a high variability of the FEC in the treated and untreated

populations.

The ERR estimates calculated for A. lumbricoides, T. trichiura and

hookworms for each diagnostic test applied in Haiti, Kenya and

Panama are summarized in Table 2. The ERR from the same

country estimated using two different diagnostic methods are not

directly comparable as the number of samples tested (and

therefore the hosts making up the ERR) were different. A direct

comparison of the different diagnostic methods per se is beyond the

scope of this paper and has been previously discussed elsewhere

[29,30]. In Haiti where only McMaster was applied, the ERR for

A. lumbricoides was the highest (99.9% (95% CI 99.5–100.0))

followed by hookworms (98.6% (95% CI 96.1–99.7)) and T.

trichiura (49.7% (95% CI 0.0–88.4)). In Kenya the ERR estimates

differed between the Kato-Katz and McMaster methods. The

highest ERR was obtained for hookworms, with Kato-Katz at

89.95% (95% CI, 0.0–96.1%) and McMaster at 96.8% (95% CI,

92.5–99.2%). This was followed by A. lumbricoides with 97.3% (95%

CI, 0.0–100.0%) and 80.3% (95% CI, 0.0–100.0%), respectively,

and finally by T. trichiura with 86.8% (95% CI, 0.0–98.7%) and

10.1% (95% CI, 0.0–78%). The ERR estimate based on Kato-

Katz was the one considered as the sample sizes available were

much higher (n = 104 and n = 92 at pre- and post-treatment,

respectively) than those for McMaster (n = 24 and n = 42 at pre-

and post-treatment, respectively). In Panama, the ERR estimates

for FLOTAC were the ones considered as the number of samples

analyzed was greater than those counted by Kato-Katz [19]. In

Panama, the highest ERR estimate was for A. lumbricoides, at 89.8%

(95% CI, 75.8–97.3%), followed by T. trichiura with 65.1% (95%

CI, 0–89.1%), and finally by hookworms with 47.8% (95% CI, 0–

89.9%).

Hardy-Weinberg Equilibrium
Guo’s Exact Hardy-Weinberg test [27] showed that there was a

significant departure from Hardy-Weinberg expectations recorded

in T. trichiura collected in Haiti (p = 0.0366) after treatment, and in

Kenya before and after treatment (p,0.0001) for position 200 of

the b-tubulin. This disequilibrium was characterized by a

deficiency in the number of heterozygotes (Table 3). The

estimated frequency of a null allele at position 200 showed no

evidence (x2 = 3.69) that a null allele was responsible of the paucity

of heterozygotes. For positions, 167 and 198, respectively,

polymorphism was either not found, or the differences between

the frequencies of heterozygotes pre- and post-treatment were not

significant.

Discussion

One of the main findings of this study was the identification of a

SNP at position 200 in T. trichiura samples collected in Haiti and

Kenya at the pre-treatment collections. Thus, these findings

suggest that the resistance-type allele (TAC200) already existed in

these populations prior to ABZ treatment. This result was

consistent with a previous report in which the codon 200

polymorphism was identified in adult T. trichiura from Kenya in

an ABZ-naı̈ve population [17]. This SNP was also present in

human filarial nematodes from Burkina Faso, in samples obtained

from pre-treatment patients at a moderate allele frequency (26.2%)

[31].

However, it must be taken into consideration that ABZ is a

commonly used AH in endemic countries, and yearly school-based

helminth control programmes relying on ABZ and MBZ are also

common in countries where our studies were performed [32–34].

Indeed, in Kenya, six months prior to our study, children from the

selected schools had been treated with ABZ in the context of the

LF control programme. In Panama, at the baseline collection (nine

months earlier), the codon 200 polymorphism was identified (data

not shown), and in a previous study carried out in the same region,

the same SNP had been detected in T. trichiura [17]. Finally, in

Haiti, in the context of the LF control programme, ABZ is widely

distributed yearly in combination with DEC at the community

level, in surrounding communities [32]. So, it may be possible that

some participants in Panama or Haiti from the studied populations

had travelled to treated areas or could have been infected with

eggs from family members who had been previously treated with

ABZ. Thus, it may be possible that parasites have been previously

exposed to the drug and that some selection for the SNPs at codon

position 200 had occurred prior to the beginning of MDA for

STHs, or that in Kenya, selection at codon 200 may have

developed following the previous rounds of ABZ treatment in the

population.

Other findings were the identification of SNPs in T. trichiura at

codon 167 in samples from Panama and at codon 198 in samples

from Haiti and Kenya, prior to treatment. The identification of

the same resistance-type allele at codon 198, in populations that

are geographically separated suggests that this allele could be

Table 1. Genotype frequencies of b-tubulin position 167 in A. lumbricoides before and after ABZ treatment.

Frequency (%)

Haiti Kenya Panama

Genotypes Pre-Tx4 (n = 37) Post-Tx (n = 5) Pre-Tx (n = 22) Post-Tx (n = 19) Pre-Tx (n = 53) Post-Tx (n = 70)

TT1 22.7a 5.3a

TA2 60 100.0 4.5b 21.1b 2.3 3.2

AA3 40 72.7 73.7 97.7 96.8

1TT = homozygous susceptible-type TTC/TTC.
2TA = heterozygous TTC/TAC.
3AA = homozygous resistance-type type TAC/TAC.
4Tx = treatment.
The numbers in parentheses indicate the number of individual eggs genotyped. The letters (a,b) indicate significant difference (p,0.001) between the genotypes of the
pre- and post treatment groups.
P-values were obtained from Fisher’s exact test.
doi:10.1371/journal.pntd.0002247.t001
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common in T. trichiura populations, even prior to ABZ treatment.

However, the frequency of the resistance-type allele at codon 198,

and the identification of the resistance-type allele at codon 167 in

only one country suggest that these polymorphisms are less

common than the codon 200 polymorphism. In the veterinary

parasitic nematode Haemonchus contortus, it has been confirmed that

the codon 200 polymorphism, which causes BZ resistance, is the

predominant SNP associated with resistance, compared to the

codon 167 polymorphism [13], or the codon 198 polymorphism

[12,15]. In addition, it was also interesting to note that the codon

167 polymorphism was always found alone and never associated

with the SNPs at positions 198 and 200. This is consistent with

observations made in H. contortus suggesting that the polymorphism

at position 167 (TAC) does not occur in the same allele as the

polymorphism at position 200 (TAC) or 198 (GCA) [12,15].

The post-treatment examination of the resistance-type allele

frequencies of T. trichiura collected in the three different

geographical areas suggests that ABZ may be selectively eliminat-

ing worms carrying susceptible-type alleles and allowing worms

with the resistance-type alleles to survive treatment. Indeed, in

Haiti and Kenya one round of treatment significantly increased

the frequency of the homozygous resistance-type at codon position

200 (TAC/TAC200) and some heterozygote eggs (TTC/TAC200)

were also found after treatment. It was also found that the codon

198 polymorphism persisted after one treatment but at lower

frequency compared to the codon 200 polymorphism. Thus, our

results suggest that ABZ treatment could select for parasites

harbouring the codon 200 (TAC) polymorphism. We tested

whether the genotype frequencies of the b-tubulin gene at codon

200 obtained before and after treatment were in HWE. In Haiti,

the increase of the homozygous resistance-type after treatment, for

codon position 200, correlated with a departure from HWE

illustrated by a paucity of heterozygotes and an excess of

homozygotes. In Kenya, the b-tubulin at position 200 in T.

trichiura was not in HWE before treatment as there was an excess of

homozygotes. Different hypotheses may explain the HWE

imbalance in genotype frequencies; one possible cause could be

selection acting on the parasite populations.

The above data strongly suggest that the SNP at b-tubulin

codon 200 may be responsible for the intermediate efficacy of ABZ

against T. trichiura, where the ERR ranged from 10.1% (Kenya) to

65% (Panama). A poor efficacy of ABZ against T. trichiura has been

repeatedly observed across a number of different studies [35]. In

addition, it is not uncommon to find considerable variation of

ERR estimates (ranging from 0 to 90%) in the literature [36],

which, in addition to being explained by the use of different

diagnostic methods (see above), is in agreement with the high

resistance-type allele frequencies observed at loci 200 and 198 in

Haiti and Kenya. If drug susceptibility is determined (in part) by

these alleles, then AH resistance might develop relatively quickly

in locations such as these. Resistance to BZ drugs is usually

recessive [11] so high allele frequencies are required to generate

the phenotypic diversity that leads to the poor drug efficacy that

has been recorded.

Another finding of the study was the identification of the

resistance-type SNP (based on comparison with studies in some

veterinary nematodes), at codon position 167 in A. lumbricoides

before and after treatment. In A. lumbricoides collected in Haiti,

Kenya and Panama, the allele containing TAC at codon 167 was

identified as homozygous at high frequency prior to ABZ

treatment. The post-treatment genotype frequencies indicated

that ABZ treatment did not change the frequency of the

homozygous, resistance-type, codon 167 in Kenya and Panama,

where sample sizes were similar, and heterozygotes remained in

the population surviving treatment. It was also interesting to note

that similar findings have been published for the veterinary

parasitic nematode, Teladorsagia circumcincta [13]. In this case, it was

demonstrated that BZ treatment did not change the frequency of

the homozygous, resistance-associated codon 167 or that of

heterozygotes. In a recent study, it was also found that H. contortus

heterozygous at codon 167 were associated with susceptible

phenotypes [15]. In contrast, in Haiti where the sample sizes were

highly different between the pre- and post-treatment groups, we

found that the resistance-type genotype frequency of A. lumbricoides

at codon position 167 significantly increased after treatment, but

the small sample size at the post-treatment collection made it

difficult to draw clear conclusions.

The genetic data from A. lumbricoides suggest that the polymor-

phism at codon position 167 is common and may be naturally

present. However, ERR estimates indicate that treatment was

successful according to WHO standardized thresholds [37]. This

implies that in A. lumbricoides, the mutation at codon position 167

may not have an impact on drug efficacy. In contrast, in intestinal

trichostrongylid nematodes of livestock (e.g., H. contortus), the SNP

167 is rarely encountered but the homozygous allele containing

TAC does confer BZ resistance in some species [38,39]. It is also

common in these species to have SNP associations between codons

167 and 200 that could confer high levels of BZ resistance [15].

It was interesting to find that in A. lumbricoides, all eggs

genotyped were susceptible-types at codon positions 198 and

200. It is possible that should polymorphisms be found at codons

200 or 198 in A. lumbricoides, these polymorphisms may change the

sensitivity of the parasite to the drug as has been described in

veterinary parasites [12,15]. It will be informative to investigate

the b-tubulin gene of A. lumbricoides in areas where MDA has been

implemented to determine whether the position 200 is ever

polymorphic and whether it correlates with drug response.

Finally, the b-tubulin analysis in hookworms, at codon 200, 167

and 198, revealed the presence of a SNP at codon 200 in samples

collected in Kenya at pre- and post-treatment. However, the

frequency was very low and the ERR indicated a value consistent

with ABZ treatment being successful. In other studies in which a

Table 3. Observed (HO) and expected (HE) heterozygosity tested under HWE for SNP 200 in T. trichiura.

Pre- treatment Post- treatment

n1 HO HE p-value n HO HE p-value

Haiti 65 0.25 0.24 1.00 38 0.26 0.43 0.0366*

Kenya 40 0.15 0.50 ,0?0001* 90 0.8 0.38 ,0?0001*

1n = sample size.
*Indicates a significant p-value; p-values were obtained from Guo’s exact test.
doi:10.1371/journal.pntd.0002247.t003
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reduced drug efficacy was detected polymorphism at codons 200

and 167 was not detected [40,41].

The main limitation of the present study was the non

homogeneity of the study designs in Haiti, Kenya and Panama.

Indeed, the samples and data on response to treatment were

obtained as part of different collaborations with ongoing treatment

protocols rather than being designed specifically for our study. As

such it was not possible to standardize the methods used for egg

count estimations and exact time samples were taken after

treatment. Furthermore, the studied populations were different

in the three studies. In Panama and Kenya it was restricted to pre-

school and school age children whereas in Haiti, adults and

children were sampled. Furthermore, three diagnostic methods

have been applied to quantify STHs. Resulting drug efficacies

were variable within the same country, depending on the

techniques and sample sizes. In another study, the McMaster

and Kato-Katz gave similar results for the ERR [25]. It is

important to mention that the sample sizes were different for the

two diagnostic tests when performed in the same country. Our

goal was not to compare test sensitivity for quantifying egg counts.

The results reported here should be viewed as those arising from

three different field treatment studies in which we used procedures

to assess genotype and have compared the genotypes with

assessments of ERR for each of the three separate treatment

studies, observed with different methods and sampling schedules.

As such the ERR results between the studies should not be

compared; what was relevant for our investigations was the

assessment of ERR by one or more conventional parasitological

methods with the genotype determination for samples from the

same communities.

The other limitation of the study was the low sample size of

individual eggs genotyped due to a high percentage of PCR

failure. This was caused by the difficulty in amplifying the DNA of

individual eggs, possibly due to the presence of inhibitors from

faeces that could prevent the DNA extraction [42]. Also, the low

DNA concentration may have affected the success of the DNA

amplification and pyrosequencing. In T. trichiura eggs from

Panama, we recorded more DNA amplification failure for

positions 198–200 than for position 167. One of the primers used

to amplify the sequence around the codons 198 and 200 was in

part in an intron. Polymorphism in this intron may have resulted

in poor amplification in some samples. However, the samples that

were successfully genotyped allowed identification of SNPs in T.

trichiura which may be associated with the ability of worms to

survive ABZ treatment. These results stress the importance of

implementing, as integral part of MDA programmes, regular

monitoring of drug efficacy and associated parasite genetics for

prompt detection of drug resistance.

In this study, we estimated the ERR at the group level; it is a

more accurate estimation of overall ERR because it can include

negative individual values. The estimation of the ERR on a group

basis by bootstrapping gave a range of [0–89%] in hookworms,

whereas when estimated by Halpenny and colleagues [19] on

individual basis the ERR was 89%.

Likewise, there is an urgent need to consider control strategies

that will maintain a low resistance-type SNP prevalence and a high

drug efficacy. Strategies have been described to maintain a high

level of STH control while also delaying the possible development

of drug resistance [7]. Drug combination has been used to combat

the problem of AH resistance in veterinary parasites and human

parasites [43,44]. The pros and cons of various combinations

should be carefully considered so that the chosen combination will

have both a positive impact on drug efficacy and on a reduction of

genetic selection for resistance.

Conclusion and Future Directions
Comparable data on pre- and post-treatment SNP frequencies

were obtained at the different study sites, despite differences in the

study designs between sites. However, in the context of monitoring

and surveillance of STH control programmes, it will be important

to conduct multiple studies according to standardized multi-centre

protocols in order to allow drug efficacies to be compared.

Supporting Information

Table S1 Primers used for amplification of STHs b-tubulin SNP

regions and for pyrosequencing.
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