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Grid-based prediction of torsion angle
probabilities of protein backbone and its
application to discrimination of protein
intrinsic disorder regions and selection of
model structures
Jianzhao Gao1 , Yuedong Yang2* and Yaoqi Zhou3*

Abstract

Background: Protein structure can be described by backbone torsion angles: rotational angles about the N-Cα
bond (φ) and the Cα-C bond (ψ) or the angle between Cαi-1-Cαi-Cαi + 1 (θ) and the rotational angle about the
Cαi-Cαi + 1 bond (τ). Thus, their accurate prediction is useful for structure prediction and model refinement. Early methods
predicted torsion angles in a few discrete bins whereas most recent methods have focused on prediction of angles in
real, continuous values. Real value prediction, however, is unable to provide the information on probabilities
of predicted angles.

Results: Here, we propose to predict angles in fine grids of 5° by using deep learning neural networks. We
found that this grid-based technique can yield 2–6% higher accuracy in predicting angles in the same 5° bin
than existing prediction techniques compared. We further demonstrate the usefulness of predicted probabilities at
given angle bins in discrimination of intrinsically disorder regions and in selection of protein models.

Conclusions: The proposed method may be useful for characterizing protein structure and disorder. The method is
available at http://sparks-lab.org/server/SPIDER2/ as a part of SPIDER2 package.

Keywords: Torsion angle, Intrinsically disordered region, Model quality assessment, Deep learning neural network

Background
One of the most important sub problems of protein
structure prediction is prediction of protein backbone
secondary structure from sequences. Despite of the long
history, the field of secondary structure prediction
continues to flourish as the accuracy of three-state
prediction (helix, sheet, and coil) steadily improves to
82–84% [1] because of larger sequence and structural
databases [2–5] and more sophisticated deep learning
neural networks [6, 7].

Instead of multi-state secondary structure, backbone
structure of proteins can be more accurately described by
continuous dihedral or rotational angles about the N-Cα
bond (φ), the Cα-C bond (ψ) for single residues. A number
of methods have been developed for prediction of angles
in discrete states [8–11] or continuous values [6, 12–17].
For example, ANGLOR [15] employs neural networks and
support vector machine to predict φ and ψ separately.
TANGLE [16] utilizes a two-level support vector regres-
sion to predict backbone torsion angles (φ, ψ) from amino
acid sequences. Li et al. [17] predicted protein torsion
angles using four deep learning architectures, including
deep neural network (DNN), deep restricted Boltzmann
machine (DRBN), deep recurrent neural network (DRNN)
and deep recurrent restricted Boltzmann machine
(DReRBM). Most recently, Heffernan et al. [18] employed
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long short-term memory bidirectional recurrent neural
networks that allows capture of nonlocal interactions and
yielded the highest reported accuracy in angle prediction.
Most recent review on torsion angle prediction can be
found in [19]. Predicted angles have been proven useful in
fold recognition [20, 21] and fragment-based [22] or
fragment-free structure prediction [23]. A complementary
description of backbone structure is to employ the angle be-
tween Cαi-1-Cαi-Cαi + 1 (θ) and the rotational angle about
the Cαi-Cαi + 1 bond (τ). Unlike single-residue representation
of φ and ψ angles, these two Cα-atom-based angles involve
3–4 locally connected residues. Predicted Cα-atom-based
angles have demonstrated their potential usefulness in
model quality assessment and structure prediction [6, 24].
Continuous, real value prediction of angles has the ad-

vantage over prediction of a few states as it provides a
high-resolution description of backbone and removes
the arbitrariness of defining boundaries between discrete
states. Real-value prediction is a regression problem and
it does not provide a separate confidence measure for
predicted values. By comparison, prediction of discrete
states is a classification problem and predicted probability
of each class can be employed as a confidence measure. A
confidence measure is needed because it allows conform-
ational sampling of all angle regions in different probabil-
ities, rather than a single angle in real-value prediction [8].
In fact, lack of a confidence measure for real-value predic-
tion limited the usefulness of predicted angles as restrains
for three-dimensional structure prediction [23]. Moreover,
an accurate prediction of angle probability may provide
useful information of conformational flexibility and, in the
extreme case, protein intrinsic disorder [25]. One
approach is to develop a separate method for predicting
errors in predicted angles [26]. A reasonable accuracy was
demonstrated between predicted and actual errors in
angles with a Spearman correlation coefficient at 0.6.
In this study, we obtained the confidence measure of

predicted angles by going back to discrete prediction.
Early study by Kang et al. [8] divided φ and ψ angles into
equal size bins of 10°. More coarse-grained grids were
employed in later studies such as 30° by Bystroff et al.
[10] and 40° by Kuang et al. [11]. This work employed a
more refined, near-continuous discretization (5° bin in
angles). Moreover, unlike previous methods, which is
limited to torsion angles φ and ψ, we also predict Cα-a-
tom-based angles θ and τ with the same fine grids. By
using the same training and test sets as SPIDER2 [6],
this fine-grid-based prediction not only achieves signifi-
cantly more accurate prediction in given angle bins than
SPIDER2, SPIDER3 [18] and other techniques without
iterative multi-neural-network training but also provides
the probabilities of predicted angles that might be useful
for protein disorder prediction, protein structure
prediction, and model quality assessment.

Methods
Datasets
To facilitate comparison, the datasets for the training and
test of SPIDER2 [6, 27] were employed here for training
and testing the neural network models. The training and
test datasets contain 4590 (TR4590) and 1199 proteins
(TS1199), respectively. These proteins have sequence iden-
tity less than 25% among them and their X-ray resolutions
are better than 2 Å. Furthermore, we obtained a dataset
that contained annotated structured and unstructured
(intrinsically disordered) regions of 329 proteins (SL329),
which was used by [28, 29]. Disordered regions in SL329
were annotated by DisProt [30] and Remark 465 in PDB
[31] structure. Here, we tested the assumption that intrin-
sically disordered regions have a broad distribution of
torsion angles and thus higher entropy in probabilities of
predicted angles than structured regions.
In addition, we obtained all top 1 server models of 72

proteins in critical assessment of structure prediction
(CASP 11). The CASP11MOD set has a total of 3017
models. The sequence identity between CASP11MOD
and training dataset (TR4590) is less than 30%. We
characterized the local structural quality of each model
by sequence-position-dependent S-score [32]. Si = 1/(1
+ (di/d0)

2, where d0 = 3 Å, di was the distance between
the residue i in the model structure and the same
residue in the native structure. The pairwise structural
alignment was performed by SPalign [33]. This dataset
was employed for testing the usefulness of probabilities
of predicted angles for structure prediction and model
quality assessment.
Another independent test set is Rosetta decoy sets. It

contains 58 native crystal protein structures with 100 low-
est scoring models per native structure using Rosetta de
novo structure prediction algorithm followed by all-atom
refinement and 20 crystal structures that have been refined
in Rosetta.
All datasets can be found at URL: http://sparks-

lab.org/download/yueyang/data/spiderbin-dataset.tgz.

Deep neural-network architecture
The deep neural network implemented by Palm [34] was
employed for prediction of discrete angles. Stacked sparse
auto-encoder was utilized for initializing unsupervised
weights with learning rate of 0.05, which were refined by
standard backward propagation. There were three hidden
layers, with 150 hidden neurons in each layer with
learning rates at 1.0, 0.5, 0.2, and 0.05 for different layers.

Input features
We have built two separate models. The first model
(M1) employed 27 features for each amino acid residue
and a window size of 13 with 6 amino acid residues at
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each side of the query residue. The input features for a
given amino acid residue are seven representative amino
acid properties and Position Specific Scoring Matrix
(PSSM) generated by PSI-BLAST [35] with three
iterations of searching against NR database with an
E-value of 0.001 (20 features). The seven amino acid
properties are steric parameter (graph shape index),
hydrophobicity, volume, polarizability, isoelectric point,
helix probability, and sheet probability as we have employed
in SPIDER2 [6, 27] .
In the second model (M2), we employed PSSM plus

the output of SPIDER2 as input features, which includes
predicted secondary structures, probabilities for three
types of secondary structure (3 features), relative solvent
accessibility (RSA) (1 feature), cosine/sine functions of
backbone φ and ψ angles and Cα-atom-based angle θ and
rotational angle τ (2*4 = 8 features), contact numbers
based on Cα and Cβ atoms (CNα and CNβ, 2 features),
respectively, and up and down half-sphere exposures
(HSE) based on the Cα-Cβ vector and the Cα-Cα vector
(HSEβ-up, HSEβ-down, HSEα-up, and HSEα-down, 4 fea-
tures), respectively. We also used a sliding window size
of 7 (3 amino acids at each side of the query amino
acid residue) to represent each residue. This leads to
266 input features for per residue. We did not
employ seven amino acid properties in M2 because
they were employed in SPIDER2 and a smaller
window size for M2 was employed because SPIDER2
has already employed a window size of 17 for its
prediction.

Outputs
For this grid-based method, all backbone angles were
divided in 5° bin. φ, ψ, and τ ranging from − 180° to 180°
have 72 bins, and θ ranging from 0° to 180° have 36 bins.
In training, the actual angles are coded as 1 for the
designated bin and 0, otherwise. A total of 252 (72*3 +
36) output nodes were employed for four angles, which
are predicted simultaneously.

Training, test and performance evaluation
The neural network model was trained by ten-fold
cross validation with TR4590 and independently
tested by TS1199. In the ten-fold cross validation, the
training dataset was randomly divided into ten
subsets. Nine subsets were employed for training and
the remaining one subset was for test. This process
repeated ten times so that all subsets were employed
for test. Since predicting the torsion angles with 5°
bin is a multi-class classification problem, the
performance of angle prediction was evaluated by the
number of correctly predicted angle bins in the total

number of residues. The angle bin with the highest
predicted probability is the predicted angle bin.

Results
Performance comparison
Table 1 compares the accuracy of four angle bins from
SPIDER2 and two models [without (M1) or with (M2)
SPIDER2 as input] from this work. It indicates that both
models achieved higher accuracies for four angles on
both training dataset (TR4590) and test dataset
(TS1199). For the test set, there are 2–5% absolute im-
provements even without SPIDER2 (M1) as input with
the highest improvement in θ angle. Inputting SPIDER2
prediction (M2) yielded a small but statistically signifi-
cant improvement in bin accuracy (p < 2.9e-09 for all
four angles) with the best improvement in θ (2%) and τ
(1%) angles. The overall accuracy is 37% for θ and
19–20% for rotational angles (φ, ψ, and τ). In the test
set, we further compared our method to SPIDER3 [18]
and ANGLOR [15] in addition to SPIDER2. As shown in
the table, our grid-based methods (M1 and M2) are
more accurate in getting angles within 5° bin (e.g. 19.2%
by M1 versus 14.0% by ANGLOR and 15.6% by
SPIDER3 in φ, 17.1% by M1 versus 5.5% by ANGLOR
and 15.7% by SPIDER3 in ψ).
One nice feature of the grid-based prediction is that it

can provide top predicted angles to choose from, rather
than, a single angle in real-value prediction. As Table 1
showed, if the accuracy is measured by matching the na-
tive angles to one of the top five predicted angle bins,
the accuracy increases 32–42% to 50–80% over top 1 for
M1 and 35–44% to 53–81% over top 1 for M2. M2
consistently improves over M1 by 2–3% for top 5
matches in all four angles.
For structure prediction, large angle errors are the

biggest concern. The φ angles can be split into two
states [0° to 150°] and [(150° to 180°) and (− 180° to 0°)]
and the ψ angles into [− 100° to 60°] and [(− 180° to − 100°)

Table 1 Accuracy for four angles, 5° for each bin

Dataset Method φ (Top 5c) ψ (Top 5c) θ (Top 5c) τ (Top 5c)

TR4590 SPIDER2a 0.166 0.162 0.318 0.161

M1b 0.196(0.607) 0.179(0.583) 0.365(0.799) 0.174(0.504)

M2b 0.203(0.636) 0.187(0.616) 0.379(0.828) 0.185(0.547)

TS1199 ANGLOR 0.141 0.055 NA NA

SPIDER2a 0.162 0.151 0.304 0.153

SPIDER3a 0.156 0.157 0.325 0.162

M1b 0.192(0.598) 0.171(0.567) 0.358(0.794) 0.171(0.497)

M2 b 0.196(0.615) 0.174(0.588) 0.367(0.810) 0.178(0.528)
aPredicted real angle values from SPIDER2/SPIDER3 were evaluated according
to 5° bin. bM1 and M2 are models without or with SPIDER2 as input,
respectively. c The number in parentheses is the accuracy of matching the
native angles to one of the top five predicted angle bins
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and (60° to 180°)]. SPIDER2 achieved 96.6% and 86.8% for
two-state prediction of φ and ψ, respectively. By
comparison, M1 achieved 96.0% and 84.2%, M2 achieved
96.5% and 86.8%, respectively. Thus, the large-angle error
is comparable to SPIDER2, in the absence of iterative
training.
One interesting question is whether or not a smaller

number of output nodes would improve the accuracy of
prediction. Table 2 compares the performance of the
methods trained by 10° and 5° bins, respectively. For the
test set (TS1199), the differences in correctly predicted
angle bins for the methods trained by different angle
bins are small (~ 0.3–0.4%). Thus, we will mainly focus
on the methods based on the 5° bin.

Feature contributions
In order to evaluate the contributions from various
features, we separated all features in M2 into three
groups: PSSM-based features (PSSM profile), angle-
based features (cosine/sine of predicted φ, ψ, θ and τ),
and structure-based features (predicted secondary structure
probability, relative solvent accessibility, half-sphere expos-
ure, and contact numbers). As shown in Table 3, the model
with angle-based features achieved the highest overall
accuracy in three feature groups, followed by structure-
based features. When two types of features are employed,
the model using angle-based and PSSM-based features has
a higher accuracy than that angle-based plus structure-
based features. The M2 model with all three feature groups
yields the best overall accuracy of angle bins and accuracy
of top5 match. The improvement is statistically significant
(p-value < 9.9e-02 over the best two feature groups and
p-value < 1.8e-07 over the best single feature group).

Discrimination of protein disordered regions
If predicted probabilities are actual representation of
angle fluctuations, one would expect that angles in in-
trinsically disordered regions should have large
fluctuation. In other words, predicted probabilities
should be useful as a feature for predicting disordered
regions. To test this concept, we compute the entropy
Entropy = −∑iPilog(Pi). Pi is i-th angle bin probability. In
order to evaluate the method based on area under the

receiver operating characteristic curve (AUC), we normal-
ized the entropy into (0, 1) by uniform distribution
(Normalization has no effect on AUC). A window-based
average of the entropy was employed as a single feature to
predict protein disorder with the optimized window size of
21 residues at the query residue at the center. We found
that the entropies based on angles predicted by M2 (with
SPIDER2 as the input) are much better than those by M1,
suggesting more accurately predicted probabilities by M2
(See Fig. 1). The former has AUC values between 0.55 and
0.64 by entropies based on different angles, compared to

Table 3 Accuracy for four angles, 5° for each bin, using
different combinations of features groups in M2 on training
dataset TR4590 with 10-fold cross validation. The number in par-
entheses is the accuracy of matching the native angles to one
of the top five predicted angle bins

Method φ (Top 5) ψ (Top 5) θ (Top 5) τ (Top 5)

Angles-based
features(Angles)a

0.200(0.629) 0.183(0.608) 0.374(0.823) 0.180(0.542)

Structure-based
features(Struct)b

0.193(0.602) 0.176(0.583) 0.363(0.804) 0.174(0.521)

PSSM-based
features(PSSM)c

0.188(0.588) 0.168(0.555) 0.353(0.784) 0.167(0.493)

Angles+PSSM 0.202(0.633) 0.186(0.613) 0.377(0.826) 0.184(0.545)

Angles+Struct 0.201(0.632) 0.185(0.611) 0.376(0.825) 0.182(0.544)

PSSM+Struct 0.198(0.622) 0.183(0.603) 0.373(0.819) 0.180(0.534)

All features of
M2 model

0.203(0.636) 0.187(0.616) 0.379(0.828) 0.185(0.547)

apredicted angle feature group (φ and ψ angles and Cα-atom-based angle θ
and rotational angle τ). b Structure-based feature group: predicted secondary
structure probability, relative solvent accessibility, half-sphere exposure, and
contact numbers. c PSSM based feature group: the features from PSSM profile

Fig. 1 Receiver operating characteristic curve for disorder prediction
given by a single feature from entropy of different angle probabilities
predicted by M1 (PSSM + amino acid properties) and M2 (with SPIDER
2 as input), as compared to a deep-learning neural network based
techniques SPOT-disorder employing multiple features

Table 2 Accuracy for four angles, 10° for each bin in TS1199

Method φ ψ θ τ

SPIDER2a 0.292 0.263 0.458 0.241

M2–5°b 0.337 0.297 0.516 0.274

M2–10°c 0.340 0.300 0.520 0.277
aPredicted real angle values from SPIDER2 were evaluated based on 10° bin.
bTrained with SPIDER2 input and 5° bin and evaluated by combining two
neighboring 5° bin. c Trained with SPIDER2 input and 10° bin
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between 0.72 to 0.77 by M2. Entropy based on τ predicted
by M2 has the highest discrimination capability with AUC
= 0.77 between structured and intrinsically disordered re-
gions. This is followed by M2-ψ, M2-θ and M2-φ. Better
predictions by τ and θ than by ψ and φ are somewhat ex-
pected because the former angles are involving 3–4 resi-
dues and thus have a longer-range information than ψ and
φ (single residue properties). This is consistent with the
fact that structures built using predicted τ and θ are more
accurate than those using predicted ψ and φ [14].
For comparison, we also listed one of the current-

state-of-the-art techniques SPOT-disorder [36] which in-
tegrates multiple features by deep bidirectional long
short-term memory recurrent neural networks. It
achieves an AUC of 0.89 for the same dataset. Other
methods such as DisEMBL (version 1.4) [37] and
DISOPRED (version 3.16) [38] achieved AUC of 0.77
and 0.87, respectively. Thus, it is encouraging that a
single feature from entropy based on angle probability
fluctuation can achieve 0.77 for AUC. This indicates that
the angle probability predicted by our method is physic-
ally reasonable as low and high entropies are linked to
the regions with and without a well-defined structure,
respectively.

Model structure selection
Predicted angle probabilities can also be used to rank
model structures. To do this, we calculate a pseudo-
energy score for each model protein by defining
PE-score=

P
i logðPi=P0

i Þ where Pi is normalized pre-
dicted angle probability and P0

i is expected angle prob-
ability in the particular angle bin where each residue has
positioned in the structural model. The performance of
predicted angle probability for model ranking is
measured by the Pearson correlation coefficient between
PE-score and model accuracy (GDT_TS1 score) from
the CASP11MOD dataset (See Methods). A high correl-
ation indicates a simple relation between the overall
quality of the model structure and the PE-score. Another
measure is the model accuracy of the top 1 model. We
compared the performance of PE-score with several
established knowledge-based energy function (DFIRE
[39], dDFIRE [40], and RWplus [41]).
Table 4 shows that the PE-scores based on all four

angles have much higher correlation coefficients than
commonly-used statistical energy scores (DFIRE, dDFIRE,
and RWPlus) (positive correlations of 0.45–0.57 by M2
versus negative correlations of 0.20–0.27 by statistical
energy functions). The model accuracy (measured by
GDT scores) based on predicted top-1 ranked models
ranges from 0.47 to 0.48 by PE-scores based on pre-
dicted angles, which are comparable to those given by
statistical energy scores. Figure 2 Shows the boxplot

of average PCCs for each target for different methods.
It shows that M2-φ M2-ψ, M2-θ and M2-τ achieved
higher average PCCs than absolute average PCCs of
the DFIRE, dDFIRE and RWplus (p-value < 6.1e-06).
For average GDT scores, there is no significant differ-
ence between the four angles and other three poten-
tial energy software as shown in Table 4 and
Additional file 1: Figure S1.
Take T0848 for example, T0848 is a hard target in

CASP11. It contains two domains, T0848-D1:34–171;
T0848-D2 172–354. Figure 3 shows that there is a
higher correlation 0.55 between M2-τ quality scores and
GDT scores than correlation − 0.09 of dDFIRE score.
The selected model is BAKER-ROSETTASERVER_TS1
for T0848 using M2-τ quality score. (DFIRE, RWplus,
M2-φ, M2-ψ, M2-θ scores, see Additional file 1: Figure
S2-S6). Figure 4 visualizes the accuracy of the selected
model by the alignment between the first domain of se-
lected model and the first domain of actual target T0848
(PDBID: 4R4G).

Table 4 Performance in model selection according to average
Pearson correlation coefficient (PCC) and average Global
Distance Test (GDT) score of top 1 ranked models in the
CASP11MOD dataset

Method PCC a (median b) GDT

DFIRE −0.24 (−0.23) 0.46

dDFIRE −0.27(−0.31) 0.45

RWPlus − 0.20(− 0.21) 0.47

M2 - φ 0.45(0.47) 0.48

M2 -ψ 0.49(0.49) 0.48

M2-θ 0.53(0.55) 0.47

M2-τ 0.57(0.57) 0.47
aAverage 72 targets’ PCCs, bMedian of 72 targets’PCCs , and the best results
were emphasized

Fig. 2 Average Pearson correlation coefficients for four angle based
scores and statistical energy scores: DFIRE, dDFIRE and RWplus
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To further test model selection, Table 5 shows the
performance of our methods for the Rosetta decoy
set. M2 method achieved average PCC of 0.43~ 0.53
and GDT scores of 0.66–0.72. Again, M2-τ has the
best performance. For this specific dataset, the
performance of predicted angle probabilities is
comparable to the energy scores in terms of PCC or
GDT scores.

Discussion and Conclusion
In this work, we proposed a method to make grid-based
angle prediction. Our methods achieved overall accuracy

of 19%~ 38% on training dataset and 17%~ 37% on the
test dataset with a grid of 5° angle bins, depending on
specific angles. These accuracies are 2–6% higher than
the real-value prediction of SPIDER2 or SPIDER3 for
angles within 5°.
One advantage of using bins, rather than predicting

real angle values is that using bins will yield the
probability for predicted angles. We show that angle
probability for a given bin is a very useful feature to
identity the disordered region with AUC as high as 0.77
by M2 for a single feature based on predicted τ. The
probability was also used as an energy score to score
model structures and achieved better or comparable ac-
curacy in model selection and higher or comparable

Fig. 4 The alignment between the first domain of the selected
model using M2-τ quality score in purple and the first domain of
actual target T0848 structure (PDBID: 4R4G) in green

Table 5 Performance in model selection according to average
Pearson correlation coefficient (PCC) and average Global
Distance Test (GDT) score of models in the Rosetta decoy set

Method PCC a (median b) GDT

DFIRE −0.53 (−0.71) 0.72

dDFIRE −0.38(− 0.48) 0.59

RWPlus −0.51(− 0.68) 0.70

M2 - φ 0.43(0.51) 0.66

M2 -ψ 0.48(0.65) 0.69

M2-θ 0.50(0.66) 0.72

M2-τ 0.53(0.68) 0.69
aAverage 58 native structures’ PCCs, bMedian of 58 native structures’PCCs ,
and the best results were emphasized

Fig. 3 Scatter plot for quality scores and GDT score for target T0848.
Dashed line is the regression line between quality scores and GDT
scores. (A) dDFIRE energy score vs. GDT score, Pearson correlation
coefficient is − 0.09 (B) M2-τ scores vs. GDT score, Pearson correlation
coefficient is 0.55
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average correlation coefficients between model accuracy
and ranking scores as compared to statistical energy func-
tions. The ability to characterize protein structure and dis-
order confirms that predicted probabilities are physically
reasonable. It could be useful in real world applications of
protein structure and disorder prediction as a comple-
mentary feature to other techniques. The software is
available at: http://sparks-lab.org/server/SPIDER2/ as a part
of SPIDER2 structure-property-prediction package.

Additional file

Additional file 1: Supplementary Information for Grid-based Prediction
of Torsion Angle Probabilities of Protein Backbone and Its Application to
Discrimination of Protein Intrinsic Disorder Regions and Selection of
Model Structures. Figure S1: Average GDT-TS scores of top 1 server
models for different methods on the CASP11 dataset (CASP11MOD).
Figure S2: Scatter plot for DFIRE energy scores and GDT-TS score for
target T0848. Blue line is the regression line between DFIRE energy scores
sand GDT-TS scores. Correlation coefficient is − 0.04. Figure S3: Scatter
plot for RWplus energy scores and GDTTS score for target T0848. Blue line
is the regression line between RWplus energy scores sand GDTTS scores.
Correlation coefficient is − 0.03. Figure S4: Scatter plot for M2-φ energy
scores and GDT-TS score for target T0848. Blue line is the regression line
between M2-φ energy scores sand GDT-TS scores. Correlation coefficient
is 0.42. Figure S5: Scatter plot for M2-ψ energy scores and GDT-TS score
for target T0848. Blue line is the regression line between M2-ψ energy
scores sand GDT-TS scores. Correlation coefficient is 0.49. Figure S6:
Scatter plot for M2-θ energy scores and GDT-TS score for target T0848.
Blue line is the regression line between M2-θ energy scores sand GDT-TS
scores. Correlation coefficient is 0.46. (DOCX 221 kb)
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