
612 | Nature | Vol 641 | 15 May 2025

Article

Quantum error correction of qudits beyond 
break-even

Benjamin L. Brock1,2,3 ✉, Shraddha Singh1,2,3, Alec Eickbusch1,2,3,4, Volodymyr V. Sivak1,2,3,4, 
Andy Z. Ding1,2,3, Luigi Frunzio1,2,3, Steven M. Girvin1,2,3 & Michel H. Devoret1,2,3,5 ✉

Hilbert space dimension is a key resource for quantum information processing1,2.  
Not only is a large overall Hilbert space an essential requirement for quantum error 
correction, but a large local Hilbert space can also be advantageous for realizing  
gates and algorithms more efficiently3–7. As a result, there has been considerable 
experimental effort in recent years to develop quantum computing platforms using 
qudits (d-dimensional quantum systems with d > 2) as the fundamental unit of 
quantum information8–19. Just as with qubits, quantum error correction of these  
qudits will be necessary in the long run, but so far, error correction of logical qudits 
has not been demonstrated experimentally. Here we report the experimental 
realization of an error-corrected logical qutrit (d = 3) and ququart (d = 4), which was 
achieved with the Gottesman–Kitaev–Preskill bosonic code20. Using a reinforcement 
learning agent21,22, we optimized the Gottesman–Kitaev–Preskill qutrit (ququart)  
as a ternary (quaternary) quantum memory and achieved beyond break-even error 
correction with a gain of 1.82 ± 0.03 (1.87 ± 0.03). This work represents a novel way  
of leveraging the large Hilbert space of a harmonic oscillator to realize hardware-
efficient quantum error correction.

The number of quantum states available to a quantum computer, 
quantified by its Hilbert space dimension, is a fundamental and pre-
cious resource1,2. Crucially, the goal of achieving quantum advantage 
at scale relies on the ability to manipulate an exponentially large Hil-
bert space with subexponentially many operations. This large Hilbert 
space is typically realized using N qubits (two-level quantum systems), 
giving rise to a 2N-dimensional Hilbert space. However, most physi-
cal realizations of qubits have many more than two available states. 
These valuable extra quantum states often go untapped, because 
the methods for working with qudits (d-level quantum systems with 
d > 2) as the fundamental unit of quantum information are more 
complicated and less well developed than those for working with  
qubits23.

On the other hand, embracing these qudits could enable more effi-
cient distillation of magic states24,25, synthesis of gates3,4, compilation of 
algorithms5–7, and simulation of high-dimensional quantum systems26,27. 
For these reasons, considerable experimental effort has been spent in 
recent years on developing qudit-based platforms for quantum com-
puting, using donor spins in silicon8, ultracold atoms and molecules9,10, 
optical photons11,12, superconducting circuits13–15, trapped ions16,17, and 
vacancy centers18,19. If qudits are to be useful in the long run, however, 
quantum error correction (QEC) will be necessary.

In this work we experimentally demonstrate QEC of logical qudits 
with d > 2, using the Gottesman–Kitaev–Preskill (GKP) bosonic code20 
to realize a logical qutrit (d = 3) and ququart (d = 4) encoded in grid 
states of an oscillator. Our optimized GKP qutrit (ququart) lived 

longer, on average, than the best physical qutrit (ququart) available 
in our system by a factor of 1.82 ± 0.03 (1.87 ± 0.03), making this one 
of only a handful of experiments to beat the break-even point of QEC  
for quantum memories22,28–30. This experiment represents a novel 
way of leveraging the large Hilbert space of an oscillator and builds 
on previous realizations of GKP qubits22,31–36 and bosonic codes28,29,37. 
Access to a higher-dimensional error-corrected manifold of quantum 
states may enable more hardware-efficient architectures for quantum 
information processing.

Error correction of GKP qudits
Our experimental device is the same as in ref. 22 and consists of a 
tantalum transmon38,39 dispersively coupled to a three-dimensional 
superconducting microwave cavity40, as shown in Fig. 1a. The cavity 
hosts an oscillator mode (described by Fock states n n{ ⟩ : ∈ }≥0Z  and 
mode operator a), which is used for storing our logical GKP states. 
The transmon hosts a qubit (described by ground and excited states 
{|g⟩, |e⟩} and Pauli operators σx,y,z), which is used as an ancilla for con-
trolling the oscillator and performing error correction. The cavity has 
an energy relaxation lifetime of T1,c = 631 μs and Ramsey coherence 
time T2R,c = 1,030 μs, whereas the transmon has lifetime T1,q = 295 μs 
and Hahn-echo lifetime T2E,q = 286 μs (Supplementary Information  
section I).

We employed the single-mode square GKP code20, which is designed 
to be translationally symmetric in phase space. The structure of the 
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code comes from the geometric phase associated with displace-
ment operators D(α) = exp(αa† − α*a) in phase space, as depicted in  
Fig. 1b. Two displacements commute up to a phase given by twice the 
area A they enclose, such that D(α1)D(α2) = exp(2iA)D(α2)D(α1) with  
A α α= Im[ *]1 2 . The ideal code has stabilizer generators SX = D(ℓd) and 
SZ = D(iℓd), where ℓd is the stabilizer length. If these stabilizers are to 
have a common +1 eigenspace (the code space), they must commute, 
which means they must enclose an area πd in phase space for positive 
integer d, such that ℓ d= πd , where d is the dimension of the code 
space. The code words of this idealized logical qudit are grids of posi-
tion eigenstates |q⟩, with form

∣ ∣∑Z q n d k d⟩ ∝ = 2π/ + 2π ⟩, (1)n d
k=−∞

∞

where n = 0, 1, …, d − 1 and q a a= ( + )/ 2†  is the position operator. Note 
that with our choice of phase-space units, translations in position and 
displacements along the real axis of phase space differ in amplitude 
by a factor of 2 . The logical operators of the ideal code are the dis-
placement operators X D d= ( π/ )d  and Z D d= (i π/ )d , which act on 
the code space as

Z Z ω Z

X Z Z

⟩ = ( ) ⟩ ,

⟩ = ⟩ ,
(2)

d n d d
n

n d

d n d n d d( +1)mod

∣ ∣
∣ ∣

where ωd = exp(2πi/d) is the primitive dth root of unity. These opera-
tors Zd and Xd are the generalized Pauli operators41,42, which are unitary 
but no longer Hermitian for d > 2. These operators obey the general-
ized commutation relation ZdXd = ωdXdZd, determined by the area 
these displacements enclose in phase space. Compared to GKP qubits, 
GKP qudits have a longer stabilizer length that is proportional to d , 

such that they encode information further out in phase space, and  
a shorter distance between logical states that is proportional  
to d1/ .

In practice, we work with an approximate finite-energy version of this 
code, which is obtained by applying the Gaussian envelope operator 
EΔ = exp(−Δ2a†a) to both the operators and states of the ideal code43,44. 
The parameter Δ determines both the squeezing of individual quad-
rature peaks in the grid states as well as their overall extent in energy. 
For smaller Δ, the peaks are more highly squeezed and the states have 
more energy. On increasing d, we expect to require smaller Δ, as the 
logical states are more closely spaced and contain information fur-
ther out in phase space (at higher energies). With smaller Δ, we expect 
the lifetime of our GKP qudits to decrease, as having more energy 
amplifies the rate of oscillator photon loss, and having information 
stored further out in phase space amplifies the effects of oscillator  
dephasing.

To stabilize the finite-energy GKP qudit manifold, we adapted the 
small-big-small (SBS) protocol43 to the stabilizer length ℓ d= πd ,  
as shown in Fig. 1c. This circuit, consisting of echoed conditional  
displacement (ECD) gates ∣ ∣ ∣ ∣β D β e g D β g eECD( ) = ( /2) ⟩⟨ + (− /2) ⟩⟨  and 
ancilla qubit rotations Rφ(θ) = exp[i(σx cos φ + σy sin φ)θ/2], realizes an 
engineered dissipation onto the finite-energy GKP qudit manifold that 
removes the entropy associated with physical errors in the oscillator 
before they can accumulate into logical errors (Supplementary Infor-
mation section II-A)32,43. In these expressions, β is the complex ampli-
tude of the conditional displacement, φ is the azimuthal angle defining 
the rotation axis and θ is the rotation angle. This protocol is autono-
mous, requiring only a reset of the ancilla between rounds. We update 
the reference phase of the cavity mode between rounds to stabilize 
both quadratures in phase space (Methods).

To verify that this generalized SBS protocol works, we ran it for  
300 rounds, starting with the cavity in vacuum, which prepared  
the maximally mixed state of the finite-energy GKP qudit ρ =d

mix

d Z Z(1/ ) ∑ ⟩⟨n
d

n n d=0
−1 ∣ ∣ . We performed characteristic function tomogra-

phy45 of ρd
mix prepared in this way, the results of which are shown in 

Fig. 1d. As expected from its definition β D β( ) = ⟨ ( )⟩C , the character-
istic function of these states has peaks at the stabilizer lengths, which 
increase with d according to ℓ d= πd . The negative regions of βRe[ ( )]C  
for odd d are a consequence of the geometric phase associated  
with displacement operators D d D d D d(e 2π ) = (−1) ( π ) (i π )diπ/4 . 
However, it is interesting to note that the states ρd

mix for odd d have 
regions of Wigner negativity (Supplementary Information section II-B) 
and are, therefore, non-classical46.

Characterizing quantum memories
To characterize the performance of our logical qudits as quantum 
memories and establish the concept of QEC gain for qudits, we followed 
previous work22 and used the average channel fidelity F E I( , )d , which 
quantifies how well a channel E  realizes the identity I (ref. 47). Although 
Fd  will have a non-exponential time evolution in general, it can always 
be expanded to short times dt as I d d Γ t( , ) ≈ 1 − (( − 1)/ ) ddF E , where Γ is 
the effective decay rate of the channel E  at short times. This rate Γ ena-
bles us to compare different decay channels on the same footing. In 
particular, we want to compare the decay rate Γd

logical  of our logical 
qudit to Γd

physical  of the best physical qudit in our system. We define the 
QEC gain as their ratio G Γ Γ= /d d d

physical logical, and the break-even point is 
when this gain is unity.

The average channel fidelity can be expressed in terms of the prob-
abilities ∣ ∣ ∣ ∣ψ ψ ψ ψ⟨ ( ⟩⟨ ) ⟩dE  that our error-correction channel E  preserves 
the qudit state |ψ⟩d, summed over a representative set of states {|ψ⟩d} 
(Supplementary Information section III). Each of these probabilities 
entails a separate experiment in which we prepare the state |ψ⟩d, per-
form error correction, and measure our logical qudit in a basis contain-
ing |ψ⟩d. Herein lies the primary experimental challenge of the present 
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Fig. 1 | Stabilizing GKP qudits. a, Schematic of the experimental device.  
b, Geometric structure of the displacement operators that define the single- 
mode square GKP code. c, Circuit for one round of finite-energy GKP qudit 
stabilization, generalizing the SBS protocol43. The big ECD gate48 of amplitude 
ℓ d Δ= π cosh( )d Δ,

2  is approximately the stabilizer length. The small ECD gates 
of amplitude ε d Δ/2 = π sinh( )/2d

2  account for the envelope size Δ. At the end of 
SBS round j, the cavity phase is updated by ϕj (Methods). d, Measured real part 
of the characteristic function of the maximally mixed GKP qudit state for d = 1 
to 4 with Δ = 0.3, prepared by performing 300 SBS rounds starting from the 
cavity in its vacuum state |0⟩.
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Fig. 2 | Realization of a logical GKP qutrit. a, State preparation of qutrit Pauli 
eigenstates |P0⟩3 with Δ = 0.32. b, Circuit for measuring a qutrit in the basis of 
Pauli operator P3 using an ancilla qubit, where θ = 2arctan(1/ 2 )0 . The first 
measurement distinguishes between the state |P0⟩3 and the subspace {|P1⟩3, 
|P2⟩3}, whereas the second distinguishes between |P1⟩3 and {|P0⟩3, |P2⟩3}. The 
Bloch spheres depict the trajectories taken by the ancilla when the qutrit is in 

each Pauli eigenstate. c, Backaction of the qutrit Pauli measurement in the Z3 
basis, applied to the maximally mixed qutrit state. d, Decay of qutrit Pauli 
eigenstates |P0⟩3 under the optimized QEC protocol. The dashed black lines 
indicate a probability of 1/3. The solid grey lines are exponential fits. From left  
to right, we found γ = 1,153± 13 μsX0

−1 , γ = 1,120± 15 μsZ0
−1 , γ = 743± 10 μsXZ0

−1  and 
γ = 727 ± 11 μs

X Z2
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work: devising ways of measuring our logical GKP qudit in bases con-
taining each state in our representative set {|ψ⟩d} using only binary 
measurements of our ancilla qubit.

For the qutrit in d = 3, our representative set of states are the bases 
{|Pn⟩3: n = 0, 1, 2} of Pauli operators P X Z X Z X Z∈ = { , , , }3 3 3 3 3 3

2
3P , defined 

by P|Pn⟩3 = ωn|Pn⟩3 for ω = exp(2πi/3). The effective decay rate of our 
logical GKP qutrit can then be expressed as

∑ ∑Γ γ=
1

12
, (3)

P n
P3

GKP

∈ =0

2

n
3P

where γPn
 is the rate at which the state |Pn⟩3 decays to ρ3

mix . For the 
ququart in d = 4, our representative set of states consists of two types 
of bases. The first type are the bases {|Pn⟩4: n = 0, 1, 2, 3} of Pauli opera-
tors P X Z ω X Z X Z ω X Z X Z∈ = { , , , , , }4 4 4 4 4 4

2
4 4

3
4 4 4

2P , defined by P|Pn⟩4 =  
ωn|Pn⟩4 for ω = i. The second type is what we call the ququart parity basis 
{|±, m⟩4: m = 0, 1} consisting of the simultaneous eigenstates of X4

2  
and Z4

2, such that X m m±, ⟩ = ± ±, ⟩4
2

4 4∣ ∣  and Z m m±, ⟩ = (−1) ±, ⟩m
4
2

4 4∣ ∣ .  
The effective decay rate of our logical GKP ququart can then be 
expressed as

∑ ∑ ∑Γ γ γ=
1

20
− , (4)

P n
P

s
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m4
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∈ =0

3

=±
=0,1

±,n
4















P

where γPn
 (γ±,m) is the rate at which the Pauli eigenstate |Pn⟩4 (parity state 

|±, m⟩4) decays to ρ4
mix.

As a basis of comparison, the best physical qudit in our system is  
the cavity Fock qudit spanned by the states |0⟩, |1⟩, …, |d − 1⟩. The  
cavity hosting this qudit decoheres under both photon loss and  
pure dephasing at rates κ1,c = 1/T1,c and κϕ,c = 1/T2R,c − 1/2T1,c. From these 
measured rates, we can extrapolate the effective decay rate Γd

Fock of  
the cavity Fock qudit under these decoherence channels. For d = 2 
through 4, we obtained Γ = (851 ± 9 μs)2

Fock −1, Γ = (488 ± 7 μs)3
Fock −1 and 

Γ = (332 ± 6 μs)4
Fock −1.

Logical qutrit beyond break-even
To measure the effective decay rate of the logical GKP qutrit through 
equation (3), we needed to prepare all of the eigenstates of the  
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Pauli operators in P3 and perform measurements in the basis of these 
Pauli operators. To prepare the eigenstates |Pn⟩3, we used interleaved 
sequences of ECD gates and transmon rotations, which enable univer-
sal control of the oscillator mode in the cavity48. We optimized depth-8 
ECD circuits to implement the unitary that maps the cavity vacuum 
state |0⟩ to the desired state |Pn⟩3 with envelope size Δ = 0.32. The 
measured Wigner functions W α D α e D α( ) = ⟨ ( ) (− )⟩iπa a†

 of our prepared 
|P0⟩3 states are shown in Fig. 2a (see Supplementary Information sec-
tion V-A for the other eigenstates). In general, the eigenstates |Pn⟩d  
are oriented in phase space in the direction of the displacement 
induced by Pd, where Xd displaces rightward, Zd displaces upward, and  
P P=d

d
d

−1 −1.
We measured the GKP qutrit in Pauli basis P3 using the circuit shown 

in Fig. 2b. The generalized ancilla-qubit-controlled Pauli operators 
CP3 = |g⟩⟨g|I3 + |e⟩⟨e|P3 were realized with ECD gates, where Id is the iden-
tity operator in dimension d. Intuitively, as generalized Pauli operators 
on GKP qudits are implemented through displacements, the condi-
tional versions of these displacements implement CPd operations, with 
some technical caveats (Methods). The idea of this circuit is to perform 
a projective measurement in the P3 basis using two binary measure-
ments of the ancilla qubit. The first measurement determines whether 
the qutrit is in state |P0⟩3 or the {|P1⟩3, |P2⟩3} subspace, and the second 
determines whether the qutrit is in state |P1⟩3 or the {|P0⟩3, |P2⟩3} sub-
space. These two binary measurements uniquely determine the ternary 
measurement result in the P3 basis and collapse the qutrit state accord-
ingly. Note that this circuit was constructed for the ideal code and incurs 
infidelity when applied to the finite-energy code. To verify that this 
circuit realizes the desired projective measurement, we prepared ρ3

mix, 
measured in the Z3 basis, and performed Wigner tomography of the 
cavity post-selected on the three measurement outcomes. The results 
of this measurement are shown in Fig. 2c (see Supplementary Informa-
tion section V-B for the other Pauli bases).

With these techniques, we used a reinforcement learning agent21 to 
optimize the logical GKP qutrit as a ternary quantum memory following 
the method in ref. 22 (Methods). We then evaluated the optimal QEC 
protocol by preparing each eigenstate |Pn⟩3 for each PP ∈3 3, implement-
ing the optimized QEC protocol for a variable number of rounds, and 
measuring the final state in the P3 basis. Finally, we fitted an exponential 
decay to each probability E∣ ∣ ∣ ∣P P P P⟨ ( ⟩⟨ ) ⟩n n n n  to obtain γPn. The results of 
this evaluation for the |P0⟩3 states are shown in Fig. 2d (the other results 
are given in Supplementary Information section V-C). As with the GKP 
qubit22,33, we found longer lifetimes for the ‘Cartesian’ eigenstates of X3 
and Z3 than for the remaining ‘diagonal’ eigenstates, as the latter were 
more susceptible to both cavity photon-loss errors and ancilla bit-flip 
errors33. Using equation (3) with our measured rates γPn

, we obtained 
Γ = (886 ± 3 μs)3

GKP −1. Comparing with Γ3
Fock, we obtained the QEC gain

G Γ Γ= / = 1.82 ± 0.03, (5)3 3
Fock

3
GKP

which is well beyond the break-even point.

Logical ququart beyond break-even
We followed a similar procedure to measure the effective decay rate 
of our logical GKP ququart through equation (4) as we did for the qutrit, 
the main difference being that we needed to prepare and measure 
states in both the ququart parity basis and the Pauli bases PP ∈ 4. We 
again used depth-8 ECD circuits48 to prepare the Pauli eigenstates |Pn⟩4 
and parity states |±, m⟩4 with Δ = 0.32. The measured Wigner functions 
of our prepared |P0⟩4 states and the |+, 0⟩4 state are shown in Fig. 3a (see 
Supplementary Information section VI-A for the remaining states). 
Again, the eigenstates |Pn⟩d are oriented in phase space in the direction 
of the displacement induced by Pd. By contrast, the parity states |±, m⟩ 
are uniform grids, equally oriented both horizontally and vertically.

We measured the GKP ququart in Pauli basis P4 using the circuit shown 
in Fig. 3b. The first binary measurement of the ancilla qubit distin-
guishes between the even subspace {|P0⟩, |P2⟩} and odd subspace {|P1⟩, 
|P3⟩} by measuring whether P = ± 14

2 , and the second distinguishes 
between the remaining two states by measuring P4 = ±1 (if in the even 
subspace) or P4 = ±i (if in the odd subspace). To verify that this cir-
cuit realizes the desired projective measurement, we prepared ρ4

mix, 
measured in the Z4 basis, and performed Wigner tomography of the 
cavity post-selected on the four measurement outcomes. The results 
of this measurement are shown in Fig. 3c (see Supplementary Informa-
tion section VI-B for the other Pauli bases).

We measured the GKP ququart in the parity basis {|±, m⟩4: m = 0, 1} 
using the circuit shown in Fig. 3d. The first binary measurement of the 
ancilla qubit determines whether X = ± 14

2 , and the second determines 
whether Z = ± 14

2 . To verify that this circuit realizes the desired projec-
tive measurement, we prepared ρ4

mix, measured in the parity basis, and 
performed Wigner tomography post-selected on the four measurement 
outcomes. The results of this measurement are shown in Fig. 3e. As 
with the qutrit, our logical ququart measurements were constructed 
for the ideal code, and they incur infidelity when applied to the finite- 
energy code.

With these techniques, we again used a reinforcement learning 
agent21 to optimize the logical GKP ququart as a quaternary quantum 
memory following the method in ref. 22 (Methods). We then evaluated 
the optimal QEC protocol by preparing each eigenstate |Pn⟩4 for each 

PP ∈4 4 (plus the parity basis), implementing the optimized QEC pro-
tocol for a variable number of rounds, and measuring the final state  
in its corresponding basis. Finally, we fitted an exponential decay to 
each probability ∣ ∣ ∣ ∣EP P P P⟨ ( ⟩⟨ ) ⟩n n n n  and m m m m⟨ ± , ( ± , ⟩⟨ ± , ) ± , ⟩E∣ ∣ ∣ ∣  to  
obtain γPn

 and γ±,m, respectively. The results of this evaluation for the 
|P0⟩4 states and |+, 0⟩4 state are shown in Fig. 3f (the remaining results 
are given in Supplementary Information section VI-C). Again, we found 
longer lifetimes for the Cartesian eigenstates of X4 and Z4 than for the 
remaining eigenstates. Using equation (4) with our measured rates γPn

 
and γ±,m, we obtained Γ = (620 ± 2 μs)4

GKP −1 . Comparing with Γ4
Fock, we 

obtained the QEC gain

G Γ Γ= / = 1.87± 0.03, (6)4 4
Fock

4
GKP

which is, again, well beyond the break-even point.

Discussion
Notably, despite the increasing complexity of the code, we found that 
the QEC gain stayed roughly constant at about 1.8 as we increased the 
dimension of our logical GKP qudit from 2 to 4, as shown in Fig. 4a. 
Note that the gain G2 = 1.81 ± 0.02 that we achieved with the GKP qubit 
is less than the gain of 2.3 previously reported using the same device22, 
which was due to changes in both the device and the experimental 
conditions (see Supplementary Information section IV-C for details). 
Regardless, the measurements shown in Fig. 4a were taken under the 
same conditions, and they indicate that as we increased d from 2 to 4, 
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Fig. 4 | Comparing GKP qudits. a, Effective lifetime of the physical cavity Fock 
qudit and logical GKP qudit for d ∈ {2, 3, 4}. The arrows indicate the QEC gain.  
b, Effective envelope size Δeff of the optimized GKP qudit for d ∈ {2, 3, 4}. c, Mean 
number of photons in the cavity for the optimized GKP qudit for d ∈ {2, 3, 4}.
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the lifetime of our logical GKP qudit decreased at about the same rate 
as that of our cavity Fock qudit.

This decrease occurred because the GKP qudit states are more closely 
spaced and contain information further out in phase space for increas-
ing d, which should require smaller Δ. To verify this, we prepared ρd

mix  
of our optimal GKP qudits and measured the central Gaussian peak of 
their characteristic functions for d = 2 through 4 (Supplementary Infor-
mation). The width Δeff of this Gaussian is related to the parameter Δ 
and decreased with d, as shown in Fig. 4b, in agreement with our expec-
tations. The average number of photons ⟨a†a⟩ in ρd

mix  can also be infer-
red from this measurement of Δeff and is presented in Fig. 4c.

With a smaller Δ, our logical GKP qudits had more energy and were 
more highly squeezed, which should amplify the rates of cavity photon 
loss and dephasing. To corroborate this, we simulated our optimal QEC 
protocols and isolated the relative contributions of different physical 
errors to our overall logical error rates (Supplementary Information 
section VII). We found that the three largest sources of logical errors 
were transmon bit flips, whose relative contribution decreased as d was 
increased, cavity photon loss, whose relative contribution increased as 
d was increased, and cavity dephasing, which was the dominant source 
of error and whose relative contribution increased as d was increased. 
As our cavity dephasing was primarily due to the thermal population 
nth = 2.2 ± 0.1% of the transmon40, the lifetimes of our logical GKP qudits 
could be substantially improved by either reducing nth or using an ancilla 
that can be actively decoupled from the cavity when not in use49,50.

In summary, we have demonstrated QEC of logical qudits with d > 2, 
which represents a milestone achievement in the development of 
qudits for useful quantum technologies. Moreover, we have beaten 
the break-even point for QEC of quantum memories, a result few other 
experiments have accomplished22,28–30. These results rely upon many 
technical advances, such as our generalization of previous experimen-
tal methods22 and our invention of protocols for measuring qudits in 
generalized Pauli bases. Our work builds on the promise of hardware 
efficiency offered by bosonic codes22,28,29,31–37 and represents a novel 
way of leveraging the large Hilbert space of an oscillator. In exchange 
for a modest reduction in lifetime, we gained access to more logical 
quantum states in a single physical system. This could enable more effi-
cient compilation of gates3,4 and algorithms5–7, alternative techniques 
for quantum communication51 and transduction52, and advantageous 
strategies for concatenation into an external multi-qudit code24,25. Such 
a concatenation requires entangling gates, which for GKP qudits can be 
realized with the same operations used for entangling GKP qubits20,53–55. 
With the realization of bosonic logical qudits, we have also established 
a platform for concatenating codes internally. By embedding a logical 
qubit within a bosonic logical qudit20,56–58, multiple layers of error cor-
rection can be implemented inside a single oscillator.
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Methods

Phase update between stabilization rounds
The generalized SBS circuit in Fig. 1c realizes autonomous QEC of the 
finite-energy GKP code with respect to the ideal stabilizer S D d= ( π )X  
(ref. 43). The analogous circuit for S D d= (i π )Z  is obtained by updat-
ing the phase of all subsequent cavity operations by π/2, which trans-
forms q → p and p → −q in the rotating frame of the cavity, where 
q a a= ( + )/ 2†  is the position of the cavity and p a a= i( − )/ 2†  is the 
momentum. To mitigate the effects of experimental imperfections, 
we symmetrized the protocol by also performing QEC with respect to 
stabilizers SX

† and SZ
†, which are related to the circuit in Fig. 1c by phase 

updates of π and 3π/2, respectively. The full protocol is periodic with 
respect to four SBS rounds, as each stabilizer (S S S S, , ,X Z X Z

† †) is measured 
once per period.

Ideally, we would measure the stabilizer SX by implementing the 
ancilla-controlled-stabilizer operation CXd

d, but in practice, we instead 
used d D d CX σECD( π ) = (− π /2) d

d
x (refs. 33,48). For even dimensions 

 d, the extra displacement D d(− π /2) is the ideal Pauli operator Xd
d /2, 

the effect of which can be tracked in software (a similar result holds for 
the other stabilizers). In this case, we are free to measure the stabilizers 
in any order. We chose to increment the cavity phase in each round 
according to

ϕ = π/2, (7)j
d( even)

which measures the stabilizers in the order SX, SZ, SX
† and SZ

†. However, 
for odd d, the displacement D d(− π /2) takes us outside the code 
space, an effect we have to reverse before moving on to measure  
SZ. To do so, we incremented the cavity phase in each round accord-
ing to

ϕ

j
j
j
j

=

π, ≡ 0 (mod 4),
−π/2, ≡ 1 (mod 4),
π, ≡ 2 (mod 4),
π/2, ≡ 3 (mod 4),

(8)j
d( odd)











which measures the stabilizers in the order SX, SX
†, SZ and SZ

†.

Compiling generalized controlled Pauli gates
The ancilla-controlled version of generalized Pauli operator 
P X Z= ed

φ
d
n

d
mi  on the ideal GKP code is given by CPd = |g⟩⟨g| +  

|e⟩⟨e| eiϕD(βn)D(βm), where β n d= π/n  and β m d= i π/m . We compiled  
CPd in terms of ancilla rotations and a single ECD gate:

∣ ∣ ∣ ∣β D β g e e g D βECD( ) = (− /2)( ⟩⟨ + ⟩⟨ ( )), (9)nm nm nm

where βnm = βn + βm. Using D(βnm) = exp(inmπ/d)D(βn)D(βm), this can 
be rewritten as

β D β σ φ CP σECD( ) = (− /2) ( ) , (10)nm nm z nm d x

where φnm = nmπ/d − φ and σz(θ) = |g⟩⟨g| + |e⟩⟨e| eiθ. Rearranging terms, 
we obtain

CP D β σ φ β σ= ( /2) (− )ECD( ) . (11)d nm z nm nm x

In our experiments, we omitted the unconditional displacement 
D(βnm/2) when compiling CPd gates, which affected the backaction of 
our GKP qudit logical measurements (Figs. 2 and 3). In addition, we 
used the smallest amplitude ∣βnm∣ consistent with the Pauli operator Pd. 
As an example, for n = d − 1 and d > 2, we used β d m d= − π/ + i π/nm  

because X X=d
d

d
−1 −1. We emphasize that this CPd gate is designed for the 

ideal GKP code and will necessarily incur infidelity when applied to the 
finite-energy code, but it may be possible to adapt this construction 
to the finite-energy case32,43,55.

Optimizing the QEC protocol
To optimize our generalized SBS protocol (Fig. 1c), we followed  
the method described in ref. 22, parametrizing the SBS circuit 
using 45 free parameters in total. Anticipating that the larger condi-
tional displacements required for GKP qudit stabilization (nomi-
nally proportional to dπ ) would take longer to execute, we fixed  
the duration of each SBS round to be 7 μs (instead of 5 μs as in  
ref. 22).

We used a reinforcement learning agent to optimize our QEC pro-
tocol over these 45 parameters in a model-free way21. In each train-
ing epoch, the agent sends a batch of ten parametrizations pi to the 
experiment, collects a reward Ri for each, and updates its policy to 
increase the reward. For our reward, we measured the probability that 
the QEC protocol keeps our logical qudit in its initial state, operation-
ally quantified by

p pR Z Z Z Z X X X X=
1
2

⟨ ( ⟩⟨ ) ⟩ + ⟨ ( ⟩⟨ ) ⟩ , (12)i
N

d
N

d0 0 0 0 1 1 1 1i i




E E∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

where E p
N

i
 is the channel corresponding to N rounds of the SBS protocol 

parametrized by pi. For our optimal GKP qubit, we used N = 140 and 
200 training epochs, for the qutrit, N = 80 and 200 training epochs, 
and for the ququart, N = 80 and 300 training epochs.

Regarding the scalability of this optimization method, we empha-
size that the resources required for training our GKP qudits are the 
same as for the GKP qubit and that this training was implemented 
using off-the-shelf consumer electronics. Because the training was 
performed for individual qubits or qudits, we expect that it could 
be parallelized across an array of such systems, yielding a resource 
requirement that scales only linearly with the system size. We expect 
that applying reinforcement learning to optimize entangling gates 
will be more complicated than applying it to individual qubits or  
qudits.
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