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Role of Tissue Engineering in COVID-19
and Future Viral Outbreaks

Alexander M. Tatara, MD, PhD

In light of the current novel coronavirus (COVID-19) pandemic, as well as other viral outbreaks in the 21st
century, there is a dire need for new diagnostic and therapeutic strategies to combat infectious diseases world-
wide. As a convergence science, tissue engineering has traditionally focused on the application of engineering
principles to biological systems, collaboration across disciplines, and rapid translation of technologies from the
benchtop to the bedside. Given these strengths, tissue engineers are particularly well suited to apply their skill
set to the current crisis and viral outbreaks in general. This work introduces the basics of virology and epide-
miology for tissue engineers, and highlights important developments in the field of tissue engineering relevant
to the current pandemic, including in vitro model systems, vaccine technology, and small-molecule drug de-
livery. COVID-19 serves as a call to arms for scientists across all disciplines, and tissue engineers are well
trained to be leaders and contributors in this time of need.
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Impact Statement

Given the steep mortality caused by the recent novel coronavirus (COVID-19) pandemic, there is clear need for advances in
diagnostics and therapeutics for viral outbreaks. Tissue engineering has the potential for critical impact on clinical outcomes
in viral outbreaks. Tissue engineers, if mobilized, could play key roles as leaders in the outbreak, given their ability to apply
engineering principles to biological processes, experience in collaborative environments, and penchant for technological
translation from benchtop to bedside. In this work, three areas pioneered by tissue engineers that could be applied to the
current COVID-19 crisis and future viral outbreaks are highlighted.

Introduction

As of April 2020, the world is facing a pandemic of
unfathomable proportions. As per the World Health

Organization (WHO) on April 9, more than 1,500,000
patients worldwide have been diagnosed with the novel coro-
navirus disease 2019 (COVID-2019) caused by a laboratory-
confirmed infection of the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), with more than
84,000 global deaths at this time.1 Our hospital systems are
rapidly filling with patients suffering from viral illness, and
the capacity of resources such as emergency departments,
inpatient wards, and intensive care units (ICUs) has become
overwhelmed in some regions. There is a dire need for new
diagnostic and therapeutic modalities. Early diagnosis is
critical in establishing quarantine and limiting the spread of

outbreaks; diagnostics later in the course of an epidemic
remain important, particularly in determining established
immunity. For those infected, there is a current paucity in
validated antiviral therapies, and there is no vaccine at this
time, although multiple efforts are under way. Even after the
predicted resolution of COVID-19, the increasing frequency
of viral outbreaks (including the 2003 Severe Acute Re-
spiratory Syndrome Coronavirus,2 2014 Ebola virus,3 2015
Middle Eastern Respiratory Syndrome Coronavirus,4 and
2015 Zika virus outbreaks5) suggests that new mechanisms
to combat viral infections are a high priority.

As a convergence science, tissue engineering is uniquely
suited to offer solutions to complex clinical questions.
Currently, tissue engineering–based technologies are being
developed to revolutionize areas in medicine such as high-
throughput drug discovery,6 personalized cancer therapy,7
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immune modulation,8 and organ transplantation.9 Tissue en-
gineers specialize in the application of engineering principles
to biological systems, which facilitates the generation of fun-
damental knowledge as well as new technologies that could be
key in a pandemic. In addition, tissue engineers are well versed
in collaborative models,10 working closely alongside clini-
cians, biologists, chemists, physicists, mathematicians, veter-
inarians, and other specialists, which will be critical in a
multidisciplinary approach to combating the virus known as
SARS-CoV-2. Lastly, tissue engineering as a field has em-
phasized clinical translation, including creating workflows to
optimize bringing the benchtop to the bedside,11 resulting in a
$9 billion market, with 21 companies selling tissue engineer-
ing–based products in the United States alone as of 2017.12 In
the current setting of limited clinical data and rising patient
morbidity and mortality, tissue engineers would be welcomed
and valuable allies in the COVID-19 pandemic.

In this work, the potential impact of tissue engineering
in improving clinical outcomes during the COVID-19 pan-
demic and future viral epidemics is explored (Fig. 1). Relevant
background information regarding SARS-CoV-2 is briefly
reviewed, and pertinent tissue engineering work is high-
lighted, including development of viral in vitro models, drug
delivery systems, and vaccine platforms. Given the current
state of the pandemic, it may be challenging to mobilize new
efforts within the tissue engineering community in time to
change practice in health care. New in vitro models, diag-
nostics, and therapeutics will need to be validated prior to safe
implementation at the clinical level. In addition, many major
academic centers are currently at limited capacity due to
precautions to limit the spread of the pandemic. However,
COVID-19 can act as a representative outbreak for which
tissue engineers can learn from and begin preparations to lead
the way to prevent and treat the next viral epidemic better.

Our current understanding of SARS-CoV-2 is evolving
and incomplete. The following information is based on cur-
rent evidence and will likely change as the virus is more
closely studied. Given the urgency of the pandemic, some of
the references in this work have yet to receive peer review
and should be interpreted with caution.

SARS-CoV-2 Background

Coronaviruses, or Orthocoronavirinae, are enveloped
single-stranded RNA viruses. The virus gets its name from
the projections, or ‘‘spikes,’’ emerging from its envelope
that appear crown-like on electron micrography. The major
components of SARS-CoV-2 are the envelope protein (E),
membrane glycoprotein (M), spike protein (S), nucleocap-
sid protein (N), and its relatively large RNA genome of
*30 kb.13,14 Enveloped viruses have a protective lipid bi-
layer with surface proteins and are generally more vul-
nerable to harsh environments than non-enveloped viruses.
The spike protein is supposed to interact with human
angiotensin-converting enzyme 2 (ACE2) membrane pro-
tein to induce fusion, endocytosis, and subsequent invasion
into the host cell.15 Coronaviruses escape endosomes to the
cytoplasm via acid-dependent cleavage of the S protein.14

RNA viruses, with few exceptions, replicate in the cyto-
plasm. The virus takes advantage of host ribosomes to
replicate by translation and then assembly in the endoplas-
mic reticulum directed by M and E protein interactions.
Viruses are then released by exocytosis to repeat the cycle
of infection. Given this pathophysiology, potential targets
being explored as therapeutics agents include blocking
ACE2 interactions, altering endosome pH to prevent escape,
inhibiting viral and/or host enzymes critical to replica-
tion, and downregulating host inflammation, given that an

FIG. 1. Examples of how tissue engineering skills and tools may be leveraged to have an impact on clinical practice in the
setting of a viral outbreak.
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overexuberant response may lead to acute respiratory dis-
tress syndrome (ARDS).16

SARS-CoV-2 has the highest viral burden in the nares
rather than the throat and is thought to be spread during
coughing and aerosolization of droplets.17 Compared to
SARS-CoV-1, spread of the virus appears to be more rapid
due to higher asymptomatic carrier rates and a longer in-
cubation time prior to symptom onset.18 Initial symptoms
commonly include fever, cough, and fatigue and, less
commonly, gastrointestinal manifestations.19 Current bio-
markers suggestive of infection include elevated lactate
dehydrogenase, ferritin, D-dimer, erythrocyte sedimentation
rate, C-reactive protein, and absolute lymphopenia.20 In the
United States, the most widely available diagnostic test is
polymerase chain reaction based, although antibody-based
assays are in development and are available in other coun-
tries.21 The virus primarily affects the lungs, causing ARDS
in up to 5–10% of infected patients,22,23 although it has also
been causing myocardial injury suspected to be due to high
concentrations of ACE2 in cardiac tissue.15 Mortality is
estimated to be 3–4%.18 Given the extreme global morbidity
and mortality caused by the pandemic, there is a dire need
for a better understanding of molecular mechanisms of host–
virus interaction, more rapid methods to screen potential
therapeutics, and platforms to facilitate safe clinical trans-
lation. These are all areas in which tissue engineers are
primed to make significant contributions for COVID-19, the
next coronavirus epidemic, or other future viral outbreaks.

In Vitro Models

Development of physiologically representative in vitro
models of viral disease can assist in two critical roles during
a pandemic: (1) better characterization and understanding of
the host–pathogen interface and mechanisms of infection;
and (2) as a platform for high-throughput screening of
potential therapeutics. Currently, it is challenging and clini-
cally necessary to predict the course of patients infected with
SARS-CoV-2. Profiling biomarkers may allow for better risk
stratification and resource allotment.24 More accurate in vitro
modeling to understand host response as well as viral
mechanisms for transmission and replication is critical for
the identification of biomarkers to pursue as hypothesis-
driven diagnostic and therapeutic targets. In addition, a
physiologically relevant in vitro model has the potential to
fill the critical need for improved drug candidate screening.

The current gold standard for screening antiviral thera-
peutics is based on static monolayer culture of Vero cells, an
interferon-deficient aneuploid line of kidney epithelial cells
originally isolated from an African green monkey.25,26 In a
recent study, Vero cells were exposed to a library of 3000
drugs approved by the Food and Drug Administration and the
Investigational New Drug program and then infected with
SARS-CoV-2 to screen for potential therapeutics.27 Because
Vero cells lack interferon, they are highly susceptible to
viruses and allow for replication, and so they have been an
attractive vehicle to screen compounds. However, interferon
itself is an important regulator of host binding proteins in-
volved in SARS-CoV-2.28 In general, the relevance of a
drug’s ability to inhibit viral infection of a malignant non-
human primate (NHP) kidney cell lacking interferon pro-
duction is uncertain. For example, while the antidepressant

sertraline was found to have potent in vitro activity against
Ebola in the Vero cell model,26 later testing in an in vivo NHP
model failed to show protection against Ebola.29 Static cul-
tures of xenograft monolayers fail to replicate many of the
conditions facing viruses in vivo, including realistic extra-
cellular matrix (ECM), three-dimensional cell–cell interfaces,
and shear forces. Coronaviruses and other respiratory viruses,
for example, can bind to the ECM components such as sialic
acid to assist in infection of the host.30

In the last decade, tissue engineering has made signifi-
cant advances regarding in vitro human cell culture models.
Developments of induced pluripotent stem cells, CRISPR-
Cas, microfluidics, 3D printing, and biomaterials have led to
technologies such as tissue-on-a-chip and advanced biore-
actor models containing co-cultures of cells from ectoder-
mal, mesodermal, and endodermal lineages. These models,
utilizing human cells, have been able to mimic complex
pathophysiology such as generation of pulmonary edema upon
exposure to inflammatory signals such as interleukin-2.31 For
example, in a model to study influenza A virus, 3D tissue-
engineered constructs more accurately recapitulated the host
morphology of cultured human epithelial airway cells
compared to 2D culture, and infection with major influenza
strains resulted in upregulation of proinflammatory cyto-
kines.32 One coronavirus-specific example of a tissue-
engineered platform in which respiratory viruses have been
studied is the rotation wall vessel bioreactor. These models
simulate low physiologic shear stresses and frequently in-
corporate multiple pulmonary cell types, including co-
culture of human mesenchymal bronchial tracheal cells and
human bronchial epithelial cells, challenging them against
respiratory syncytial virus and SARS-CoV-1.33 Unfor-
tunately, SARS-CoV-1 did not replicate in this study.34 In
another model, human pulmonary epithelial progenitor cells
were grown on a collagen matrix in a serum-free media with
a mesenchymal stroma and exposed to virus. It was dem-
onstrated that stem cells were targeted by SARS-CoV-1,
which may suggest why normal lung regeneration following
viral infection is challenging.35

There are a number of exciting tissue-engineered human
in vitro lung models currently available that could be lev-
eraged for studying viral infection36,37 and established
in vivo models for respiratory viruses, including NHPs, al-
ready in use.38–40 Elements that may improve the relevance
of in vitro models include: (1) human rather than animal cell
lines; (2) co-culture of multiple pulmonary cell lines; (3) 3D
scaffolds that mimic native pulmonary architecture; and (4)
culture methods that permit generation of ECM prior to viral
inoculation. Additional head-to-head studies will need to be
performed to determine if these components are necessary to
capture the pathophysiology of viral infection. These plat-
forms will be important in conducting hypothesis-driven
research to understand the host–pathogen interface. Scaling
these models to allow for high-throughput drug screening
will offer important advantages over the current Vero-based
methods to identify therapeutic candidates for in vivo trans-
lation rapidly during major infectious outbreaks.

Drug Delivery Systems

During the COVID-19 pandemic, one of the most sig-
nificant strains on the health-care system has been the need
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for inpatient beds, both on general wards and in ICUs.41 As
discussed previously regarding in vitro drug screens, there
are currently limited therapeutics that have clear clinical
evidence of improving outcomes such as days of hospitali-
zation required, need for ICU stay, and need for intubation/
ventilation. As new small molecule–based therapies come
through the pipeline, tissue engineers can continue to design
drug delivery systems to (1) target medications to specific
organ systems to increase bioavailability, and (2) extend the
release of medications so that frequent administration is not
necessary.

Classes of molecules that have been suggested as possible
therapies include repurposed small-molecule drugs, mono-
clonal antibodies, and oligonucleotide strategies.42 For ex-
ample, based on a small clinical study,43 the combination of
hydroxychloroquine (a small molecule traditionally used
to treat malaria and lupus) and azithromycin (a macrolide
antibiotic with anti-inflammatory properties) has been sug-
gested as a means to reduce SARS-CoV-2 viral load, al-
though these results are controversial.44 Poly(lactide) and
poly(lactide-co-glycolide) (PLGA) microparticles can de-
liver azithromycin for up to 60 days with zero-order release
kinetics.45 There are also formulations using fumaryl dike-
topiperazine microparticles to deliver azithromycin via in-
tratracheal insufflation directly to the lungs, resulting in
higher local concentrations in a murine pneumonia model
compared to oral and intravenous routes of delivery.46 Gi-
ven that the half-life of hydroxychloroquine is >40 days,
extended drug delivery options may not be warranted.47

However, there have been successful delivery systems con-
structed from PLGA nanoparticles for specific cell target-
ing.48 While the efficacy of hydroxychloroquine and
azithromycin in the prevention and treatment of SARS-
CoV-2 remains an area of active study, the above examples
serve to show that tissue engineers and biomaterials scien-
tists have been working on drug delivery for decades with a
variety of vehicles available for small molecules in general.

In addition to small molecules, monoclonal antibodies are
an exciting class of medication, given their success in the
treatment of Ebola virus.49 Antibodies are a natural part of
humoral immunity and can be engineered to block specific
ligands or receptors vital for viral function. These therapies
generally need to be delivered intravenously to be success-
ful. In the Ebola virus studies, for example, patients required
one to three infusion sessions, depending on the antibody. A
human monoclonal antibody was developed against SARS-
CoV-1 and was demonstrated to be effective in a ferret
model.38 Researchers have screened monoclonal antibodies
designed against SARS-CoV-1 and have discovered cross-
reactivity of at least one of the antibodies against SARS-
CoV-2.50 Systems designs for the controlled extended
release of antibodies may be advantageous over multiple
infusion sessions for clinical practice. Nanoporous scaffolds
coated with allylamine-based polymer were capable of re-
leasing rituximab, a monoclonal antibody against B cells,
for up to 30 days.51 Similarly, an alginate-based drug de-
livery system was able to deliver a human immunoglobulin
G1 (IgG1) monoclonal antibody in a rat model for at least
28 days with a single dose of the system.52 In addition to the
possibility of reducing administration to single dosing by
extended release, there has also been development of in-
gestible injection systems to deliver biomacromolecules

through autoinjection during gastric transit. These allowed
for insulin delivery in a porcine model and may facilitate
oral delivery of medications previously only efficacious in
intravenous form.53

Lastly, short interfering RNA (siRNA) has also been
explored as both prophylaxis and therapy for coronavirus
infection.54 For sequences specific to SARS-CoV-1, siRNA
was effective in a NHP model,39 resulting in diminished
viral load and alveolar damage. Four intranasal doses were
required over 5 days in treatment arms. The researchers
reported not using additional vehicles to deliver their siRNA
such as polyethylenimine due to the possibility of carrier-
induced lung inflammation. However, more complex vehi-
cles have since been developed by the field specifically for
pulmonary usage, including mesoporous silica nanoparti-
cles55 and cationic liposomes.56 As siRNA sequences, specific
antibodies, and small molecules are identified that specifically
mitigate SARS-CoV-2, tissue engineers and biomaterials
scientists can continue their work in designing vehicles to
target areas of high viral load specifically and extendedly.
Even if this work may not come to fruition during the cur-
rent pandemic, these vehicles may serve vital roles during
future viral outbreaks.

Vaccine Platforms

The ability to vaccinate against specific pathogens has
played a major role in preventative medicine for the last
century. Vaccines exist both for respiratory viruses such
as Influenzavirus and for bacteria such as Streptococcus
pneumoniae and Haemophilus influenzae. While the success
of respiratory viral vaccines varies from season to season,
data suggest influenza vaccination generally results in lower
probability of complications, including ICU stay, mechani-
cal ventilation, and severe outcomes, especially in patients
with comorbidities such as chronic obstructive pulmonary
disease.57–59 Work is already underway to develop vaccines
effective against SARS-CoV-2 to prevent disease and mit-
igate transmission.60

Successful vaccination against pathogens relies on pre-
senting antigens and stimulating specific elements of the
immune system to build recognition and memory in both
humoral and cell-mediated branches. With advances in im-
munology, biomaterials and tissue engineering are being
leveraged to elicit specific host immune responses to aug-
ment vaccination strategies.8,61 In many of these systems,
the biomaterial acts as the drug delivery vehicle for the
vaccine as well as the adjuvant. Furthermore, the field is
characterizing how the size, shape, and other physicochem-
ical properties of biomaterials affect the behavior of im-
mune cells.62–64 The goals of many of these systems are to
target antigen-presenting cells such as macrophages and
dendritic cells and to drive specific responses such as Th1 or
Th2 (different helper T classes). For example, conjugation
of different receptors to protein-based particles can indi-
vidually tune Th1 or Th2 response in a murine model.65

Biodegradable polymers, one of the primary workhorses as
scaffold material in tissue engineering, have also been ex-
plored. PLGA nanoparticles drive Th1 immune response
compared to no carriers and other biomaterials in a vaccine
against Chagas disease in a murine model66 and have also
been explored for targeted delivery to specific immune
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populations.67 PLGA microparticles in combination with a
chitosan/peptide conjugate coating have also been used as a
delivery system to target specific mucosal cells and to de-
liver a swine dysentery vaccine with elevated IgA and IgG
production in mice.68 In another murine model, chitosan
nanoparticles enhanced T-cell response for a Mycobacterium
tuberculosis DNA vaccine.69 When chitosan was mannosy-
lated to promote endocytosis, an intranasal vaccine increased
IgG levels in a murine model.70 For influenza, chitosan has
also been modified to create a thermoresponsive intranasal
murine vaccine against H5N1l.71 Silver nanoparticles have
also been used to deliver inactivated influenza vaccine lo-
cally with some specificity to lung immune cells, resulting in
greater IgG titers and reduced mortality in a murine model.40

While there are currently fewer studies regarding coro-
navirus vaccines, there has been some success in mice in
which nanoparticles were prepared from a SARS-CoV-1
peptide sequence, and subsequent sera was successful in pre-
venting infection of Vero cells.72

In addition to various particle-based platforms, tissue en-
gineering strategies have been harnessed to create scaffold
systems for vaccination enhancement. With specific physi-
cochemical properties, such as pore size, and profile of re-
leased recruitment signals such as granulocyte-colony
stimulating factor, scaffolds of PLGA73,74 and mesoporous
silica rods64,75 have been used to recruit and concentrate
antigen-presenting cells to vaccine components. This strategy
has primarily been applied to tumor vaccines and has dem-
onstrated efficacy in animal models against melanoma and
intracranial gliomas.73,76 It is currently undergoing a Phase I
clinical trial of 23 patients with melanoma, which is estimated
to complete in June 2020 (NCT01753089; ClinicalTrials
.gov). This platform of scaffold-based vaccination has also
shown efficacy against bacterial pathogens in porcine and
murine models.77 Other examples of scaffold-based vaccine
systems include those generated from respiratory syncytial
virus that were effective in mice as well NHPs.78,79 These
particle-based and scaffold-based vaccine systems may be
promising in translation against SARS-CoV-2. However, the
majority have only been studied in mouse models at this
point in time, and significant translational efforts will need to
be undertaken for clinical trials. Modular platforms in which
different antigens can be plugged in77 may be very useful for
rapid vaccine development in future pandemics.

Conclusion

The world faces a global health-care crisis of unheralded
magnitude. The rate of infection and mortality from
COVID-19 make it unlike any virus seen in this century.
Physicians and scientists are banding together to combat the
threat of SAR-CoV-2. Tissue engineers have a rare set of
tools and can make substantial contributions to our under-
standing of viral disease and contribute toward the critical
development of diagnostic and therapeutic platforms. To-
gether, we can overcome this current pandemic and work to
prevent and mitigate future viral outbreaks.
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