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The multiple-demand (MD) system has proven to be associated with creating structured

mental programs in comprehensive behaviors, but the functional mechanisms of this

system have not been clarified in the musical domain. In this study, we explored the

hypothesis that the MD system is involved in a comprehensive music-related behavior

known as musical improvisation. Under a functional magnetic resonance imaging (fMRI)

paradigm, 29 composers were recruited to improvise melodies through visual imagery

tasks according to familiar and unfamiliar cues. We found that the main regions of the

MD system were significantly activated during both musical improvisation conditions.

However, only a greater involvement of the intraparietal sulcus (IPS) within the MD system

was shown when improvising with unfamiliar cues. Our results revealed that the MD

system strongly participated in musical improvisation through processing the novelty

of melodies, working memory, and attention. In particular, improvising with unfamiliar

cues required more musical transposition manipulations. Moreover, both functional

and structural analyses indicated evidence of neuroplasticity in MD regions that could

be associated with musical improvisation training. These findings can help unveil the

functional mechanisms of the MD system in musical cognition, as well as improve our

understanding of musical improvisation.

Keywords: functional MRI, structural MRI, musical improvisation, multiple-demand system, neuroplasticity

INTRODUCTION

The understanding of the mechanisms of complex tasks is far from clear. A major difficulty in
the investigation of complex actions is decomposing the components responsible for different
aspects of a behavior (Coffey and Herholz, 2013). In addition, individuals may have differences
in structural and functional properties of the brain that also affect decomposing and learning in
complex tasks (Zatorre, 2013). One important finding is the multiple-demand (MD) system of the
frontal and parietal cortex, which is activated during many complex cognitive activities (Duncan,
2013; Crittenden and Duncan, 2014). Musical improvisation, usually considered one of the most
unexplored forms of creativity, also involves comprehensive activities of cognition (Dietrich, 2003).
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Because most complex tasks would necessarily relate to the MD
system, we are eager to know the relationship between the MD
system and musical improvisation.

The MD system consists of several areas in the prefrontal
and parietal regions, including the posterior part of the inferior
frontal sulcus (IFS), the anterior insula and adjacent frontal
operculum (AI/FO), the presupplementary motor area and
adjacent dorsal anterior cingulate (pre-SMA/ACC), and the
intraparietal sulcus (IPS). Occasionally, activity can also be
seen in the rostrolateral prefrontal cortex (RPFC) (Duncan,
2010; Fedorenko et al., 2011). These regions have been shown
to participate in many different functions, such as response
selection, working memory, and task novelty (Duncan and
Owen, 2000; Cole and Schneider, 2007). In working memory,
a functionally connected cognitive control network involves
the frontal and parietal regions (Cabeza and Nyberg, 1997).
One study has found that when the retention interval is
short, the occipital, and right frontal regions are significantly
activated; however, when there is a longer retention interval,
the involvement of parietal and left frontal regions is prominent
(Haxby et al., 1995). Regarding task novelty, the frontal lobe
contributes its executive functions to the early learning stage
(Duncan and Owen, 2000), which has also been proved by
a lesion study (Rogers et al., 1998). Moreover, an ERP study
showed that the parietal cortex could be affected during novel
complex tasks after prefrontal damage (Knight and Scabini,
1998).

Music is a universal human activity involving perceptually
discrete elements organized into hierarchically structured
sequences (Patel, 2003). Scientists have devoted themselves to
uncovering the brain mechanisms of music (Zatorre et al.,
2007; Bermudez et al., 2009). Musical improvisation, which
requires rich musical background memories and creative novelty
competencies, can be an important model to investigate the
musical brain (Gross and Seashore, 1941; Lu et al., 2015). A
remarkable problem is whether the MD system is also involved
in musical improvisation activities.

Until now, studies on musical improvisation mainly assessed
the role of the frontal regions. A functional magnetic resonance
imaging (fMRI) study found that the dorsal premotor area,
the rostral cingulate region and the inferior frontal gyrus are
recruited for the invention of novel motor sequences in musical
improvisation (Berkowitz and Ansari, 2008). Another fMRI
study showed that improvisation is consistently characterized
by a dissociated pattern of activity in the prefrontal cortex
(Limb and Braun, 2008). Additionally, the effect of training
on improvisation is positively associated with functional
connectivity of the dorsolateral prefrontal cortex and dorsal
premotor cortex (Pinho et al., 2014). In addition, the activation
and the functional connectivity of other areas have also been
shown to be linked with musical improvisation. The perisylvian
language area is related to the processing of syntactic elements
in music by an interactive improvisation between two musicians
(Donnay et al., 2014). The functional connectivity of the bilateral
occipital lobe and bilateral postcentral cortex decreases during
musical improvisation, while the functional connectivity between
the anterior cingulate cortex, the right angular gyrus, and the

bilateral superior frontal gyrus appears significantly stronger
(Lu et al., 2015). From these studies above, we can extrapolate
that only the frontal regions and a few other specific areas are
suggested to be involved in musical improvisation, the question
of whether the MD system modulates musical improvisation has
not been discussed yet.

Here, we used fMRI to study neural activity during imagery
improvisations based on two different cues. One was a familiar
cue, which wasmainly considered to be involve workingmemory.
The other was an unfamiliar cue, which was thought to be highly
involved in creative novelty. We recruited 29 composers who
had systematic knowledge of how to conceive a novel piece of
music as our participants. General linear model (GLM) analysis
was conducted to investigate the neural activity involved in
improvisation under different conditions (Woolrich et al., 2004;
Kriegeskorte and Bandettini, 2007). We used a task to investigate
whether theMD system is involved inmusical improvisation.We
calculated the correlation between activated regions and musical
improvisational level (MIL) scores to explore how the level
of musical improvisation impacted brain activity. Furthermore,
to reveal plastic evidence of musical improvisation, 31 non-
musicians were recruited as the control group. We compared
structural covariance within the MD system between composers
and non-musicians.

METHODS

Participants
Twenty-nine composers (14 males, aged 18–23 years) selected
through a musical background questionnaire from the
Department of Composition at Sichuan Conservatory of Music
participated in the experiment. All composers had experience
playing piano, which was regarded as the fundamental skill for
studying musical improvisation. They all had training in musical
improvisation for at least three years. All participants passed
the MIL exam, which is considered an objective assessment of
improvisation level. Scores of the exam were decided by the
committee consisting of ten professors from the Department
of Composition at Sichuan Conservatory of Music. Thirty-one
non-musicians without a musical training background from the
University of Electronic Science and Technology of China were
recruited as the control group. Participants were all right-handed
according to the Edinburgh Inventory (Oldfield, 1971) with
normal hearing and vision and no history of neurological
disorders. This study was carried out in accordance with the
recommendations of the Ethics Committee of the School of Life
Science and Technology at University of Electronic Science and
Technology of China (UESTC) with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the Ethics Committee of the School of Life Science
and Technology at UESTC.

Procedures
Task Design
Firstly, we need to clarify the use of this phrase “improvisation.”
It is commonly accepted that the notions of composition and
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improvisation in making music are almost overlapped. Thus, we
adopted “improvisation” in our manuscript to be in consistent
with previous studies.

The familiar vs. unfamiliar design was widely used in musical-
related research (Halpern and Zatorre, 1999; Herholz et al.,
2012). Using this design, we could not only test whether MD
system is involved in musical improvisation, but also find more
details about improvising with these two different ways. The
universally familiar melody of “Fur Elise” written by Ludwig
van Beethoven was used as the familiar cue stimulus material
(denoted as Familiar, Figure 1A). The unfamiliar cues (denoted
as Unfamiliar) were written by a senior composer from the
Sichuan Conservatory ofMusic so that we could ensure that none
of the participants had seen these cues before. One unfamiliar
cue was presented during the pilot (Figure 1B), and the other
unfamiliar cue was presented during fMRI scanning (Figure 1C).
A blank stave was used as the baseline condition (denoted as
Baseline, Figure 1D).

The tasks were designed and presented with E-prime 2.0
software. For each trial, participants were asked to imagine
improvising a melody piece according to different cues after a
cross was shown for 2 s. The Familiar condition, Unfamiliar
condition or Baseline condition appeared randomly and lasted
for 14 s in the paradigm (The period of 14 s was determined
by professional composers. It was enough for them to read
the cues and create new music in an efficient way). After
each imagery improvisation, participants were asked to give an
evaluation score of their performance in a box within 4 s. The
evaluation results were recorded via an MRI-compatible button
box. During Baseline conditions, participants were asked to think
about nothing with no response on the button. The tasks were
presented in two runs. Each run consisted of 10 trials of Familiar

condition, 20 trials of Unfamiliar condition and 10 trials of
Baseline condition, which were presented randomly (Figure 1).

Behavioral Pilot
First, each participant performed a behavioral pilot on a
computer outside the magnetic resonance imaging (MRI)
scanner. Participants were instructed to follow the instructions
on the screen, perform imagery improvisation and complete the
evaluation by pressing the keyboard with their right hand. After
the pilot, an interview was conducted to confirm familiarity with
the paradigm and the ability to imagine improvisations. Thus, we
ensured the eligibility of participants for MRI scanning.

MRI Scanning
Images were acquired on a 3T magnetic resonance imaging
(MRI) scanner (GEDiscoveryMR750, USA) at theMRI Research
Center of UESTC using a standard GE whole head coil.

During scanning, we used foam padding and ear plugs to
reduce head motion and scanning noise, respectively. For the
group of composers, the task fMRI scanning was conducted
with the same paradigm as the pilot. Importantly, participants
were asked to follow the instructions on the screen and to move
as little as possible when pressing a button on the keyboard.
Functional images were acquired using echo-planar imaging
(EPI) sequences, and the parameters of both resting-state and
task scanning with an eight-channel phased array head coil were
as follows: repetition time (TR) = 2,000ms, echo time (TE)
= 30ms, flip angle (FA) = 90◦, matrix = 64 × 64, field of
view (FOV) = 240 × 240mm, and slice thickness = 4mm
(with a gap of 0.4mm). The first five volumes were discarded
due to magnetization equilibrium. During the first and second
functional image runs, anatomical T1-weighted images were

FIGURE 1 | Illustration of the trials of all conditions in the experimental paradigm. For each trial, participants were asked to imagine improvising a melody piece

according to different cues after a cross was shown for 2 s. The Familiar condition (A, used in both pilot and scanning), Unfamiliar condition (B, used in pilot; C, used

in scanning) or Baseline condition (D, used in both pilot and scanning) appeared randomly and lasted for 14 s in the paradigm. After each imagery improvisation,

participants were asked to give an evaluation score (from 0-unsatisfied to 3-satisfied) of their performance in a box within 4 s.
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recorded between the first acquired using a 3-dimensional fast
spoiled gradient echo (T1-3D FSPGR) sequence [TR= 5.948ms,
TE = 1.964ms, FA = 9◦, matrix = 256 × 256, FOV = 204
× 163mm, slice thickness 1mm (no gap), 154 slices]. For
the control group, only anatomical T1-weighted images were
collected, with the same parameters above.

Data Analysis
Behavioral Data Analysis
The mean value and the standard deviation (SD) of the
evaluation scores by each composer in an fMRI session were
calculated to assess their improvisation status during scanning.
Additional demographic properties such as age, years of musical
improvisation training and MIL scores were also analyzed by
statistical methods.

Functional Imaging Analysis

Preprocessing
fMRI data were preprocessed using the SPM8 software
package (statistical parametric mapping, http://www.fil.ion.
ucl.ac.uk/spm/). Each dataset was realigned. The time was
corrected to reflect differences in image acquisition time
between slices, and datasets then underwent normalization to
transform images to match the template from the Montreal
Neurological Institute (MNI) atlas space (Evans et al., 1993).
Then, images were resampled to 3 × 3 × 3 mm3 and spatially
smoothed with an 8-mm full-width at half-maximum (FWHM)
kernel.

Statistical tests
We conducted the standard second-level analysis embedded in
the SPM software. Threemain contrasts were specified per single-
participant analysis: (1) Familiar vs. Baseline, (2) Unfamiliar vs.
Baseline, and (3) Unfamiliar vs. Familiar. For first level analyses,
data were analyzed on a pixel level using a GLM for each subject
(Herholz et al., 2016) using SPM8 software. The two regressors
(Familiar and Unfamiliar) were modeled on two successive

repetition times during listening and then convolved with the
hemodynamic response function. The GLM also included six
regressors for participant motion and a constant term. The
resulting single participant contrast images were then entered
into second-level random-effects group analyses for each of the
corresponding contrasts to assess basic task-related activation
and differences between Unfamiliar and Familiar conditions for
each voxel. Following other published papers (Lu et al., 2015;
He et al., 2017), the statistical threshold was set at a whole-
brain false discovery rate of P < 0.05 for main effects combined
with an extent threshold of at least 600 mm3 for all reported
clusters.

Analysis based on region of interest (ROI)
To investigate the participation of the MD system in musical
improvisation, we defined six 6-mm radius spherical ROIs based
on Duncan’s report (Duncan, 2010) and conducted one sample
t-tests for different conditions.

Correlations with musical improvisational level
To study the relationship between functional imaging and
levels of improvisation variables, we chose regions that showed
significant changes and calculated the average value of the
regression coefficients as a z-value. Then, we computed the
correlation between the average z-value and the MIL scores with
a partial correlation analysis, which included the covariates of age
and gender (Tan et al., 2015).

TABLE 1 | Demographics of all participants.

Composers

(Mean ± SD)

Controls

(Mean ± SD)

Age (years) 19.79 ± 1.45 20.16 ± 2.38

Gender 14 males/15 females 18 males/13 females

Years of improvisation training 3.36 ± 0.67 –

MIL score 79.37 ± 4.97 –

FIGURE 2 | The evaluation score by each participant in the fMRI session.
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Functional connectivity
Based on the results of abovementioned analysis of ROIs, the
IPS was found have a higher activation under the Unfamiliar
condition. To examine the role that this key component in
the MD system played with other brain regions, we used
the generalized form of context-dependent psychophysiological
interactions (gPPI) analysis (McLaren et al., 2012; Gao et al.,
2016) to compute the functional connectivity between the
bilateral IPS and the whole brain.

Structural Covariance Analysis
We are curious about whether long-term training on musical
improvisation can affect the structure of brain, thus we did the
structural covariance analysis.

Measurement of cortical thickness
For both composers and controls, T1-weighted images were
processed by the CIVET pipeline (version 2.0) developed at
the Montreal Neurological Institute (Ad-Dab’bagh et al., 2006).
In the pipeline, images were first corrected using the N3
algorithm (Sled et al., 1998) and registered to the ICBM152
space (Collins et al., 1994). Afterwards, brain volumes were
classified into gray matter (GM), white matter (WM) and
cerebrospinal fluid. The CLASP algorithm was used to extract
the inner (GM-WM interface) and outer (pial) cortical surfaces,
which consisted of 40,962 vertices in each hemisphere (Kim
et al., 2005). These surfaces were nonlinearly aligned to a
hemisphere-unbiased iterative surface template (Lyttelton et al.,

2007). Then, we measured cortical thickness by the Euclidean
distance between linked vertices on the inner and outer cortical
surfaces throughout the cortex with the tlink metric (Lerch and
Evans, 2005).

Analysis of structural covariance
We calculated structural covariance by correlating the cortical
thickness of each seed (IPS, IFS, AI/FO, RPFC, preSMA, ACC)
with the thickness of all other surface points of the entire cortex
in the composer group and the control group (Suh et al., 2016).

RESULTS

Behavioral Results
The mean value and the standard deviation (SD) of the
evaluation scores by each composer in the fMRI session are
shown in Figure 2. From the intermediate overall scores given
by participants, we can infer that participants were positively
involved in the improvisation task during scanning. The results
of the evaluation scores are just shown here but were not involved
in subsequent analyses. The demographics of the 29 composers
and 31 controls are shown in Table 1.

Functional Imaging Results
Activation Maps
We compared the activation maps across different improvisation
conditions and baseline to assess basic task-related activation.

TABLE 2 | Activation under the Familiar condition.

Region Laterality BA MNI coordinates (mm) T score Cluster (Voxels)

x y z

Supplementary motor area L 6 −3 3 69 11.77 13,999

Supplementary motor area R 6 1 3 69 8.61

Precentral gyrus L 6 −48 −3 51 8.54

Precentral gyrus R 6 54 0 48 5.45

Postcentral gyrus L 6 −60 0 16 4.21

Inferior parietal lobule L 40 −39 −45 42 5.79

Inferior parietal lobule R 40 48 −39 48 4.04

Superior parietal lobule L 7 −15 −75 51 7.72

Superior parietal lobule R 7 21 −70 51 5.11

Inferior frontal gyrus L 44 −54 9 18 6.70

Inferior frontal gyrus R 9 63 15 30 3.53

Superior frontal gyrus L 6 −21 3 65 4.71

Superior frontal gyrus R 6 24 0 54 4.54

Middle frontal gyrus L 6 −27 5 57 3.73

Middle frontal gyrus R 6 32 1 58 3.34

Middle occipital gyrus L 7 −27 −66 39 5.72

Middle occipital gyrus R 39 30 −63 36 5.34

Superior occipital gyrus L 7 −23 −74 39 4.57

Superior occipital gyrus R 7 26 −68 39 4.15

Superior temporal gyrus L 22 −52 12 −3 6.50

Superior temporal gyrus R 42 60 −33 12 3.45 118

L, left; R, right; BA, Brodmann area; FDR-corrected p < 0.05, cluster size > 600 mm3.
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FIGURE 3 | Activated regions under different contrasts. (A) Functional

activation changes between Familiar and Baseline conditions. (B) Functional

activation changes between Unfamiliar and Baseline conditions. (C) Functional

activation changes between Unfamiliar and Familiar conditions. Left

hemisphere peaks have been transposed to the right.

Compared with Baseline, the Familiar condition mainly
activated the bilateral supplementary motor area, bilateral
precentral gyrus, left postcentral gyrus, bilateral inferior parietal
lobule, bilateral superior parietal lobule, bilateral inferior frontal
gyrus, bilateral superior frontal gyrus, bilateral middle frontal
gyrus, bilateral middle occipital gyrus, bilateral superior occipital
gyrus, and bilateral superior temporal gyrus [Table 2 and
Figure 3A, false discovery rate (FDR)-corrected p < 0.05, cluster
size > 600 mm3]. The Unfamiliar condition mainly activated the
bilateral supplementary motor area, bilateral precentral gyrus,
left postcentral gyrus, bilateral inferior parietal lobule, bilateral
superior parietal lobule, bilateral inferior frontal gyrus, bilateral
superior frontal gyrus, bilateral middle frontal gyrus, bilateral
middle occipital gyrus, bilateral superior occipital gyrus, and left
superior temporal gyrus (Table 3 and Figure 3B, FDR-corrected
p < 0.05, cluster size > 600 mm3).

Afterwards, the contrast between Unfamiliar and Familiar
conditions was examined. Under the Unfamiliar condition,
a stronger activation appeared in the left precentral gyrus,
left inferior frontal gyrus, and bilateral inferior parietal
lobule. Additionally, the bilateral inferior occipital gyrus,
bilateral middle occipital gyrus, and bilateral superior occipital
gyrus also appeared to have stronger activation. Under
the Familiar condition, higher activation was found in the
temporal regions such as the right superior temporal gyrus
(Table 4 and Figure 3C, FDR-corrected p < 0.05, cluster size
> 600 mm3).

TABLE 3 | Activation under the Unfamiliar condition.

Region Laterality BA MNI coordinates (mm) T score Cluster (Voxels)

x y z

Supplementary motor area L 6 −3 3 69 9.65 17,337

Supplementary motor area R 6 2 3 69 7.22

Precentral gyrus L 6 −48 0 54 8.89

Precentral gyrus R 6 57 6 45 5.50

Postcentral gyrus L 6 −56 −1 41 5.71

Inferior parietal lobule L 40 −39 −45 42 7.17

Inferior parietal lobule R 40 36 −49 42 4.08

Superior parietal lobule L 7 −21 −72 48 7.50

Superior parietal lobule R 7 22 −68 55 6.32

Inferior frontal gyrus L 44 −51 9 18 7.63

Inferior frontal gyrus R 44 50 12 18 3.65

Superior frontal gyrus L 6 −24 −2 65 6.04

Superior frontal gyrus R 6 22 6 55 3.80

Middle frontal gyrus L 6 −30 4 55 4.89

Middle frontal gyrus R 6 33 3 58 4.40

Middle occipital gyrus L 19 −30 −71 40 4.95

Middle occipital gyrus R 19 33 −73 40 5.04

Superior occipital gyrus L 7 −18 −76 41 5.48

Superior occipital gyrus R 7 26 −73 41 5.59

Superior temporal gyrus L 22 −53 13 −8 5.15

L, left; R, right; BA, Brodmann area; FDR-corrected p < 0.05, cluster size > 600 mm3.
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TABLE 4 | Contrast between Unfamiliar and Familiar conditions.

Region Laterality BA MNI coordinates (mm) T score Cluster (Voxels)

x y z

Precentral gyrus L 9 −54 10 36 4.43 142

Inferior parietal lobule L 40 −42 −39 45 3.70 23

Inferior parietal lobule R 40 32 −52 44 3.77

Superior parietal lobule L 7 −23 −62 44 3.72

Superior parietal lobule R 7 26 −65 51 4.67

Inferior frontal gyrus L 9 −57 12 27 3.55

Superior frontal gyrus L 6 −23 −3 53 4.28 96

Inferior occipital gyrus L 18 −33 −84 −4 4.49

Inferior occipital gyrus R 18 32 −86 −3 5.97

Middle occipital gyrus L 18 −35 −87 −3 5.38

Middle occipital gyrus R 19 31 −86 4 4.50

Superior occipital gyrus L 17 −14 −92 3 5.06

Superior occipital gyrus R 7 27 −67 42 5.35

Superior temporal gyrus R 42 57 −29 17 −3.97 41

L, left; R, right; BA, Brodmann area; FDR-corrected p<0.05, cluster size > 600 mm3.

TABLE 5 | The comparisons of six ROIs between different conditions (FDR-corrected, p < 0.05).

IPS IFS AI/FO preSMA RPFC ACC

Unfamiliar-baseline t = 4.19 t = 3.83 t = 4.59 t = 4.40 t = −0.96 t = 0.81

p = 0.0002 p = 0.0007 p = 0.0001 p = 0.0001 p = 0.35 p = 0.43

Familiar-baseline t = 3.41 t = 3.44 t = 4.78 t = 4.46 t = −0.18 t = 1.48

p = 0.002 p = 0.002 p = 0.0001 p = 0.0001 p = 0.86 p = 0.15

Unfamiliar-familiar t = 2.19 t = 0.31 t = −0.93 t = 0.14 t = −3.46 t = −1.74

p = 0.04 p = 0.76 p = 0.36 p = 0.89 p = 0.001 p = 0.09

The ROIs were chosen based on Duncan’s report (Duncan, 2010), which included IFS (41, 23, 29), AI/FO (35, 18, 2), preSMA (0, 18, 50), ACC (0, 31, 24), IPS (37, −56, 41) and RPFC

(21, 43, −10). Coordinates are shown in MNI space. The bold values indicate the significant differences.

Analysis Based on ROIs
We compared six ROIs between the different conditions using
one sample t-tests. The results are shown inTable 5 and Figure 4.
Thus, we can elucidate that most of the areas within the
MD system were involved in musical improvisation. However,
MD system activation did not show any differences when the
Unfamiliar condition was compared with Familiar condition.

Correlations with Musical Improvisational Level
We calculated linear partial correlation coefficients between the
average z-values and MIL scores. Significant correlations were
found between adjacent areas of the MD system and MIL scores
in both the Familiar and Unfamiliar conditions.

Functional Connectivity
The results for the functional connectivity between the left
IPS and the whole brain are shown in Table 6 and Figure 5.
The results for the functional connectivity between the right
IPS and the whole brain are shown in Table 7 and Figure 6.
From these results, we could see that visual regions such as the

middle occipital gyrus and superior occipital gyrus had the main
functional connectivity with the bilateral IPS.

Structural Covariance Results
The structural covariance results of the composer group
and the control group are shown in Figure 7. We can
conclude from the results that the composer group has a
stronger distribution of structural covariance than the control
group.

DISCUSSION

The MD System during Musical
Improvisation
Because improvisation with familiar cues involves more working
memories of music, and unfamiliar cues involve more creative
novelty, we used these stimuli to examine the specific brain
regions involved in each condition of musical improvisation. The
results show that the involvement of theMD system can be found
during improvisation with both familiar and unfamiliar cues.
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FIGURE 4 | Linear partial correlation coefficients (r) between the average z values of ROIs in the MD system and MIL scores. (Left) Linear partial correlation in the left

precentral gyrus under the Familiar condition (p < 0.05). (Right) Linear partial correlation in the left precentral gyrus, left postcentral gyrus and left superior parietal

lobule under the Familiar condition (p < 0.05).

TABLE 6 | Results of functional connectivity assessments based on the seed of the left IPS.

Region Laterality BA MNI coordinates (mm) T score Cluster (Voxels)

x y z

Lingual_L/Occipital_Sup_L L 19 −9 −87 45 5.01 3,788

Occipital_Mid_R R 19 36 −78 18 2.67 61

Supp_Motor_Area_L L 6 −6 0 66 2.63 34

Angular_R R 39 48 −54 36 −3.96 301

Frontal_Sup_Medial_R R 6 51 51 −3.16 199

Temporal_Inf_R R 20 51 12 −36 −3.49 133

Frontal_Mid_R R 42 9 60 −3.10 107

Frontal_Inf_Tri_L L 44 −57 15 18 −3.27 96

Temporal_Inf_L L 20 −42 −3 −33 −3.66 94

Frontal_Inf_Orb_R R 38 42 27 −24 −3.44 74

Combined with previous findings, we can infer that the main
role of the MD system is dealing with the novelty of a task while
participating in working memory and attentional control during
musical improvisation.

First, musical improvisation needs the creative competency
of novelty (Gross and Seashore, 1941), for example, a germinal
idea (Bennett, 1976). In line with previous studies (Berkowitz
and Ansari, 2008; Limb and Braun, 2008), the results of the
current study showed that the prefrontal regions of the MD
system are included in musical improvisation activities, which

are related to the invention of novel motor sequences. More
specifically, the dorsal premotor cortex within these areas plays
a key role in abstract auditory-motor mapping, due to the
imagining of novel music required by our tasks (Hoshi and Tanji,
2006; Zatorre et al., 2007). Additionally, the greater activation
shown in the left premotor area implies a higher involvement of
complex demands when improvising novel melodies (Haaland
et al., 2004). Importantly, our results extend previous findings
that musical improvisation is associated with parietal regions. In
general, parietal areas play important roles in visuomotor control
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FIGURE 5 | Functional connectivity based on the seed of the left IPS (FDR-corrected p < 0.05).

TABLE 7 | Results of the functional connectivity assessments based on the seed of the right IPS.

Region Laterality BA MNI coordinates (mm) T score Cluster (Voxels)

x y z

Occipital_Sup_L/Lingual_L L 18 −12 −66 −15 3.66 2,327

Precuneus_R/Parietal_Sup_R R 27 −39 42 4.85 1,048

Temporal_Mid_L L 21 −45 −42 0 3.82 448

Putamen_R R 30 −9 −3 2.93 250

Putamen_L L −18 9 3 2.93 225

Frontal_Mid_L L 45 −48 45 15 3.46 107

Temporal_Pole_Sup_R R 21 63 6 −9 3.10 105

Frontal_Inf_Orb_L L 47 −30 36 −9 2.81 56

Supp_Motor_Area_L L 6 −3 0 69 2.75 29

and the selection and spatial execution of movements (Wise et al.,
1997; Bengtsson et al., 2007). Studies show that the superior
parietal cortex is involved in auditory-motor transformations of
musical structure (Brown et al., 2013) and spatial notations to
motor responses (Stewart et al., 2003). One possible explanation
is that the hierarchy of novel musical structure specifically relies
on the parietal lobe. In addition, this finding of parietal activation
is consistent with the findings of experiments on mental imagery
(Herholz et al., 2012).

Second, the activation of the MD system in both conditions
could also be explained by the function of working memory
during improvisation. Improvisation needs a rich musical
background including musical appreciation, knowledge of
theory, and performance experience (Gross and Seashore, 1941).
Thus, during the first stage of improvisation, an entire melody
piece must be organized by selecting from musical materials
in working memory. After this stage, the repetitive elements
would be initiated under the Familiar condition and inhibited
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FIGURE 6 | Functional connectivity based on the seed of the right IPS (FDR-corrected p < 0.05).

FIGURE 7 | P-map of structural covariance. Significant correlations of cortical thickness with the seed points of the MD system (showed in red points) in composers

and controls are mapped, p < 0.05, RFT (Random Field Theory)-corrected.
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under the Unfamiliar condition (Nathaniel-James and Frith,
2002).

Responses given by the participants illustrated that they
attentively improvised music; thus, the involvement of the MD
system could also be interpreted by the requirements of attention.
Activation of the dorsolateral superior frontal gyrus, which
is part of the MD system, is involved in attentional control
(Desimone and Duncan, 1995). One possible explanation is that
musical improvisation demands a top-down control of attention
to musical materials, especially a higher demand under the
condition of improvising new melodies. Moreover, attentively
processing music is found to involve other regions including the
premotor and parietal cortex as a function of recruiting neural
circuits of working memory and motor imagery (Janata et al.,
2002).

In addition, we noticed that the IPS within the MD system
had a higher activation under the Unfamiliar condition. The
IPS has been reported to participate in musical transposition
(Foster and Zatorre, 2010; Foster et al., 2013), where a melody
is shifted to a new pitch height but still maintains its pitch
interval structure. Additionally, musical training can improve
the ability to utilize relative pitch information, especially for
unfamiliar melodies (Dowling and Harwood, 1986). Thus,
the greater recruitment of the IPS would lead us to infer
that improvising unfamiliar melodies could rely on more
strategies, such as musical transposition manipulation. The
further analysis of functional connectivity showed that visual
regions had the main functional connectivity with bilateral
IPS, especially under the Unfamiliar condition. This finding
could be interpreted that tonal/atonal rehearsal based on
working memory processing for visual stimuli was much more
strongly involved in improvising with unfamiliar cues (Schulze
et al., 2011), and details need to be confirmed by further
studies.

Finally, the influence of the experimental tasks should also
be addressed. In our study, we used mental imagery tasks to
simulate improvisational activities due to the lack of an MRI-
compatible keyboard. However, previous studies have shown the
involvement of some parts of the MD system (such as the SMA
and IPS) during imagery tasks (Herholz et al., 2012). Are these
parts activated by the imagery task or by musical improvisation?
We found some reports that the SMA and IPS are included in
a fronto-parietal network that could be involved in both motor
execution and motor imagery (Meister et al., 2004). Thus, we
can infer that the main activation of those parts was caused
by musical improvisation. Nevertheless, further experiments still
need to be completed to confirm this issue.

Evidence for Neuroplasticity
Our functional results showed that some areas within the MD
system were positively correlated with the level of musical
improvisation. These areas included the left precentral gyrus
under the Familiar condition and the left postcentral gyrus, left
precentral gyrus, and left superior parietal regions under the
Unfamiliar condition. The finding of a predominant correlation
between the left areas of the brain andMIL scores implies a higher
involvement of the aforementioned complex demands (Haaland

et al., 2004), as well as the habit of writing (Menon and Desmond,
2001), during musical improvisation training. Moreover, the
structural data also provided evidence that the composer group
had a stronger distribution of structural covariance than the
control group. Therefore, similar to data on the functional
changes in the brains of other experts (Duan et al., 2012; Gong
et al., 2015; Li et al., 2015), our results also supported the idea
that neuroplasticity can be affected by domain-specific training.

The Auditory Cortex during Musical
Improvisation
The auditory cortex showed activation in all conditions and a
significantly stronger activation when improvising with familiar
cues. First, these results support the notion that auditory
regions can be activated with music-related tasks via auditory-
motor interactions regardless of auditory stimuli (Zatorre et al.,
2007). Second, stronger activation appeared with familiar cues,
which required more memory resources, probably because some
regions, such as the superior temporal cortex, are involved in
auditory working memory processing (Hickok and Poeppel,
2000; Gaab et al., 2003).

To our knowledge, auditory cortices can be activated whether
or not there are real motor activities when referring to
musical activities (Halpern and Zatorre, 1999; Janata, 2001).
These findings can lead to a discussion about the differences
between improvisation without motor execution and mentally
rehearsing a melody. However, studies have shown that motor-
functional parts of the MD system, such as the SMA, could be
activated during auditory imagery tasks (Zatorre et al., 1996; Rao
et al., 1997). Considering that imagery tasks involve complex
processing, the relationship between auditory cortices and the
MD system based on different task designs remains to be
determined.

CONCLUSION

In this study, we provided evidence that the MD system strongly
participated in musical improvisation. Our results suggested that
musical improvisation was an activity with complex demands
in which the MD system mainly contributed to the novelty
of melodies, working memory, and attentional control. In
particular, the higher IPS recruitment indicated that musical
transposition manipulation was highly involved in improvising
unfamiliar melodies. Both functional and structural analyses
indicated evidence of neuroplasticity in MD regions that could
be associated withmusical improvisation training. These findings
can help unveil the functional mechanisms of the MD system in
musical cognition, as well as improve our understanding musical
improvisation.

Nevertheless, this study still has some limitations that should
be addressed here. Firstly, although strong evidence has been
found that the MD system is involved in musical improvisation,
a longitudinal study is still needed in the future. Secondly, in
order to do a better manipulation check, an MRI-compatible
keyboard for recording realtime music is indispensable in
the following study. Besides, since we infer that MD system
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participated in musical improvisation through processing the
novelty of melodies, working memory, and attention, it is also
necessary to inspect how these functions interact with each
other within the MD system. Moreover, improvisation is highly
dependent on musical genre, which means that differences
between improvising in a classical style and improvising in a jazz
style should also be investigated. At last, investigations on how
the auditory cortex relates to theMD system should be completed
as well, as this could help find other cognitive components of
musical improvisation.
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