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Abstract

Stem cell-derived hepatocytes may be an alternative cell source to treat liver diseases or to be used for pharmacological
purposes. We developed a protocol that mimics mammalian liver development, to differentiate cells with pluripotent
characteristics to hepatocyte-like cells. The protocol supports the stepwise differentiation of human embryonic stem cells
(ESC) to cells with characteristics of primitive streak (PS)/mesendoderm (ME)/definitive endoderm (DE), hepatoblasts, and
finally cells with phenotypic and functional characteristics of hepatocytes. Remarkably, the same protocol can also
differentiate rat multipotent adult progenitor cells (rMAPCs) to hepatocyte-like cells, even though rMAPC are isolated
clonally from cultured rat bone marrow (BM) and have characteristics of primitive endoderm cells. A fraction of rMAPCs can
be fated to cells expressing genes consistent with a PS/ME/DE phenotype, preceding the acquisition of phenotypic and
functional characteristics of hepatocytes. Although the hepatocyte-like progeny derived from both cell types is mixed,
between 10–20% of cells are developmentally consistent with late fetal hepatocytes that have attained synthetic, storage
and detoxifying functions near those of adult hepatocytes. This differentiation protocol will be useful for generating
hepatocyte-like cells from rodent and human stem cells, and to gain insight into the early stages of liver development.
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Introduction

Many groups are investigating alternative sources of functional

hepatocyte-like cells to alleviate the shortage of human hepatocytes

needed for cell replacement therapies and for pharmaceutical

applications [1,2,3,4,5]. Candidates for the generation of hepato-

cytes range from endogenous liver progenitor cells, hematopoietic

and stromal cells, to pluripotent cells, such as ESC (reviewed in

[6]). Several differentiation protocols have been described to

obtain hepatocyte-like cells from stem cells that used cytokines

involved in mammalian liver development [7,8]. However, few

studies have addressed if differentiation to hepatocyte-like cells in

vitro occurs via similar developmental steps as liver development in

vivo, nor have they proven to be applicable to pluripotent cells from

different species, or for adult stem cell differentiation.

Embryogenesis requires that the many differentiated cells

generated from totipotent stem cells are correctly assembled in

the different embryonic as well as extra-embryonic tissues. This

occurs in a well orchestrated stepwise process, whereby totipotent

stem cells are first fated to trophectoderm that differentiate solely

to the extra-embryonic trophoblast, or to pluripotent cells in the

inner cell mass (ICM)[9]. Cells within the ICM are subsequently

fated to either primitive endoderm (PrE) which gives rise to

parietal endoderm (PE) and visceral endoderm (VE) that, together

with the trophoblast, contribute to extra-embryonic tissues, or

epiblast cells, which give rise to the three germ layers of the

embryo. During gastrulation, epiblast cells ingress in the primitive

streak (PS) to form mesendoderm (ME) and definitive endoderm

(DE)[10]. DE subsequently becomes fated to cells that ultimately

populate the endodermal organs including the gut, pancreas, liver,
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and lungs. Theoretically, for a cell to become a terminally

differentiated cell type, it must undergo all consecutive steps of

development to be able to respond to the surrounding differen-

tiation cues.

The hepatic differentiation protocol of human ESC we

developed, employed cytokine cocktails to mimic the major steps

of embryonic and fetal liver development, resulting in the

sequential fating of ESC to PS/ME/DE, hepatoblasts and more

mature hepatocytes. We also evaluated if this protocol would

support hepatic differentiation of adult cell types with higher

differentiation potential, such as rat multipotent adult progenitor

cells (rMAPC). rMAPC are isolated clonally from cultured rat

bone marrow (BM). rMAPC are characterized by the expression

of genes associated with pluripotency such as Oct4, Rex-1 and Sall4

(but not Nanog and Sox2), genes used to generate iPSC such as

Klf2/4, n/c-Myc and Lin28, but also genes typical for PrE, such as

Foxa2, Sox7, Sox17, Gata4, Gata6 [11,12,13]. Like mESC, rMAPC

depend on leukemia inhibitory factor (LIF) to remain undifferen-

tiated (manuscript in preparation). These partial similarities

between rMAPC and ESC lead us to test if the protocol developed

from hESC (and also suitable for mouse iPSC [14]), could be used

to induce rMAPC differentiation to hepatocyte-like cells.

Results

Development of a four-step protocol for hepatocyte-like
cell generation from human ESC

Many cytokines and signals that govern the sequential

developmental steps have been identified from the study of model

organisms. Based upon this information, we developed a 4-step

differentiation protocol, mimicking four distinct steps of hepatic

development (Figure 1). In step I we mimicked gastrulation by

exposing cells to 100 ng/ml Activin-A, replacing the Nodal/

Crypto signal [15], and 50 ng/ml Wnt3a [16,17,18]. In step II,

10 ng/ml FGF2 and 50 ng/ml BMP4 were added to specify DE

to a hepatic fate, as these cytokines are secreted in vivo by the

adjacent cardiac mesoderm and septum transversum mesen-

chyme, respectively [19,20,21,22]. Step III was added as a

proliferation and first maturation step of the newly specified early

hepatoblasts and consisted of 25 ng/ml FGF8b, 50 ng/ml FGF1

and 10 ng/ml FGF4, based on the in vitro findings of Sekhon et al

[23]. To induce a mature hepatocyte phenotype, step IV consisted

of 20 ng/ml HGF and 100 ng/ml Follistatin-288, the first as a

general hepatotrophic cytokine [24], the latter to favor hepatic

over cholangiocyte differentiation [25]. In addition, 2.5 mg/ml

insulin was added, as well as 1 mM dexamethasone, the latter to

induce expression of mature hepatic specific genes [26].

Treatment of H9 (Figure 2A, Table S1A) and HSF6 (Table

S1B) hESC with Activin-A/Wnt3a induced expression of the PS/

ME/DE-specific genes (GSC, BRACHYURY, EOMES, MIXL1,

CXCR4)[27,28] by 22–28 fold, some peaking as early as d2 and

others on d4 or d6 (Figure 2A/5A). Upon completion of step I

(Activin-A/Wnt3a) on d6, expression of most of these PS/ME

transcripts returned to baseline by d10. Transcripts of liver

enriched transcription factors (LETF), known to govern liver

development [22,29], such as PROX1, HNF1a, HNF1b, HNF4a,

HNF6, FOXA2 were significantly induced during differentiation of

both hESC lines. Consistent with this, the hepatoblast transcripts,

a-fetoprotein (AFP) and transthyretin (TTR) became expressed between

d6 and d10, reaching maximal expression levels at d14. Albumin

Figure 1. Overview of liver embryogenesis on which liver differentiation protocol is based. Genes specifically expressed at different steps
during liver development are shown, in italics, under each step of lineage commitment. Cytokines used as well as other culture conditions are shown.
doi:10.1371/journal.pone.0012101.g001
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(ALB) and a1-antitrypsin (AAT) transcripts increased gradually,

becoming maximally expressed by d20, although levels were still

below those of mature hepatocytes. Finally, a number of mature

hepatocyte genes, including cytochrome P450 isotypes (CYP3A4/5/7,

CYP7A1), connexin-32 (CX32), glucose-6-phosphatase (G6PC) and

phosphoenolpyruvate carboxykinase (PEPCK1), as well as coagulation

associated genes (FACTOR V, FACTOR VII, protein C (PROC) and c-

glutamyl carboxylase (GGCX)) became maximally expressed between

d14 and d20, but did not reach levels seen in mature hepatocytes

(Figure 2A, Table S1A/B). With increasing differentiation, OCT4

expression gradually decreased although low levels (0.0176

0.004%) remained present at day 20. Although pancreatic cells

are also derived from the ventral foregut endoderm, transcripts for

PTF1A, NKX6.1, PDX1 and NGN3, expressed in pancreatic

progenitors and endocrine progenitors, were not up-regulated

during hepatic differentiation (Table S1A/B).

We next investigated the percentage of hESC-H9 progeny that

became committed to PS/ME/DE or hepatoblasts and hepatocytes

using immunocytochemistry. The majority of undifferentiated

hESC expressed OCT4 but not SOX17 (Figure 3A) or FOXA2

protein (data not shown). By d6, OCT42/SOX17+ cells were found

interspersed with remaining OCT4+ clusters (Figure 3A). On d20,

dense colonies of ALB+ cells could be detected (Figure 3A).

Although the density of ALB+ cells is highly variable within the well

(range 5.6 to 49.3% in randomly taken pictures), on average

17.7611.2% of the hESC-progeny were ALB+. Many of these

cuboidal ALB+ cells still co-expressed AFP protein, consistent with a

hepatoblast phenotype. A fraction of H9-progeny expressed ALB

but no longer AFP; and areas of cytokeratin-18 (KRT18)+/

PEPCK+ cells were found, both consistent with a mature hepatocyte

phenotype (Figure 3A). Less than 1% of H9-progeny were still

OCT4+ (Figure 3A). Ultrastructurally, hESC-HSF6 derived

progeny contained medium sized and large epithelial cells with

typical hepatocyte-like phenotype (Figure 3B).

We also assessed the ability of stem cell derived progeny to

perform typical synthetic, storage and detoxification functions of

hepatocytes. Human albumin was present in differentiating H9

and HSF6 supernatants from d14, reaching levels of 2.6 to 5.7% of

mature human hepatocytes by d20 (Figure 4A, Table S2).

Progressively more glycogen was stored in H9 progeny from d6

onwards to levels up to 6 times higher than (short term cultured)

mature hepatocytes on d20 (Figure 4B). We also evaluated

detoxification functions of the hepatocyte-like cells generated. In

response to 1 mM ammonia, increased urea production was

detectable from d14, becoming maximal on d20 (levels of 4.0% up

to 7.7% after NH4HCO3 compared with mature hepatocytes)[30]

(Figure 4C). Expression of CYP7A1 (cholesterol 7-a-hydroxylase),

which is the rate-limiting enzyme in the synthesis of bile acid

from cholesterol, increased in H9 and HSF6-progeny by .27 fold

by d20, reaching levels 10-fold lower than in mature hepatocytes

Figure 2. Sequential expression of genes found at different stages of endoderm and hepatic specification. Quantitative RT-qPCR was
used to evaluate gene expression in (A) hESC-H9 and (B) rMAPC-1 during the 20 day differentiation process. Shown are relative expression values as
compared to d0 on days 6, 10, 14 and 20 for genes in early liver development (n.3)(a) and relative expression to fetal hepatocytes (depicted as
percentages and in comparison with mature hepatocytes) for more mature liver-specific genes (b).
doi:10.1371/journal.pone.0012101.g002
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Figure 3. Immunofluorescence assessment of transcription factors, structural proteins and hepatoblast/hepatocyte specific
proteins in hESC and rMAPC-1 and their progeny. [A] hESC-H9 and rMAPC-1 day 0, 6, 20. [B] Electron microscopy of d20- progeny of hESC-
HSF6 and rMAPC-1. Panels A–C: Differentiated hESC-HSF6 show characteristics of hepatocyte-like cells. Shown are polarized hepatocyte-like cells with
desmosomes (C, black arrow), bile canaliculi (A and B, white arrow), mitochondria (A–C, black asterisk) and rough endoplasmatic reticulum (A–C, black

Primitive Endoderm to Liver
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(Table S1A-B). RT-qPCR, using primers that recognize CYP3A4/

5/7 transcripts (phase 1 enzymes), demonstrated that CYP3A4/5/

7 expression levels in H9/HSF6 d20-progeny were higher

expressed compared to fetal human hepatocytes (Table S1A–B).

In addition, both H9 and HSF6 progeny expressed CYP3A7 at

levels found in postnatal liver. CYP3A4/5/7 activity was detected

in d20-hESC-H9 progeny, which was inducible by 500 mM

phenobarbital (levels of 2.8% up to 11.1% after phenobarbital

compared with mature hepatocytes)(Figure 4D). Differentiated

hESC also expressed phase 2 enzymes involved in sulphation and

glucuronidation, such as UDP-glucuronidation (UGT1A1) and

glutathione-S-transferase (GST) (Table S1A–B). Moreover, glu-

tathion S-transferase activity of d20 H9 progeny reached levels of

80% of mature hepatocytes (Figure 4E). Hence, hESC progeny

displayed many of the functional properties of mature hepatocytes,

some at 5–10% of mature hepatocytes, others even higher than

primary hepatocytes, despite the fact that only approximately 20%

of the mixed cell population were ALB+.

Although some studies have concluded that differentiation of

hESC leads to a more homogeneous population of albumin

protein expressing hepatocyte-like cells than we demonstrate here,

the functional properties we demonstrate for non-purified hESC

progeny, including albumin secretion [31,32,33,34,35], urea

secretion [34,35,36] and cytochrome P450 activity [33,34,36,37]

are in line, or even more robust than observed in reportedly more

homogeneous progeny. However, as the latter were in general not

compared with primary hepatocytes, such comparison is not fully

possible. In addition, many published studies perform only

minimal functional characterization of the hESC progeny in

vitro, making comparisons not readily possible.

arrowhead). Panels D–I: d20 rMAPC-1 progeny have characteristics of both hepatocyte-like cells (D–F) and bile duct-like cells (G–I). Hepatocyte like cells
(D–F): Some colony forming epithelial cells (D) contained many cytoplasmatic organelles as RER cisternae (E, arrow) and mitochondriae (E, arrow
head), and formed with each other intercellular bile canalicular structures lined by microvilli (F, arrow) and sealed by junctional complexes (F, arrow
head), even gap junctions were observed (F inset, arrow head). Bile duct-like cells (G–I): In addition, some epithelial cells arranged in layers and
tubules presented at their apical pole many short microvilli (G and H, arrow) while their basal pole was surrounded by basement membranes (G,
arrow head). The lateral membranes formed many interdigitations (H, arrow heads and I, arrow). In the cytoplasm a moderate amount of bundles of
cytokeratin filaments (I, arrow heads) became obvious. Inset in I shows a bundle of cytokeratin filaments (arrow head) and a desmosome (dashed
arrow).
doi:10.1371/journal.pone.0012101.g003

Figure 4. hESC-H9 and rMAPC-1 progeny display functional properties of hepatocytes on d20 (n .3). The following percentages are
functional capacity of hESC- and rMAPC progeny compared to mature human and rat hepatocytes, respectively. [A] Albumin secretion (ng/mL/48 h),
hESC 2.6%, rMAPC 0.6%. [B] Storage of glycogen (nmol glucose/mg protein), hESC 632%, rMAPC 59.8%. [C] Spontaneous (hESC 4.0%, rMAPC 4.3%) and
NH4HCO3-stimulated urea production (hESC 7.7% (+94% induction), rMAPC 5.5% (+26% induction)) [D] Baseline (hESC 2.8%, rMAPC 0.8%) and induced
cytochrome P450 activity (hESC 11.1% (+303% induction), rMAPC 1.4% (+69% induction)). 500 mM phenobarbital was used for induction of CYP3A4,
while 10 mM omeprazole was used to induce Cyp1a2). [E] Glutathion S-transferase activity (nmol/min/mg protein), hESC 80.0%, rMAPC 27.0%.
doi:10.1371/journal.pone.0012101.g004
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Similar sequential activation of PS/ME/DE, hepatoblast
and hepatocyte genes in rat multipotent adult
progenitor cells

As rMAPC have a number of features in common with

pluripotent stem cells, such as high levels of Oct4, Rex1, Lin28,

Sall4, Klf2,4,5 expression, dependence of LIF and apparent

differentiation to cells of the three germ layers [11,12], we

hypothesized that the protocol developed for hESC, which also

induces hepatic differentiation of mouse induced pluripotent stem

cells [14] may also induce hepatocyte-like cell differentiation from

rMAPC [38]. Two independently isolated clonal rMAPC lines

(rMAPC-1 and rMAPC-2) were used (Figure 2B, Table S1C–D).

A 25 to .210 fold increase in transcripts for PS, ME and DE

specific genes (Gsc, Eomes, Mixl1, Cxcr4) was induced on d6 by

culturing rMAPC-1 and rMAPC-2 at high cell density and with

Activin-A/Wnt3a. Like in hESC, levels of these transcripts

returned to near baseline following completion of step 1. We also

found a significant (p,0.05) induction of the LETFs, Hnf4a, Hnf1a
and Prox1, while expression of Hnf1b and Foxa2, already high in

undifferentiated rMAPC, remained nearly unchanged over the 20-

day differentiation period. Expression of Afp and Ttr transcripts

was highly induced from d6 on, reaching maximal levels on d10

and persisted until d20. Expression of Alb and Aat increased

gradually by .215 fold by d20 and d14, respectively. Expression of

Arg1, bile salt export pump (Bsep), multidrug resistance-associated protein 2

(Mrp2), G6pc, Tat and Pepck1 increased slowly throughout

differentiation to levels still lower than in mature rat liver

(Figure 2B, Table S1C–D). Transcripts for the coagulation

associated genes, Factor V, Ggcx and Proc increased 24–210 fold,

while Factor VII transcripts were not induced. Hepatic maturation

was accompanied by decreased, but persistent expression of Oct4

(2.261.2%). As was seen for hESC, we found only a minimal

induction of Pdx1, and transcripts specific for pulmonary

epithelium, such as Sftp-a and Nkx2.1 were not induced (data not

shown). Identical results were found for 2 additional rMAPC lines

(Figure S1). However, when rat BM cells isolated under MAPC

conditions that do not express Oct4 and the PrE transcripts

(rClone-1) [11,12], were subjected to the same differentiation

protocol, only very limited hepatic gene expression was found

(data not shown).

Consistent with the rMAPC transcriptome data [11], nearly

100% of undifferentiated rMAPC-1 expressed Oct4, Sox17, Foxa2

and Sox7 (Figure 3A) but not Mixl1 (Figure 5B), Afp, Alb or Pepck

(data not shown). On d6, most rMAPC-1 progeny were Oct42,

but remained Sox17+, compatible with differentiation to ME/DE.

By d20, approximately 80% of rMAPC-1 progeny expressed Afp,

while expression of Alb was variable and patchy, similar to what

we found for hESC progeny (range 1.3 to 53.4%, average

11.7616.6% Alb+) (Figure 3A). Of the Alb+ cells, a small

proportion did no longer express Afp, and we detected areas of

Pepck+/Krt18+-cells, both consistent with a mature hepatocyte

phenotype (Figure 3A). On d20, 1–5% of rMAPC-1-progeny were

still Oct4+ (Figure 3A). Ultrastructurally, rMAPC-1 derived

progeny presented as clusters of polarized medium sized and

large epithelial cells. The more compact clusters and colony

forming epithelial cells showed a typical hepatocyte-like pheno-

type. The epithelial cells arranged in layers and tubules presented

characteristics of bile duct cells (Figure 3B).

rMAPC progeny also had functional characteristics of mature

hepatocytes. Albumin was secreted in culture supernatants of

rMAPC-1 and rMAPC-2 from d14 onwards, with levels of 0.6 to

3.3% of mature rat hepatocytes by d20 (Figure 4A, Table S2).

rMAPC-1 and rMAPC-2 stored glycogen from d6 onwards

reaching levels of 59.8% of mature hepatocytes by d20

(Figure 4C). Like in hESC-progeny, spontaneous urea production

was found in rMAPC-1 progeny, while urea production in

response to ammonia (urea cycle) was detectable from d10,

becoming maximal on d20 (levels of 4.3% up to 5.4% after

NH4HCO3 compared to mature hepatocytes) (Figure 4C). Finally,

we demonstrate that d20 rMAPC-1 progeny expressed function-

ally active Cyp1a2 (phase 1) inducible with 10 mM omeprazole

(levels of 0.8% up to 1.4% after omeprazole compared with

mature hepatocytes) (Figure 4D) and 27% glutathion S-transferase

activity (phase 2) (Figure 4E). Thus, as observed for hESC,

rMAPC progeny displayed many of the functional properties of

mature hepatocytes at 1–60% of mature hepatocytes, even if only

approximately 12% of the mixed cell population were Alb+.

Differences in PS/DE and PE/VE gene expression
consistent with putative developmental stage of hESC
and rMAPC

All rMAPC lines used express high levels of Oct4 but not Nanog

and Sox2. As they also express Sox7, Sox17, Gata4, Gata6 and Foxa2,

and minimal or no Mixl1, Hnf4a, Afp and Ttr transcripts, this

phenotype is similar to that of ICM cells that have suppressed

expression of Nanog and become PrE [39,40], as well as of rat

derived PrE cell lines (XEN-P cells) [41]. When expanded in the

absence of LIF, rMAPC-1 very quickly lose expression of Oct4,

with a concomitant fast increase in the VE transcripts, Hnf4a, Afp

and Ttr (manuscript in preparation). To verify whether the

differentiation protocol induced rMAPC commitment to intra-

embryonic tissue, DE, and then hepatic cells, or merely to VE or

PE, which also express a number of presumed hepatic genes [39],

we further analyzed the initial steps of differentiation of rMAPC

and compared this with the initial steps of hESC differentiation.

When rMAPC were cultured at high density with Activin-A/

Wnt3a but without LIF, a very fast induction of Hnf4a expression

occurred, a transcription factor found in VE but not PE, with

maximal expression (27 fold induction) as early as after 12 hours

(data not shown). In addition, Ttr transcripts increased 210 and 215

fold on d2 and d4, respectively, and Afp transcripts 26 and 213 fold,

respectively, also consistent with differentiation to VE. By contrast,

for hESC, maximal expression of HNF4a, TTR and AFP was not

detected until d10 (Figure 5A, Table S1A–B). Sox7, typically

expressed in PrE and VE, was expressed in undifferentiated

rMAPC and remained expressed throughout differentiation.

Although some increase in SOX7 transcript levels was found on

d2 for hESC, the most pronounced increase was seen around d10

of differentiation (data not shown). As SOX7 is also expressed later

during development in tissues such as lung, liver, and a number of

mesodermal cell types [42], the increase in SOX7 levels in hESC

may not represent differentiation towards VE/PE. Likewise, the

VE transcript Tmprss2, was induced by .210 fold on d6 in

rMAPC-1, and persisted throughout differentiation while no

increase in transcript levels for thrombomodulin (Thbd), characteristic

for PE [39], was found (Table S1C). Hence, the conditions used

for hepatic differentiation of rMAPC appeared to induce

differentiation from a PrE to a PE phenotype.

We demonstrate, however, also conclusively that upon exposure

to Activin-A/Wnt3a, d6-rMAPC expressed 24 to 210 fold higher

levels of the PS/ME/DE gene transcripts Eomes, Mixl1, Lhx1,

Tm4sf2, Cxcr4 and Gsc, and expressed Brachyury (Figure 2B, Table

S1C–D). Noteworthy, maximal expression of these PS/ME/DE

genes in rMAPC-progeny was found on d6, 4 days later than in

hESC (Figure 5A). The fast induction of MIXL1, EOMES and GSC

by d2 in hESC is consistent with the notion that hESC are similar

to epiblast cells and rapidly express PS genes upon differentiation

(Figure 5A). The PS/ME/DE commitment of rMAPC is

Primitive Endoderm to Liver
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dependent on Activin-A/Wnt3a, as culture of rMAPC without

LIF but also without Activin-A/Wnt3a, or with 1 ng/mL rather

than 100 ng/mL Activin-A induced Mixl1, Cxcr4, Gsc and Tm4sf2

significantly less (p,0.05) (Table S3).

To further demonstrate that at least some of the rMAPC can be

fated to intra-embryonic endodermal cells, we stained rMAPC-1

progeny on d6 for Sox7 and Mixl1 (Figure 5B), as a Sox72/Mixl1+

phenotype is compatible with a PS/ME/DE phenotype. Consis-

tent with RT-qPCR results, no Mixl1+ cells were found in the

absence of Activin-A/Wnt3a, while most cells remained Sox7+. In

cultures containing Activin-A/Wnt3a, approximately 5% of d6

rMAPC-1 expressed Mixl1 but not Sox7. As nearly 100% of

undifferentiated rMAPC-1 co-expressed Oct4, Sox17, Foxa2

(Figure 3A) and Sox7 (Figure 5B) proteins, this suggests that cells

with a PrE-like phenotype can still be induced to differentiate to

PS/ME/DE.

Discussion

Using insights from mammalian liver development, we developed

a differentiation protocol to generate hepatocyte-like cells from

hESC by sequential induction of primitive streak/mesendoderm/

definitive endoderm, followed by gradual hepatic maturation. The

same protocol, with omission of FCS, can also be used to induce

differentiation of rMAPC.

Two distinct populations of endoderm are sequentially induced

during mouse development. Concomitant with implantation

(E4.5), the PrE delaminates from the surface of the blastocoele

of the inner cell mass (ICM). In contrast to PrE, cells fated to

become DE, are derived from epiblast cells which ingress the PS

during the process of gastrulation. DE is then specified to hepatic

endoderm, hepatoblasts and finally mature hepatocytes in

response to a series of factors, some secreted by surrounding cells

[43]. As both types of endoderm express many transcripts in

common (Foxa2, Gata4, Gata6, Sox17, Hnf4a, Afp, Ttr, …), one

should take into account the minimal differences in transcript and

protein expression between these two types of endoderm when

investigating in vitro differentiation of pluripotent stem cells towards

hepatic endoderm. Thus, monitoring the sequential and transient

expression of a complement of genes/proteins consistent with

PS/ME, during the course of the in vitro differentiation process can

help to distinguish between DE and PrE. Although some of the

PS/ME/DE genes assessed here, are also expressed in VE (i.e.

Mixl1, Gsc) or trophectoderm (i.e. Eomes) or later during

development (i.e. Cxcr4), the transient up-regulation of all of these

genes together in response to Activin-A and Wnt3a and their

subsequent down-regulation upon withdrawal of these cytokines in

both hESC and rMAPC, strongly indicates transition through a

PS-like intermediate prior to acquisition of hepatic characteristics.

These findings at the transcriptome level were also substantiated at

the protein level. It should be noted that even though we

demonstrate that at least 5% of rMAPC differentiate to Sox72/

Mixl1+ DE cells, another fraction of rMAPC may differentiate

towards VE, given the very early rise of VE genes such as Tmprss2,

Afp, Ttr and Hnf4a, and persistent expression of Sox7 protein on

d6. In contrast, no substantial up-regulation of SOX7, AFP, TTR

and HNF4a was found before d10 in hESC. In addition, the

highest levels of PS/ME/DE gene expression was obtained at an

earlier time point in hESC compared to rMAPC, consistent with

the notion that hESC are developmentally comparable with

epiblast/embryonic ectoderm cells, the stage just prior to

gastrulation, while we hypothesise that rMAPC first have to

switch fate from a PrE-like phenotype to epiblast-like cell, thereby

gaining the ability to undergo ‘‘gastrulation’’.

It is at first sight surprising that cells with a phenotype consistent

with PrE can be fated to intra-embryonic cells (PS/ME/DE) and

hepatocyte-like cells. It is commonly believed that DE cells derived

from the epiblast are the sole cells that, following gastrulation, give

rise to epithelium of the digestive tract, pancreas, liver and lungs,

whereas VE is derived from the subpopulation of Nanog- cells in the

ICM. However, a recent lineage tracing study in early embryos in

vivo has demonstrated that this dogma may not be true [44,45].

Kwon et al demonstrated that VE cells can, at the time of

gastrulation, intersperse with epiblast derived cells, enter the

embryo proper, proliferate and contribute to 10–40% of the

epithelium of the foregut, midgut and hindgut of 12–18 somite

embryos [44]. Even though the study did not address whether

these VE cells themselves are patterned to cells of PS, ME and

then DE, they found down-regulation of the VE marker, HNF4a,

in the distally positioned VE-derived cells that are eventually

incorporated in the embryo proper. There is also mounting

evidence that fate decisions early during development between

PrE and epiblast are metastable. For instance, expression levels of

Nanog in ESC and the ICM can fluctuate, where Nanoglow cells may

start to re-express Nanog, allowing differentiation not to VE and

PE, but also intra-embryonic cell types [46,47]. In contrast to the

findings that cells initially expressing Oct4, Sox17, Foxa2 and Sox7

can be fated to PS/ME/DE and further to hepatocyte-like

phenotype, Séguin et al, recently demonstrated that forced

expression of SOX7 in hESC results in the commitment of hESC

to cells with a phenotype similar to extra-embryonic endoderm

(XEN) cells, which still co-express NANOG and OCT4. In contrast

to rMAPC, SOX7-hESC could not be induced to differentiate to

cells with hepatic or pancreatic characteristics [48]. As SOX7

decreased Wnt/b-catenin-stimulated transcription [42], it is

possible that the inability to suppress the constitutively expressed

SOX7, which may prevent activation of b-catenin via Wnt3a

signaling, is responsible for the absence of PS/ME/DE induction.

How rMAPC exactly can commit to cells expressing PS/ME/DE

transcripts, why some rMAPC differentiate to VE and others

apparently to PS/DE and finally, whether PrE cells derived from

rat blastocysts, like XEN-P cells [41] can be fated to PS/ME/DE

and hepatic endoderm using this protocol, will require further

evaluation.

A prerequisite for the further activation of the hepatic gene

program is the significant induction of LETFs. As a combination

of these LETFs became expressed at substantial levels, hESC and

rMAPC progeny should be poised to differentiate further towards

mature hepatocytes, if supplied with additional proper cues.

Indeed, following exposure to 3 additional steps, cells with

different levels of maturation emerged by the end of the

differentiation protocol, as evidenced by the significant expression

of post-natal hepatic specific markers (G6p, Cx32, Cyp’s, Pepck),

combined with a maintained expression of genes expressed in

more primitive hepatic cells, such as Afp, which normally rapidly

decreases at birth and is no longer expressed in mature

Figure 5. Time course analysis of PS/ME/DE and visceral endoderm gene expression during differentiation of rMAPC and hESC.
[A] Quantitative RT-PCR was used to evaluate the time point of maximal expression of transcripts of genes expressed in PS/ME/DE (Eomes, Gsc, Mixl1)
and visceral endoderm genes (Hnf4a, Ttr, Afp) in rMAPC and hESC. Shown are mean DeltaCT values (n$3). [B] Immunofluorescence assessment of
rMAPC-1 progeny by staining for Mixl1 (green)/Sox7 (red) on d0, d6 without cytokines (- step1) and d6 with cytokines (+ step1) (Activin-A/Wnt3a).
doi:10.1371/journal.pone.0012101.g005
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hepatocytes. Indeed, most hESC and rMAPC-progeny stained for

Afp at the protein level, some in co-expression with Alb, while only

a minor fraction was Alb+/Afp2.

Although the hepatocyte-like cells derived from both hESC and

rMAPC display several hepatic functions, such as albumin

secretion, urea production, glycogen storage, Cyp450 and GST

activity, levels were in general still approximately 5 to 10-fold

lower than in mature hepatocytes. Thus, despite the use of

cytokine cocktails known to play a role during liver development,

the in vitro culture system still does not recreate all signals present in

vivo that govern a coordinated maturation from pluripotent cells to

terminally differentiated mature hepatocytes. As organogenesis

does not solely depend on soluble factors but also cell-cell

interactions, development of 3-dimensional culture systems

wherein the anatomical features of developing liver lobules are

recreated and the use of bio-reactors making it possible to more

closely control physiological parameters such as pH and glycemia,

may be needed to allow the creation of hepatocytes with fully

mature characteristics and functions.

Materials and Methods

Experimental procedures
All isolations were approved by the ethical committee for the

use of human subjects in research and the ethical committee for

use of animals in research of University of Minnesota, USA and

Catholic University of Leuven, Belgium.

Media Composition and Cytokines
Basal differentiation medium. 60% DMEM-low glucose

(Gibco 31885), 40% MCDB-201-water (Sigma M-6770), 0.25X

Linoleic acid – Bovine serum albumin (LA-BSA) (Sigma L-9530),

0.25X Insulin-transferrin-selenium (ITS) (Sigma I-3146), 100 IU/mL

Penicillin, 100 mg/mL Streptomycin (Cellgro 30-002-CI), 0.1 mM L-

Ascorbic Acid (Sigma A8960), 1023 mM Dexamethasone (Sigma

D2915), 55 mM 2-mercaptoethanol (Gibco 31350).

Human ESC expansion medium. 80% DMEM/F-12

(Gibco 21331), 20% Knockout Serum Replacement (Gibco

10828), 2 mM L-glutamine (Invitrogen 25030), 0.1 mM MEM

non-essential amino acids (NEAA; Invitrogen 11140), 0.1 mM 2-

mercaptoethanol, 4 ng/mL FGF2.

Mouse embryonic fibroblasts (MEFs) expansion med-

ium. 90% DMEM high glucose (Gibco 21063), 10% FCS

(Hyclone), 2X L-glutamine, 2X penicillin-streptomycin, 2X MEM

NEAA, 110 mM 2-mercaptoethanol.

Rat MAPC expansion medium. 60% DMEM-low glucose

(Gibco 31885), 40% MCDB-201-water, 2% FCS (HyClone

CH30160.03), 1X Linoleic acid – Bovine serum albumin (LA-

BSA), 1X Insulin-transferrin-selenium (ITS), 100 IU/mL Penicillin,

100 mg/mL Streptomycin, 0.1 mM L-Ascorbic Acid, 561028 mM

Dexamethasone, 55 mM 2-mercaptoethanol.

Cytokines. The following cytokines and growth factors (all

from R&D Systems) were added for cell expansion or during

differentiation: rh/m/rActivin-A (338-AC), rhBMP4 (314-BP),

rhFGF1(232-FA), rhFGF2 (233-FB), rmFGF8b (423-F8-025),

rhFGF4 (235-F4-025), rmFollistatin-288 (769-FS), rmWnt3a

(1324-WN), rmOncostatin M (495-MO), rhOncostatin M (295-

OM), rhHGF (294-HGN), hPDGF-BB (220-BB). mEGF was from

Sigma (E-1257) but, due to supplier problems, rmEGF (R&D

Systems 2028-3G) was used subsequently.

Cell Line Isolation and Maintenance
Mouse embryonic fibroblasts. MEFs were derived at the

U. of Minnesota from E13-E14 CF-1 mice (Charles River

Laboratories, Wilmington, MA) or purchased from Global Stem

Inc, Rockville, USA. MEFs were maintained in MEF expansion

medium and immortalized with Mitomycin C (KYOWA

Mitomycin 2 mg). Mitomycin-treated MEFs were plated at a

density of 35000 cells/cm2 on 0,1% gelatine (Ultrapure water

0,1% gelatine, Chemicon ES-006-B) coated 6 well plates.

Human embryonic stem cells. The HSF6 cells (obtained

from Dr. M. Firpo, U. of Minnesota) and H9 cells (purchased from

WiCell, Madison, WI) were cultured as described [49] on

mitomycin-inactivated MEFs in hESC expansion medium.

hESC were maintained in a 21% O2 – 5% (H9) or 10% (HSF6)

CO2 – 37uC incubator and passaged 1:3 using collagenase IV

(Gibco 17104) every 3–7 days.

Rat multipotent adult progenitor cells (MAPCs).

Isolation, characterization and maintenance of rMAPC-1, was

described previously [11,12,13]. The rMAPC-2, rMAPC-3 and

rMAPC-4 lines were isolated from bone marrow of E18 to 3 week

old Fisher rats, using methods identical to those used for rMAPC-1.

Hepatocyte Differentiation Culture
All differentiations were done in 12 or 24 well plates (Corning

12 wells 3513, 24 wells 3526) pre-coated with 2% Matrigel (BD

356231) diluted in PBS (Gibco 10010) for 1–2 h at 37uC, in a 21%

O2 – 5.8% CO2 – 37uC incubator.

hESC were allowed to grow in feeder-conditioned hESC

medium for 24 hours or until 50–70% confluent. To induce

differentiation, expansion medium was switched to basal differen-

tiation medium, supplemented with the sequential cytokine

cocktails as described in Figure 1 for 20 days, and 2% FCS

between d1-6 and 0.5% FCS between d6-20.

rMAPC were differentiated using the same protocol, except that

the differentiation was done without FCS and the starting cell

density was 50,000 cells/cm2 (as described in [38]).

Evaluation of Liver Differentiation Protocol
As positive controls for functional tests rat primary hepatocytes

were isolated from 5 weeks old Fischer rat using a two-step

collagenase-perfusion method [50]. Human primary hepatocytes

were purchased from Biopredic International (HEP220).

RT-qPCR. For RNA isolation, the RNeasy Mini-kit/Micro-kit

(Qiagen 74104 and 74004) was used. DNAse treatment was

performed using Turbo DNAse kit (Ambion 1907). cDNA synthesis

was performed from 1 mg of RNA with Superscript III First-Strand

synthesis system (Invitrogen 18080-051). Real time PCR was

performed with SYBR Green Platinum SYBR green qPCR

Supermix-UDG (Invitrogen 11733-046) in an Eppendorf realplex/

ABI 7000 (Eppendorf) equipment. Relative gene expression was

calculated by the 2(2DDCt) method compared to undifferentiated

cells (day 0), using GAPDH/Gadph as housekeeping gene.

Supplementary tables are represented as DeltaCt (DCt) values

compared to GAPDH/Gapdh expression. DCt values .16 were

considered not expressed (NE). The list of primers used can be

found in Table S4. Fetal (E15) and mature rat liver was used to

extract RNA as positive controls. RNA from fetal (third trimester)

and mature human hepatocytes was a kind gift of Prof. M. Ott

(Hannover Medical School, Germany).

Immunofluorescence. Differentiations were done in 4 well

chamber slides (Nunc 177437) or in 12 well plates (Corning). Cells

were fixed using 10% Neutral Buffered Formalin (NBF) for 15

minutes at room temperature (RT). Permeabilization was done for

15 minutes using PBS containing 0.2% Triton X-100 (PBST)

(Acros Organics 422355000). PBST, containing 3% Normal

Donkey Serum (Jackson, JACK017-000-121), was used for

blocking for 30 minutes at RT. The cells were then incubated
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with the mixture of primary antibodies diluted in PBS containing

3% donkey serum and incubated overnight at 4uC. After three

washes in PBS, the cells were incubated with the mixture of

respective Alexa dyes conjugated secondary antibodies and

Hoechst dye (Sigma 33258) for 30 minutes at RT. After final

washes the cells were mounted with a cover slip at the top of

ProlongH Gold mountant (Invitrogen P36930). All dilutions were

optimized on both positive control cells (HepG2 for human cells,

primary rat hepatocytes for rat cells) and negative control cells

(Mouse Neural Stem Cells for early markers, undifferentiated

rMAPC for liver-specific markers) and using the respective isotype

control antibodies. The list of primary and secondary antibodies

used can be found in Table S5. Quantification of albumin-positive

cells was performed using Zeiss AxioVision Software version 4.8.1

on .10 randomly taken pictures.
Transmission electron microscopy (TEM). TEM was

performed on d20 rMAPC-1 and HSF6 progeny. Cells were

washed twice with PBS and scraped to obtain cell clusters. The

fragments were immediately fixed in 2.5% glutaraldehyde and

0.1 mol/L of phosphate buffer and stored at 4uC. After post-

fixation in 1% osmium tetroxide and 0.1 mol/L of phosphate

buffer, the samples were dehydrated in graded series of alcohol

and embedded in epoxy resin. Ultrathin sections were cut, stained

with uranyl acetate and lead citrate, and examined using a Zeiss

EM 900 electron microscope (Oberkochen, Germany).
Albumin secretion. Rat and human albumin was measured

using a quantitative ELISA kit (Starters Kit Bethyl E101 and

respectively Bethyl E110-125 & E80-129) as per manufacturer’s

protocol.
Glycogen storage. Glycogen content was measured according

to the spectrophotometrical method of Seifter et al [51].
Urea production. rMAPC and hESC progeny were washed

with PBS and cultured with 1 ml of differentiation medium

containing 0 or 1 mM NH4HCO3 for 24 hours. Urea content was

calculated using QuantiChromTM Urea Assay Kit (BioAssay

Systems DIUR-500).
Cytochrome P450 activity. Cytochrome P450 subtype

activity was detected by using the non-lytic method of P450-

GloTM Assay (Promega V8901 and V8771). Induction of CYP3A4

was performed by incubation with 500 mM phenobarbital,

induction of Cyp1a2 by incubation with 10 mM omeprazole, as

per manufacturer’s protocol.
Glutathione S-transferase (GST) activity. Total GST

activity was measured according to the spectrophotometrical

method of Habig et al [52] using 1-chloro-2,4-dinitrobenzene

(CDNB). The reaction mix contained 1 mM GSH and 1 mM

CDNB in 0.1 M potassium phosphate buffer, pH 6.5. The

reaction was started by adding 125 ml of sample, and the rate of

formation of CDNB-GSH conjugate was monitored at 340 nm for

6 min. GST activity was calculated using the extinction coefficient

of 9.6 mM21 cm21, and expressed as mmol of CDNB-GSH

conjugate formed per min per mg of cellular protein. Total

protein content was measured using the method by Bradford [53]

with bovine serum albumin as standard protein.

Statistics
Student’s T-test was used for statistical analysis. A minimum of

three independent experiments was performed for every described

test.

Supporting Information

Figure S1 Quantitative RT-PCR method was used to evaluate

expression levels of Oct4, the primitive/visceral endoderm specific

gene, Sox7, and levels of some genes expressed during PS/ME/

DE (Mixl1, Cxcr4), and hepatoblast/hepatocyte commitment

(Afp, Alb, Tat and G6pc). Shown are mean DeltaCT values of .3

for rMAPC-1 (data also in Figure 2 and Table S1) and rMAPC-2

(data also in Table S1), and two additional cell lines (n = 1)

different experiments on days 0, 6, 10, 14 and 20.

Found at: doi:10.1371/journal.pone.0012101.s001 (0.30 MB TIF)

Table S1 RT-qPCR analysis of gene expression in undifferen-

tiated human ESC H9 and HSF6 (S1A and S1B) and rat MAPC-1

and rMAPC-2 (S1C and S1D), and during differentiation towards

hepatocyte-like cells, using the protocol described in Figure 1, as

well as values in fetal (third trimester) and adult human

hepatocytes, and fetal (E15) and adult rat liver. Shown are mean

DeltaCT values + s.d. (n.3). NE = not expressed (DeltaCT .16).

2 = not assessed. # = peak expression of MIXL1 on day 2, by

day 6 expression already back to baseline. Some of these data are

also shown in Figures 2 and S1.

Found at: doi:10.1371/journal.pone.0012101.s002 (0.23 MB

DOC)

Table S2 Albumin production by hESC-H9, hESC-HSF6,

rMAPC-1 and rMAPC-2 was measured in culture supernatants

of undifferentiated stem cells as well as at different time points of

differentiation towards hepatocyte-like cells and in supernatants of

primary hepatocytes. Data are shown as mean concentrations after

48 h (ng/ml/48 h) + s.d. (n.3). 2 = not assessed. The mean

values op hESC-H9 and rMAPC-1 are also shown in Figure 4A.

Found at: doi:10.1371/journal.pone.0012101.s003 (0.05 MB

DOC)

Table S3 RT-qPCR analysis of expression of PS/ME/DE genes

on d0 and d6 in rMAPC-1 treated with no, 1 ng/ml or 100 ng/ml

Activin-A. Data are all from paired experiments, and are shown as

DeltaCT compared with Gapdh. Shown are mean DeltaCT

values + s.d. (n .3, except * n = 2). # = p,0.05 versus 100 ng/ml

Activin-A.

Found at: doi:10.1371/journal.pone.0012101.s004 (0.06 MB

DOC)

Table S4 Primer list.

Found at: doi:10.1371/journal.pone.0012101.s005 (0.12 MB

DOC)

Table S5 Immunohistochemistry antibodies.

Found at: doi:10.1371/journal.pone.0012101.s006 (0.06 MB

DOC)
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48. Séguin CA, Draper JS, Nagy A, Rossant J (2008) Establishment of endoderm
progenitors by SOX transcription factor expression in human embryonic stem

cells. Cell Stem Cell 3: 182–195.
49. Abeyta MJ, Clark AT, Rodriguez RT, Bodnar MS, Pera RA, et al. (2004)

Unique gene expression signatures of independently-derived human embryonic

stem cell lines. Hum Mol Genet 13: 601–608.
50. Gong ZJ, De Meyer S, van Pelt J, Hertogs K, Depla E, et al. (1999) Transfection

of a rat hepatoma cell line with a construct expressing human liver annexin V
confers susceptibility to hepatitis B virus infection. Hepatology 29: 576–584.

51. Seifter S, Dayton S, Novic B, Muntwyler E (1950) The estimation of glycogen

with the anthrone reagent. Arch Biochem 25: 191–200.
52. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first

enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130–7139.
53. Bradford MM (1976) A rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye binding.
Anal Biochem 72: 248–254.

Primitive Endoderm to Liver

PLoS ONE | www.plosone.org 11 August 2010 | Volume 5 | Issue 8 | e12101



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


