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Background: Melatonin receptors are present in the human skin and retina. These receptors 
can be stimulated by light emitting diodes (LEDs) at specific wavelengths, thereby inducing 
cutaneous photorejuvenation. However, the underlying mechanism remains unclear.
Objective: To evaluate the influence of LEDs at specific wavelengths on melatonin mem-
brane receptor (MT1) and cutaneous photorejuvenation via the MT1 pathway in vitro.
Methods: Normal human dermal fibroblasts (HDFs) were irradiated using LEDs at different 
wavelengths (410~940 nm) at a dose of 1 J/cm2. MT1 activity was evaluated after melatonin 
stimulation and LED irradiation. Thereafter, the expressions of collagen (COL) and matrix 
metalloproteinases (MMPs), with and without luzindole (MT1/2 receptor antagonist), were 
investigated via semi-quantitative reverse transcription polymerase chain reaction (PCR), 
real-time PCR, western blotting, and enzyme-linked immunosorbent assay.
Results: In HDFs, the MT1 mRNA and protein levels increased significantly in response to 
melatonin (dose, 50 nM) (p<0.01) and LED irradiation at 595, 630, 850, and 940 nm (p<0.01). 
LED irradiation up-regulated COL type I and down-regulated MMP-1. Compared to LED 
irradiation without luzindole, LED irradiation with luzindole produced no significant in-
crease in COL type I mRNA and protein levels (p<0.01).
Conclusion: We found that LED irradiation induces collagen synthesis and MMP-1 inhibi-
tion in HDFs via MT1 activation. Additionally, multiple LED wavelengths (595, 630, 850, 
and 940 nm) stimulated MT1 in HDFs, unlike in the eyes, where only blue light induced 
plasma melatonin suppression. This suggests the possibility of the melatoninergic pathway 
in photorejuvenation.
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INTRODUCTION

Melatonin is a hormone long known for its chronobiological 
effects, including the regulation of daily circadian rhythm 
and seasonal bio-rhythms1. It also acts as a direct or indirect 
anti-oxidant2,3, modulates immune defence responses4, and 
has anti-cancer5 and anti-jet-lag6 effects. Interestingly, recent 
studies have focused on the cutaneous rejuvenative feature 
of this hormone7, because melatonin can significantly reduce 
ultraviolet-B-induced cell damage and accelerate the wound 
healing process8,9.

The pineal gland is the major melatonin-secreting organ; 

however, melatonin is also present in other organs, such as 
the skin, immune system, mammary gland, gastrointestinal 
tract, liver, kidney, urinary bladder, ovary, testis, and pros-
tate10,11. The biological effect of melatonin is attributed to the 
activation of its membrane receptors12. Melatonin membrane 
receptors, MT1 and MT2, are expressed in humans and other 
mammals, while MT3 is present in amphibians and birds13. 
While MT1 and MT2 expression varies depending on the or-
gans, human skin expresses a strong bias toward MT114.

Light is the primary trigger for melatonin production in the 
eye15; its production depends on the wavelength, duration, in-
tensity, and timing of light. Blue light, especially in the wave-
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length range of 446 to 477 nm, significantly suppresses plasma 
or salivary melatonin, while blue light at longer wavelengths 
shows lesser suppression16-18. Although human skin expresses 
melatonin receptors, the melatonin-based cutaneous response 
to light irradiation remains unrevealed. Previous studies have 
shown that different types of cells and species show different 
action spectra of melatonin in response to light16,19. Therefore, 
we assumed that human skin may show a peculiar melatonin-
ergic response to light.

Photobiomodulation, also known as low-level light therapy 
(LLLT), was introduced approximately 50 years ago. Moreover, 
numerous studies have elucidated the cutaneous effects of 
light-emitting diodes (LED) on skin rejuvenation and wound 
healing20-22. Several possible mechanisms have been proposed 
to explain these effects, including cytochrome C oxidase and 
light-sensitive ion channel activation, which leads to the acti-
vation of transcription factors related to protein synthesis, cell 
migration and proliferation, anti-inflammatory signalling, and 
anti-oxidant enzymes23. As the cutaneous effects of melatonin, 
such as rejuvenation, anti-oxidation, and wound healing2,24,25, 
are parallel to those of LLLT and melatonin is a well-known 
light-induced hormone, we also intended to evaluate the role 
of melatonin as a mediator of photorejuvenation.

In the present study, we aimed to investigate the influence 
of different wavelengths of LED light on skin melatonin ac-
tivity by measuring melatonin receptor expression in LED-
irradiated human dermal fibroblasts (HDFs) in vitro. We 
also investigated whether LED irradiation of HDFs at specific 
wavelengths showed skin rejuvenative effects in accordance 
with melatonin activity.

MATERIALS AND METHODS

The study was approved by the Institutional Review Board 
of the  Chonnam National University Hospital (IRB no. 
CNUH-EXP-2022-320). The informed consent was waived.

LED light sources and reagents
LEDs at wavelengths of 940±2, 850±3, 630±8, 595±2, 580±4, 
525±4, 480±7, and 410±10 nm were used for irradiation. Each 
LED irradiation dose was measured using a quantum photo-
radiometer (Delta OHM, Padova, Italy) connected with a vis-
ible probe (Sonda LP 9021 RAD; Delta OHM). LED with dif-
ferent wavelengths was applied with uniform fluences ranging 

from 1 to 5 J/cm2. The distance from the LED module to the 
cells was 5 cm. Melatonin (M5250; Sigma, St. Louis, MO, 
USA) and luzindole (CAS 117946-91-5; Santa Cruz biotechnol-
ogy, Inc., Santa Cruz, CA, USA) were used as the reagents.

Cell culture
Human Dermal Fibroblasts, neonatal were purchased from 
EpiLife (Cascade Biologics, Portland, OR, USA). Cell cultures 
were maintained in Dulbecco’s Modified Eagle’s Medium (Bio-
Whittaker Cambrex Bio Sciences, Walkersville, MD, USA) sup-
plemented with 10% foetal bovine serum and 2 mM glutamine.

Cell viability
Neonatal human dermal fibroblasts (6×103 cells/well) were 
seeded in a 96-well plate. After application of melatonin at 
various concentrations, cell viability was assayed using the 
colorimetric 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetra-
zoliumbromide kit (Chemicon International Inc., Billerica, 
MA, USA), according to the manufacturer’s instructions.

Semi-quantitative reverse transcription PCR and real-time 
PCR
Total mRNA was isolated using an RNeasy mini kit (Qiagen, 
Valencia, CA, USA). Subsequently, cDNA was reverse tran-
scribed from 500 ng of total RNA with the Omniscript RT kit 
(Qiagen) and subjected to semi-quantitative reverse transcrip-
tion polymerase chain reaction (semi-qRT-PCR) with HiPi 
PCR PreMix (Elpis Biotech, Daejeon, Korea). Table 1 shows the 
primer sequences and product sizes. Semi-qRT-PCR products 
were analysed using 1.5% agarose gel electrophoresis, stained 
with Sybr Safe DNA gel stain buffer (Invitrogen, Carlsbad, CA, 
USA), and visualised using luminescence (LAS 3000; Fujifilm, 
Tokyo, Japan). Expression levels were normalised to those of 
the endogenous control GAPDH. To measure mRNA levels, 
RT-PCR and quantitative real-time PCR were performed with 
the same primer sets for target genes. Real-time PCR was per-
formed in triplicate with the HOT FIREPol EvaGreen® qPCR 
Mix Plus (Solis BioDyne, Tartu, Estonia) using a RotorGene 
3000 system (Corbett Research, Cambridge, UK). The thermal 
cycling conditions were as follows: 15 minutes at 95℃, fol-
lowed by 50 cycles of 95℃ for 10 seconds, 55℃ for 20 seconds, 
and 72℃ for 30 seconds. The relative abundance of a given 
transcript was estimated using the 2–∆∆Ct method, following 
normalisation to that of the endogenous control GAPDH.
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Western blotting
Western blotting was performed as described previously26. 

Protein bands were probed with rabbit antibodies against anti-
MEL-1A/B-R (B-8, sc-398788; Santa Cruz biotechnology, Inc.), 
anti-Pro-COL1A2 (Y-18, sc-8787; Santa Cruz biotechnology, 
Inc.), anti-matrix metalloproteinase (MMP)-1/8 (H-300, sc-
30069; Santa Cruz biotechnology, Inc.), and anti-β-actin (ab-
6276; Abcam, Cambridge, MA, UK) overnight at 4°C. Table 2 
shows the antibodies used.

The protein bands were visualised using luminescence (LAS 
3000; Fujifilm). Densitometric analyses were performed using 
Multi Gauge V3.0 software (Fujifilm). Expression levels were 
normalised to those of the endogenous control β-actin. Data 
are representative of the three experiments.

Enzyme-linked immunosorbent assay (ELISA)
Commercial enzyme-linked immunosorbent assay (ELISA) 
kits were used according to the manufacturers’ protocols 
to quantify the immune molecules of interest: human MT-
NR1A/Melatonin Receptor 1a (LSBio, Seattle, WA, USA). 
Pro-collagen I protein (PIP) levels were determined using a 
commercially available pro-collagen type I C peptide enzyme 
immunoassay kit (Takara, Shiga, Japan).

Statistical analysis
Values are expressed as means±standard deviations. Statistical 
analyses were performed via one-way analysis of variance with 
a post-hoc Scheffé’s test using IBM SPSS Statistics for Win-
dows/Macintosh, ver. 25.0 (IBM Corp., Armonk, NY, USA), 
when multiple comparisons were made. A p-value <0.05 was 
considered statistically significant.

RESULTS

Effects of melatonin and LED irradiation on cell survival
Cell viability was evaluated after melatonin treatment at various 
doses (Supplementary Fig. 1A). No effects were observed. Cell 
viability was also evaluated after LED irradiation at various dos-
es (1, 2.5, 5, 10, and 20 J/cm2) and wavelengths (940±2, 850±3, 
630±8, 595±2, 580±4, 525±4, 480±7, and 410±10 nm). Almost 
no effects were observed; however, reduced cell viability was 
noted at a wavelength of 410±10 nm and a dose of ≥10 J/cm2 

(p<0.05 vs. control) and at a wavelength of 480±7 nm and a 
dose of 20 J/cm2 (p<0.05 vs. control) (Supplementary Fig. 1B).

Table 1. Primer sense and anti-sense sequences

Gene Primer sequences (forward/reverse) PCR product size (bp)

MT1 (melatonin receptor 1A) 5’-ttgtcctttttgccatttgctg-3’/5’-gtcatcagtggagacggtttcc-3’ 289

MT2 (melatonin receptor 1B) 5’-ctaccaccgaatctaccggc-3’/5’-gacacgacagcgatagggag-3’ 210

COL-I (Type 1 collagen, α1) 5’-atgatgagaaatcaaccgga-3’/5’-ccagtagcaccatcatttcc-3’ 487

COL-III (Type 3 collagen, α1) 5’-cctccaactgctcctactcg-3’/5’-tcgaagcctctgtgtccttt-3’ 536

MMP-1 5’-agatgtggagtgcctgatgt-3’/5’-tgcaacacgatgtaagttgt-3’ 378

TIMP-1 5’-acccccgccatggagagtgt-3’/5’-gaggcaggcaggcaaggtga-3’ 319

TGF-β1 5’-gggactatccacctgcaaga-3’/5’-cggagctctgatgtgttgaa-3’ 124

GAPDH 5’-gtcttcaccaccatggagaaggc-3’/5’-cggaaggccatgccagtgagctt-3’ 400

MMP: matrix metalloproteinase, TIMP: tissue inhibitors of metalloproteinase, TGF: transforming growth factor.

Table 2. Antibodies
Antibody Dilution

1st

    Anti-MEL-1A/B-R (B-8) (sc-398788; Santa Cruz  
   biotechnology, Inc., Santa Cruz, CA, USA)

1:200

    Anti-Pro-COL1A2 (Y-18) (sc-8787; Santa Cruz  
   biotechnology, Inc.)

1:200

    Anti-MMP1/8 (H-300) (sc-30069; Santa Cruz  
   biotechnology, Inc.)

1:200

    Anti-β-actin (ab-6276; Abcam, Cambridgeshire, UK) 1:5,000

2nd

    Goat anti-rabbit IgG-HRP (sc-2004; Santa Cruz  
   biotechnology, Inc.)

1:5,000

    Donkey anti-goat IgG-HRP (sc-2020; Santa Cruz  
   biotechnology, Inc.)

1:5,000

    Goat anti-mouse IgG-HRP (sc-2005; Santa Cruz  
   biotechnology, Inc.)

1:5,000
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Application of melatonin and LED irradiation on melatonin 
receptor expression in HDFs
Significant increases in the mRNA levels of MT1 were ob-
served after melatonin stimulation of HDFs at doses ≥50 nM 
(Fig. 1A, B). Western blot analysis showed that melatonin re-
ceptor expression also significantly increased after melatonin 
stimulation at doses ≥ 25 nM (Fig. 1C).

When LED irradiation was applied to HDFs, the mRNA 
levels of MT1 significantly increased at the wavelengths 940±2, 
850±3, 630±8, 595±2, 580±4, 525±4, 480±7, and 410±10 nm at 
a dose of 1 J/cm2 (Fig. 1D, E). Among these LED wavelengths 
(dose, 1 J/cm2), 940±2, 850±3, 630±8, and 595±2 nm showed 
more significant MT1 activity (p<0.01 vs. control). On western 
blot analysis, melatonin receptor expression in HDFs sig-
nificantly increased with LED irradiation at the wavelengths 

940±2, 850±3, 630±8, 595±2, 580±4, 525±4, 480±7, and 410±10 
nm at a dose of 1 J/cm2 (Fig. 1F).

Regulation of collagen and MMPs after melatonin  
stimulation and LED irradiation of HDFs
The mRNA levels of COL-I (type I collagen α1) and COL-III sig-
nificantly increased after melatonin stimulation at doses ≥50 nM 
in HDFs (Fig. 2A). The mRNA levels of transforming growth 
factor-β1 (TGF-β1) increased while those of MMP-1 decreased 
after melatonin stimulation at doses ≥50 nM in HDFs (p<0.01) 
(Fig. 2B). On western blot analysis and ELISA, a significant 
increase in the expression of type I procollagen and a decrease 
in that of MMP-1 were also observed after melatonin stimula-
tion at doses ≥25 nM (p<0.01) (Fig. 2C, D).

On LED irradiation of HDFs, the mRNA levels of COL-I 
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Fig. 1. Melatonin receptors identified in human dermal fibroblasts (HDFs). The impact of melatonin stimulation on mRNA and protein 
levels of melatonin receptors in HDFs; (A) semi-qRT-PCR, (B) real-time PCR, and (C) western blotting. The impact of various light emitting 
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protein levels of melatonin receptors in HDFs; (D) semi-qRT-PCR, (E) real-time PCR, and (F) western blotting. **p< 0.01 vs. normal control.
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Fig. 2. Regulation of collagen synthesis identified in human dermal fibroblasts (HDFs). The impact of melatonin stimulation on mRNA 
and protein levels of transforming growth factor-β1 (TGF-β1), collagen (COL)-I, COL-III, matrix metalloproteinase (MMP)-1, and tissue 
inhibitors of metalloproteinase (TIMP)-1; (A) semi-qRT-PCR, (B) real-time PCR, (C) western blotting, and (D) enzyme-linked immunosor-
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and COL-III increased while those of MMP-1 decreased at the 
wavelengths 940±2, 850±3, 630±8, 595±2 at a dose of 1 J/cm2 

(Fig. 2E). Among the LED wavelengths (dose, 1 J/cm2), 940±2, 
850±3, 630±8, and 595±2 nm showed significantly increased 
mRNA levels of both COL-I and COL-III (p<0.01 vs control) 
(Fig. 2F). On western blot analysis, type I procollagen expres-
sion increased while MMP-1 expression decreased with LED 
irradiation at the wavelengths 940±2, 850±3, 630±8, 595±2, 
580±4, 525±4, and 480±7 nm at a dose of 1 J/cm2 (Fig. 2G). Type 
I procollagen synthesis after LED irradiation (dose, 1 J/cm2) 
at the wavelengths 940±2, 850±3, 630±8, and 595±2 nm also 
showed a significant difference (p<0.01) (Fig. 2H).

Effect of the MT1/2 receptor antagonist luzindole in 
combination with melatonin stimulation and LED irradiation 
on the regulation of collagen and MMPs in HDFs
As MT1 activation was detected in the HDFs, we subsequently 
tested whether the regulation of collagen and MMPs was medi-
ated by the melatonin receptor. For this purpose, the MT1/2 re-
ceptor antagonist luzindole was added to the culture medium at 
a concentration of 10 μM. Initially, the HDFs were subjected to 
melatonin stimulation at a dose of 50 nM. Thereafter, the HDFs 

were subjected to LED irradiation (dose, 1 J/cm2) at the wave-
lengths 940±2, 850±3, 630±8, and 595±2 nm, which induced a 
significant increase in COL-I and COL-III expression.

Luzindole treatment (dose, 10 μM) combined with melato-
nin (dose, 50 nM) decreased the mRNA levels of COL-I to a 
greater extent than did melatonin stimulation alone (Fig. 3A, B). 
Western blot analysis showed that the combined treatment of 
HDFs with luzindole and melatonin also decreased the expres-
sion of type I procollagen to a greater extent than did melatonin 
stimulation alone (Fig. 3C). Type I procollagen synthesis after 
luzindole-melatonin co-stimulation and melatonin stimulation 
alone showed significant differences (p<0.01) (Fig. 3D).

Luzindole treatment (dose, 10 μM) combined with LED 
irradiation (dose, 1 J/cm2; wavelengths, 940±2, 850±3, 630±8, 
and 595±2 nm) decreased the mRNA levels of COL-I to a 
greater extent than did LED stimulation alone (Fig. 4A, B). 
Western blot analysis and ELISA also revealed that the combi-
nation of luzindole and LED irradiation (dose, 1 J/cm2; wave-
lengths, 940±2, 850±3, 630±8, and 595±2 nm) decreased the 
expression of type I procollagen to a greater extent than did 
LED stimulation alone (p<0.01) (Fig. 4C, D).
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DISCUSSION

The interruption of collagen synthesis and up-regulation of 
MMP-1, the enzyme related to the turnover of skin collagen, 
are the main characteristics that differentiate aged skin from 
younger skin27. Numerous LED-based studies have aimed to 
improve these characteristics and have succeeded in increas-
ing collagen synthesis and reducing MMP-1, not to mention 
producing clinical improvements, especially with irradiation 
at the wavelengths 590 and 633 nm in combination with light 
at 830 nm20,21,28,29. In another study, a 940-nm diode laser 
stimulated the proliferative capacity and cell differentiation of 
human fibroblasts in relation to wound healing30. In the cur-
rent study, LED irradiation of HDFs at wavelengths 595, 630, 
850, and 940 nm produced a significant increase in collagen 
synthesis and down-regulation of MMP-1, which were consis-
tent with previous study findings.

Several mechanisms have been proposed to explain the ac-

tion of LED therapy or LLLT. Mitochondria have been consid-
ered the primary target of light therapy, which leads to increased 
adenosine triphosphate (ATP) production via cytochrome C 
oxidase, the terminal enzyme of the electron transport chain, 
and alteration of reactive oxygen species (ROS)31. Increased ATP 
subsequently triggers metabolic pathways, and changes in ROS 
activate numerous intracellular signalling pathways, including 
nucleic acid and protein synthesis as well as cell cycle progres-
sion32. In addition, LLLT has been reported to have an effect on 
the regulation of several genetic transcription factors and gene 
expressions associated with cell proliferation, inhibition of apop-
tosis, and energy metabolism and respiratory chain31. In our 
study, LED irradiation at the wavelengths 595, 630, 850, and 940 
nm induced collagen synthesis and MMP-1 inhibition, which 
significantly decreased with the addition of the MT1/2 receptor 
antagonist luzindole. Melatonin presents effects that are com-
mon with LLLT, such as anti-oxidative, anti-inflammatory, and 
immunomodulatory actions, not to mention cutaneous effects, 
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(ELISA). *p<0.05, **p<0.01 vs. normal control.
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including enhanced collagen synthesis and reduced MMP-
124. The TGF-β1/SMAD signalling pathway also plays a role in 
LLLT-induced rejuvenation33. In our study, melatonin stimula-
tion of HDFs increased the mRNA expression of TGF-β1. In 
addition, the MAPK/ERK pathway, which plays a crucial role in 
the regulation of fibroblast migration under light stimulation, is 
also representative of melatonin activity23,33-35. Stress-activated 
protein kinases/c-Jun N-terminal kinase, p38 mitogen-activated 
protein kinase, and extracellular regulated protein kinases are 

well-characterized subfamilies of MAPK35. Based on our results 
as well as the common cutaneous effects and relationship be-
tween LLLT and melatonin, we propose that the MT1 pathway 
plays a crucial role in photorejuvenation. Perhaps, LED irradia-
tion may have up-regulated the melatonin hormone itself or an 
MT1 agonist, or may have directly stimulated the MT1 receptor. 
However, this is speculative as we did not detect the melatonin 
hormone or MT1 agonist to confirm or refute this theory.

HDFs, which play a major role in skin rejuvenation, are 
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Fig. 4. Regulation of collagen synthesis identified in the human dermal fibroblasts (HDFs) with MT1/2 antagonist luzindole (dose, 
10 μm). The impact of various light emitting diodes (LEDs) at wavelengths (dose: 1 J/cm2) of 940±2, 850±3, 630±8, 595±2, 580±4, 
525±4, 480±7, and 410±10 nm with and without luzindole on mRNA and protein levels of melatonin receptor 1 (MT1) and collagen 
(COL)-I; (A) semi-qRT-PCR, (B) real-time PCR, (C) western blotting, and (D) enzyme-linked immunosorbent assay (ELISA). **p<0.01 vs. 
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located below the epidermis of the skin. Therefore, LED light 
must first penetrate the epidermis and be less absorbed by the 
surrounding dermal components to reach the fibroblast. The 
absorption and scattering of light in tissues are wavelength 
dependent23,33. The major cutaneous chromophores, such as 
haemoglobin and melanin, show high absorption bands at 
wavelengths shorter than 600 nm33. Water, on the other hand, 
shows significant absorption at wavelengths longer than 1,150 
nm33. As a result, wavelengths between 600 and 1,150 nm form 
a so-called optical window which allows effective light trans-
fer to the dermal fibroblasts33. The LED wavelengths 595, 630, 
850, and 940 nm, that induced MT1 activation leading to col-
lagen synthesis in our study, are therefore considered suitable 
treatment options with clinical applications.

Our findings revealed that LED irradiation of HDFs at 
multiple wavelengths (595, 630, 850, and 940 nm) induced sig-
nificant melatonin receptor activation. In contrast, irradiation 
of the eye with a specific bandwidth of blue light from 446 to 
477 nm showed significant plasma melatonin suppression18. 
LED with longer wavelengths, including those in the infrared 
spectrum, revealed no significant suppression18,36. Unlike the 
skin, light stimulation of the retina results in the transmission 
of signals to the thalamus via the optic nerve and optic tract37. 
The hypothalamus co-ordinates biological clock signals and 
directs the pineal gland to secrete melatonin. In addition, 
different types of cells represent different action spectra in 
response to light16,19. While membrane receptor MT2 is pri-
marily found in the retina, human skin expresses a strong bias 
towards MT114,38. Based on our results, we suggest that human 
skin may show a melatoninergic response to light distinct 
from that shown by the eye. Nevertheless, further in vivo eval-
uation of the effects of LED irradiation in a large population 
of participants is required to strengthen this observation.

In conclusion, our study revealed that LED irradiation of 
HDFs at the wavelengths 595, 630, 850, and 940 nm showed 
significant collagen synthesis and MMP-1 inhibition. These 
rejuvenative effects were mediated by MT1 activation. This 
suggests the possibility of the melatoninergic pathway in pho-
torejuvenation. Additionally, the melatoninergic response of 
the HDFs differed from that of the eye. Multiple LED wave-
lengths could stimulate MT1 in HDFs, whereas blue light ir-
radiation alone could suppress plasma melatonin secretion in 
the eye. This suggests that the melatoninergic response of the 
human skin to light may be distinct from that of the eye.
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