
©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

Adipocyte 3:3, 224–229; July/August/September 2014; © 2014 Landes Bioscience

 CommentAry

224 Adipocyte Volume 3 Issue 3

CommentAry

Obesity-associated insulin resis-
tance has long been linked to 

both increased adipocyte oxidative 
stress as well as the presence of inflam-
matory changes in adipose tissue, 
including the infiltration and activation 
of tissue-resident macrophages. In order 
to investigate the connections between 
obesity-associated oxidative stress in 
adipocytes and increased inflamma-
tion in adipose tissue associated with 
the development of insulin resistance, 
our laboratory recently demonstrated 
that adipocytes form glutathionylated 
products of oxidative stress includ-
ing glutathionyl-4-hydroxy-2-nonenal 
(GS-HNE) and glutathionyl-1,4-dihy-
droxynonene (GS-DHN). The abun-
dance of both GS-HNE and GS-DHN 
were increased in the visceral adipose 
tissue of ob/ob mice and diet-induced 
obese, insulin-resistant mice. Further, 
these products of lipid peroxidation were 
shown to induce inflammatory changes 
in macrophages. Finally, in a mouse 
model, overproduction of GS-HNE 
was associated with increased fasting 
glucose levels and moderately impaired 
glucose tolerance. Together, these find-
ings suggest a novel mechanism by 
which obesity-induced oxidative stress 
in adipocytes may lead to activation of 
tissue-resident macrophages. As adipose 
tissue inflammation has been shown to 
play an important role in the develop-
ment of insulin resistance, further study 
of this pathway may lead to potential 
interventions to attenuate the metabolic 
consequences of obesity.

Obesity is widely acknowledged to be 
a critical global health problem. Obesity 
and overweight contribute significantly 
to major causes of death and disability, 
including cardiovascular disease and type 
2 diabetes mellitus. The search for the 
pathogenic factors connecting obesity to 
human disease has led to the identifica-
tion of “metainflammation”, or chronic 
low-grade non-resolved inflammation, as 
a common thread.1,2 The infiltration of 
macrophages into adipose tissue and the 
overexpression of inflammatory genes have 
been shown to be associated with obesity-
related metabolic disease in humans3 and 
are associated with adipocyte insulin resis-
tance.2 The resultant increased lipolysis 
and alterations in adipokine release have 
larger systemic effects, including overall 
insulin resistance and the development of 
other manifestations of metabolic disease.4

In addition to an increased inflam-
matory state, obese adipose tissue exhib-
its increased oxidative stress.5,6 Further, 
adipose oxidative stress has been associ-
ated with insulin resistance in humans.7 
Conversely, caloric restriction can 
improve both inflammatory profile as 
well as decrease oxidative stress in adi-
pose tissue8 and obese female mice show 
parallel reduced insulin resistance as well 
as reduced adipose oxidative stress and 
inflammation, when compared with male 
mice.9 While there are clearly associations 
between oxidative stress and inflamma-
tion in both obese adipose tissue as well as 
in other pathologic states, the directional-
ity and mechanism of this relationship is 
yet to be fully elucidated.
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Adipose tissue exposed to chronic over 
nutrition shows increased endoplasmic 
reticulum (ER) stress and mitochondrial 
dysfunction.10 The resultant deteriora-
tion in efficiency of oxygen consumption 
and electron transport leads to increased 
production of superoxide anion.11,12 
Superoxide anion can be converted by 
superoxide dismutase to hydrogen perox-
ide (H

2
O

2
) that in turn can be metabo-

lized in various pathways. Both catalase 
and glutathione peroxidases decompose 
hydrogen peroxide into oxygen and 
water.13-16 An alternate pathway is the 
non-enzymatic degradation of hydro-
gen peroxide via iron-mediated Fenton 
chemistry that produces the hydroxyl 
radical.17 The hydroxyl radical has many 
potential deleterious effects and it is the 
reactive oxygen species (ROS) which 

acts upon polyunsaturated fatty acids 
(PUFA) in the cell membrane resulting 
in formation of lipid peroxidation prod-
ucts.18 These products include reactive 
α,β-unsaturated aldehydes such as trans-
4-hydroxy-2-nonenal (4-HNE) and trans-
4-oxo-2-nonenal (4-ONE).18 4-HNE is 
able to react with cysteine, histidine and 
lysine residues of proteins via Michael 
addition in a process termed protein car-
bonylation.19 These same amino acids also 
are capable of covalent modification via 
Schiff base formation but due to the lack 
of a free carbonyl group are typically not 
included in discussions of protein carbon-
ylation. Protein carbonylation can affect 
both protein function and abundance20,21 
and has been associated with alterations in 
the insulin signaling pathway21 and mito-
chondrial function,10 and may represent a 

mechanism by which oxidative stress leads 
to metabolic changes in the adipocyte and 
the organism at large.

The cell is able to protect against dam-
age by reactive lipid aldehydes via a vari-
ety of phase I and phase II enzymes. As 
shown in Figure 1, these enzymes catalyze 
oxidation, reduction or glutathionylation 
of 4-HNE, 4-ONE and other reactive 
aldehydes. For the sake of illustration, the 
metabolism of 4-HNE will be primarily 
discussed but it should be noted that a 
variety of reactive aldehydes are metabo-
lized via parallel phase II pathways. Of 
these enzymes, glutathione-S-transferase 
A4 (GSTA4) mediates glutathionylation 
of 4-HNE and has been proposed as play-
ing an important role the metabolic con-
sequences of obesity as increased adipose 
tissue oxidative stress and inflammatory 

Figure  1. metabolism of trans-4-hydroxy-2-nonenal (4-Hne). Ar, aldose reductase; ALDH, aldehyde dehydrogenase; Ao, aldehyde oxidase; DHn, 
1,4-dihydroxynonene; GStA4, glutathione-S-transferase A4; GS-DHn, glutathionyl-1,4-dihydroxynonene; GS-Hne, glutathionyl-4-hydroxy-2-nonenal; 
HnA, 4-hydroxynonanal; Hne, trans-4-hydroxy-2-nonenal; HneA, trans-4-hydroxy-2-nonenoic acid.
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markers correlate strongly with down-
regulation of GSTA4.5 Glutathionylated 
4-HNE (GS-HNE) can be further 
reduced by aldose reductase (AR, also 
known as aldoketoreductase) to glutathi-
onyl-1,4-dihydroxynonene (GS-DHN). 
Both GS-HNE22,23 and GS-DHN24 are 
exported rapidly by the ATP-dependent 
transporter RLIP76.

While the metabolism and export of 
these reactive lipids would be presumed to 
be metabolically beneficial, it is interest-
ing to note that RLIP76 knockout mice, 
which have significantly attenuated export 
of these metabolites, are in fact protected 
against obesity-induced inflammation 
and, notably, from oxidative stress-induced 
insulin resistance.25,26 This observation, 
together with studies showing injection of 
GS-HNE into murine peritoneal cavities 
induced leukocyte infiltration and pro-
inflammatory leukotriene production,27 
raised the possibility that glutathionyl-
ated products of lipid peroxidation were 
not merely inert metabolites destined 
for excretion, but rather had potential as 
inflammatory mediators.

In order to explore potential signal-
ing roles for glutathionylated products 
of lipid peroxidation, we examined fac-
tors influencing GS-HNE and GS-DHN 
production in tissue culture and in mouse 
models as well as the potential activity of 
these metabolites on macrophages in cul-
ture.28 We reported that both GS-HNE 
and GS-DHN were increased in the adi-
pose tissue of ob/ob mice. GS-HNE was 
also noted to be increased in high fat fed 
obese mice relative to lean controls, while 
GS-DHN showed only a non-significant 
trend, possibly related to higher variability 
among individual mice.28 Of note, both 
the ob/ob and high fat diet models are 
known to have increased oxidative stress 
and inflammation in adipose tissue as well 
as reduced glucose tolerance overall.5,29 
We further examined the production of 
GS-HNE and GS-DHN in cell culture 
systems, showing that 3T3-L1 adipo-
cytes, but not RAW264.7 macrophages, 
produced both GS-HNE and GS-DHN 
under basal conditions and in increased 
levels in response to treatment with hydro-
gen peroxide to induce oxidative stress.

As there is a known association between 
elevated serum glucose levels and increased 

oxidative stress in a variety of tissues,30 the 
effect of elevated exposure to glucose has 
been previously examined in 3T3-L1 adi-
pocytes. 3T3-L1 adipocytes chronically 
exposed to high-glucose culture medium 
(25 mM) show increased oxidative stress 
and insulin resistance when compared 
with those grown in low glucose culture 
medium (5.5 mM).31 As we also showed, 
high glucose exposure was also associ-
ated with greater lipid accumulation, 
as seen by increased number and size of 
lipid droplets. Interestingly, GS-HNE 
and GS-DHN production showed only 
a small but non-significant increase high 
glucose cells relative to controls; how-
ever, when paired with hydrogen perox-
ide treatment, the response of the high 
glucose cells to hydrogen peroxide was 
significantly increased for both GS-HNE 
and GS-DHN relative to the response of 
cells grown in low glucose. This poten-
tiation of the response to oxidative stress 
after chronic high glucose exposure could 
represent increased lipid peroxidation in 
these cells or perhaps increased expression 
of GSTA4, the enzyme responsible for glu-
tathionylation of 4-HNE.

As GSTA4 has been implicated in the 
development of obesity-induced insulin 
resistance and mitochondrial dysfunc-
tion,10 we sought to better characterize the 
role of GSTA4 expression in production 
of GS-HNE and GS-DHN. Both GSTA4 
overexpressing and GSTA4 knock-
down 3T3-L1 adipocytes were assessed 
for production of glutathionylated lipid 
aldehydes at baseline and in response to 
hydrogen peroxide. Under basal condi-
tions, the GSTA4 knockdown cells pro-
duced less GS-HNE than the control 
cells, but GS-DHN did not significantly 
differ. The GSTA4 overexpressing cells 
showed no basal difference from control 
for either GS-HNE or GS-DHN produc-
tion. When challenged with hydrogen per-
oxide, however, the induction of GS-HNE 
and GS-DHN production were signifi-
cantly less in the GSTA4 knockdown cells 
relative to the controls. Conversely, the 
GSTA4 overexpressing cells had signifi-
cantly higher induction of both GS-HNE 
and GS-DHN production in response 
to hydrogen peroxide. Together, these 
results indicate that at baseline, GSTA4 
expression does not limit production of 

glutathionylated lipid aldehydes; however, 
when subjected to oxidative stress, GSTA4 
expression significantly impacts total pro-
duction of GS-HNE and GS-DHN.

Previous studies had shown that a 
cell-permeable ethyl ester of GS-DHN 
induced NFκΒ signaling in RAW 264.7 
macrophages.32,33 However, as the endoge-
nously produced non-esterified GS-HNE 
and GS-DHN are poorly membrane 
soluble,34 the previous studies did not 
fully address the potential effect of glu-
tathionylated lipid aldehydes produced 
by a paracrine source on macrophage 
inflammatory state. We showed that both 
GS-HNE and GS-DHN induced produc-
tion of TNF-α by both RAW264.7 and 
mouse peritoneal macrophages. In both 
cell types, GS-DHN appeared to be a 
more potent stimulus. Production of leu-
kotriene C

4
, also a macrophage inflam-

matory mediator, was similarly stimulated 
by both GS-HNE and GS-DHN. Neither 
treatment affected production of MCP-1 
or IL-6 by macrophages. To broaden the 
analysis of gene expression regulated by 
glutathionylated lipids, the expression of 
genes involved in the inflammation was 
evaluated by microarray analysis using 
cDNA generated from primary perito-
neal macrophages treated with either 
GS-HNE or GS-DHN. Both GS-HNE 
and GS-DHN significantly increased the 
expression of Nos2 and NFκB1 impli-
cated in increasing pro-inflammatory 
gene expression35,36 as well as Fos, which 
interacts with toll-like receptor signaling 
pathways, contributing to inflammatory 
response.37 Both glutathionylated lipid 
aldehydes also induced genes that contrib-
ute to the innate immune response: C3 
and C4b, proteins that play a role in the 
complement cascade38 and Igtb2 found in 
myeloid cells.39 GS-HNE further induced 
expression of MCSF (macrophage colony 
stimulating factor) which plays a role in 
differentiation of peripheral monocytes 
into macrophages and is important in 
the pro-inflammatory M1 polarization 
of macrophages;40 IL23R, the interleukin 
23 receptor;41 and TLR6 and TLR9, both 
involved in pathogen recognition and the 
innate immune response.42 GS-DHN 
alone induced expression of CD40, a 
member of the TNF receptor superfam-
ily that binds interferon γ.43 This data 
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supports the conclusion that GS-HNE 
and GS-DHN, while differing somewhat, 
both induce an inflammatory response via 
genes that promote polarization of macro-
phages to a pro-inflammatory phenotype 
and potentiation of the innate immune 
response.

While there are similarities in the 
production of GS-HNE and GS-DHN, 
it is important to note that the enzyme 
responsible for conversion from GS-HNE 
to GS-DHN, AR, is upregulated by a 
variety of factors including oxidative 
stress, 4-HNE itself,44 as well as by fibro-
blast growth factor (FGF)-1, FGF-2 and 
epidermal growth factor (EGF).45 This 
implies that the abundance of GS-DHN 
to GS-HNE could increase with increas-
ing severity of oxidative stress. This could 
explain the greater variability in GS-DHN 
levels in high fat diet-fed mice. By exten-
sion, the relative abundance of GS-DHN 
to GS-HNE could impact the magni-
tude and type of inflammatory response 
generated in the macrophage. Studies in 
other tissues have shown differences in 
their signaling function. Peritoneal leu-
kocyte infiltration and pro-inflammatory 
lipid and cytokine production is induced 
by GS-HNE, but not GS-DHN.25,27  
GS-DHN and not GS-HNE, in contrast, 
has been shown to induce mitogenic sig-
naling in smooth muscle.34 This is fur-
ther reflected in the differences in greater 
potency of GS-DHN relative to GS-HNE 
in induction of TNF-α by macrophages.

In order to examine the role of glutathi-
onylated products of lipid peroxidation in 
the whole mouse, we generated transgenic 
mice overexpressing GSTA4 in adipose 
tissue under the FABP4 promoter. The 
mice were maintained on a high fat diet, 
and the transgenic mice did not differ in 
weight from wild-type mice on high fat 
diet. While GSTA4 expression and enzy-
matic activity were higher in the fat from 
the transgenic mice relative to controls, 
there was no difference in total GS-HNE 
and GS-DHN per gram of visceral fat. 
The discrepancy between increased 
GSTA4 capacity and unchanged levels of 
GS-HNE and GS-DHN in transgenic rel-
ative to wild-type mice may be explained 
by the active transport and excretion of 
these metabolites, making the content of 
the tissue at any given time representative 

of steady-state levels in the extracellular 
matrix and local tissue vasculature. It is 
also possible that production of GS-HNE 
and GS-DHN in the high fat fed mice 
is limited by production of the precursor 
4-HNE, which could be equally elevated 
in wild-type and transgenic mice. Despite 
this, the GSTA4-overexpressing mice had 
significantly higher fasting blood glucose 
level and they were mildly glucose intoler-
ant and had higher blood glucose on aver-
age at all time points than the wild-type 
mice. Given the results with the GSTA4 
transgenic mice, it is intriguing to con-
sider that the metabolic improvement 
measured in the RLIP76 null animals 
may be linked, at least in part, to reduced 
export of glutathionylated aldehydes and 
concomitant loss of inflammatory signal-
ing by macrophages.

The importance of GSTA4 in adipose 
immune regulation via production of 
GS-HNE and GS-DHN is further sup-
ported by the observation that GSTA4 null 
mice show a greater susceptibility to bacte-
rial infection.25,46 It is also interesting to 
note that while GSTA4 null mice showed 
increased steady-state level of 4-HNE in 
their tissues,25 they were noted to have an 
extended life span.26 Our studies suggest 
that decreased levels of chronic inflamma-
tion may explain this improvement.

Taken together, these recent studies 
suggest that GS-HNE and GS-DHN may 
be a novel class of signaling molecules 
that are increased in times of increased 
oxidative stress and serve to translate this 
into increased local macrophage inflam-
mation. Overnutrition not only causes 
oxidative stress in the adipocyte but also 
result in the adipocyte exceeding its lipid 
storage capacity. This is associated with 
defects in lipogenesis, increased adipocyte 
insulin resistance, and increased lipolysis. 
The recruitment and activation of macro-
phages could serve to scavenge the detritus 
of adipocytes driven to apoptosis or the 
local effects of excess free fatty acids from 
increased lipolysis, and thus a signaling 
mechanism that communicates the level 
of local adipocyte oxidative stress could 
serve a useful purpose for the health of the 
tissue.

The mechanism by which GS-HNE 
and GS-DHN transmit their message to 
the macrophages is as yet unknown, but 

a cell surface receptor would seem to be 
most likely. The most obvious possibility 
for a GS-HNE and/or GS-DHN receptor 
is one of the toll-like receptors (TLRs), 
potentially TLR6 or TLR9, both of which 
show upregulated expression in response 
to GS-HNE and GS-DHN. However, 
given the structural similarity between the 
glutathionylated lipid aldehydes and the 
cysteinyl leukotrienes, a receptor similar 
to the cysteinyl leukotriene receptors, or 
the receptors themselves may be another 
potential candidate. To date two such 
receptors CysLTR1 and CysLTR2 have 
been identified.47

The model depicted in Figure 2 out-
lines the generation of 4-HNE as a result of 
the action of ROS on membrane polyun-
saturated lipids. 4-HNE and other reactive 
aldehydes can go on to impact cell func-
tion and metabolism via protein carbonyl-
ation. Our recent studies demonstrate that 
the further metabolism of 4-HNE into 
GS-HNE and then GS-DHN result in 
metabolites that are actively exported by 
RLIP76 and induce macrophage inflam-
matory changes via an unknown recep-
tor and signaling pathway. This in turn 
results in the production of the inflam-
matory mediators, TNF-α and LTC

4
. 

Macrophage inflammation can then feed 
forward and cause further oxidative stress 
and metabolic changes in the adipocyte 
including insulin resistance and changes 
in adipokine secretion. This model implies 
that the regulation of GSTA4 function 
(and the entire antioxidant pathway) 
plays an important role in determining 
the poise of the metainflammatory state. 
While both protein carbonylation and 
increased macrophage inflammation have 
the potential to negatively affect adipocyte 
function, the subtleties and importance of 
this balance have yet to be determined.
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