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Postganglionic sympathetic axons in awake healthy human subjects, regardless of their
identity as muscle vasoconstrictor, cutaneous vasoconstrictor, or sudomotor neurons, dis-
charge with a low firing probability (∼30%), generate low firing rates (∼0.5 Hz) and typically
fire only once per cardiac interval. The purpose of the present study was to use modeling
of spike trains in an attempt to define the number of preganglionic neurons that drive an
individual postganglionic neuron. Artificial spike trains were generated in 1–3 preganglionic
neurons converging onto a single postganglionic neuron. Each preganglionic input fired
with a mean interval distribution of either 1000, 1500, 2000, 2500, or 3000 ms and the SD
varied between 0.5×, 1.0×, and 2.0× the mean interval; the discharge frequency of each
preganglionic neuron exhibited positive skewness and kurtosis. Of the 45 patterns exam-
ined, the mean discharge properties of the postganglionic neuron could only be explained
by it being driven by, on average, two preganglionic neurons firing with a mean interspike
interval of 2500 ms and SD of 5000 ms. The mean firing rate resulting from this pattern
was 0.22 Hz, comparable to that of spontaneously active muscle vasoconstrictor neurons
in healthy subjects (0.40 Hz). Likewise, the distribution of the number of spikes per cardiac
interval was similar between the modeled and actual data: 0 spikes (69.5 vs 66.6%), 1
spike (25.6 vs 21.2%), 2 spikes (4.3 vs 6.4%), 3 spikes (0.5 vs 1.7%), and 4 spikes (0.1 vs
0.7%). Although some features of the firing patterns could be explained by the postgan-
glionic neuron being driven by a single preganglionic neuron, none of the emulated firing
patterns generated by the firing of three preganglionic neurons matched the discharge of
the real neurons. These modeling data indicate that, on average, human postganglionic
sympathetic neurons are driven by two preganglionic inputs.

Keywords: sympathetic nervous system, human, preganglionic neuron, postganglionic neuron, single-unit,
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INTRODUCTION
Microelectrode recordings from peripheral nerves of awake
human subjects have revealed common features in their discharge
patterns of individual postganglionic sympathetic axons, includ-
ing a probabilistic firing pattern, a tendency to fire only one
spike per cardiac interval, an exponential distribution of instan-
taneous frequencies, and low mean firing rate (∼0.5 Hz). These
features are shared across the unit types that have so far been stud-
ied: muscle vasoconstrictor (Macefield et al., 1994; Macefield and
Wallin, 1999a), cutaneous vasoconstrictor (Macefield and Wallin,
1999b), and sudomotor (Macefield and Wallin, 1996) neurons in
healthy subjects (for review see Macefield et al., 2002). Moreover,
although the firing probability and mean firing rates of muscle
vasoconstrictor neurons have been shown to be elevated in var-
ious pathophysiological states, including congestive heart failure
(Macefield et al., 1999; Elam and Macefield, 2001), obstructive
sleep apnea (Elam et al., 2002), chronic obstructive pulmonary
disease (Ashley et al., 2010), essential hypertension (Schlaich et al.,
2004), panic disorder (Lambert et al., 2006), and obesity (Lambert

et al., 2007), individual neurons still tend to fire only once per
cardiac interval.

Why is this so? We know that postganglionic neurons can fire
multiple times in a sympathetic burst, though usually no more
than four spikes per cardiac interval, and have observed that there
is a shift toward fewer solitary spikes and more multiple firing in
obstructive sleep apnea (Elam et al., 2002), chronic obstructive
pulmonary disease (Ashley et al., 2010), panic disorder (Lam-
bert et al., 2006), and hyperhidrosis (Macefield et al., 2008), but
the biggest shift was observed during the ectopic beats associated
with heart failure (Elam and Macefield, 2001). We have argued
previously, based on a comparison of the firing properties of post-
ganglionic sympathetic neurons and alpha motoneurons, that the
duration of a sympathetic burst would limit the number of times a
neuron can fire (Macefield and Elam, 2004), but we cannot escape
the fact that the firing pattern is determined by the level of synaptic
drive a given postganglionic neuron receives.

McLachlan et al. (1997) have shown that approximately one-
third of postganglionic neurons in the superior cervical ganglion
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of the anesthetized rat receive convergent inputs from two or
more preganglionic neurons with strong synapses, the majority
receiving only one strong input. Similar results have been shown
for lumbar postganglionic neurons (Bratton et al., 2010). Given
the probabilistic nature in which human postganglionic neurons
fire, and that most can intermittently generate spike doublets or
triplets with very high instantaneous frequencies (>100 Hz), we
have argued that this reflects the near-coincident firing of at least
two preganglionic neurons possessing strong synaptic coupling
with an individual postganglionic neuron (Macefield et al., 2002).
The purpose of the present study was to test the hypothesis that
human postganglionic neurons are indeed driven by, on average,
the inputs from two preganglionic neurons. To this end model
spike trains in one to three preganglionic neurons converging onto
a single model postganglionic neuron were combined in order
to generate a pattern that matched the actual firing patterns of
postganglionic sympathetic neurons.

METHODS
Artificial spike trains were generated using the Spike Generator fea-
ture in LabChart 7 software (ADInstruments, Sydney, Australia).
For each series three “preganglionic neurons” were set up to fire
spontaneously with a mean interval distribution of either 1000,
1500, 2000, 2500, or 3000 ms and the data recorded on computer.
The distribution was randomly generated and for each set the
SD was varied between 0.5×, 1.0×, and 2.0× the mean interval.
The discharge frequency of each preganglionic neuron exhibited
positive skewness and kurtosis. For each stimulation pattern, i.e.,
a given mean interval and SD, the “postganglionic neuron” was
driven by one, two, or three preganglionic neurons. Accordingly,
the total number of firing patterns examined was 45. The ampli-
tude of each preganglionic neuron was set at 1 V; for illustration
purposes, background Gaussian noise (0.1 V) was added to the
resultant postganglionic spike train to emulate the appearance of
a real recording. In order to discriminate each unit using the Spike
Histogram module in LabChart 7, the spike duration of unit 1 was
set at 0.5 ms, unit 2 at 1 ms, and unit 3 at 1.5 ms. Accordingly, the
firing of the “postganglionic neuron” could be configured to rep-
resent the spike train input from one, two, or three preganglionic
neurons on the basis of spike duration. Spikes trains were recorded
for 1020–1085 s. Spikes were sampled over 1 s every second – this
represents the average cardiac interval of a subject with a mean
heart rate of 60 beats/min. Comparison data were provided by
combining data from our previously published unitary recordings
from healthy subjects with low and high levels of muscle sympa-
thetic nerve activity (Macefield et al., 1994; Macefield and Wallin,
1999a). The mean heart rate of the subjects from whom these
combined data were obtained was 58 beats/min, similar to that of
the artificially generated data. Numerical analysis was performed
using Prism 5 (GraphPad Software Inc., USA). Mean firing rate
was computed from the inverse of the mean interval, in order to
match the method used in the analysis of unitary recordings from
actual sympathetic neurons (Macefield et al., 1994).

RESULTS
Using a variety of model spike train patterns, attempts were
made to model the discharge of individual muscle vasoconstrictor

neurons by combining the stochastic firing patterns of one to
three input neurons (preganglionic neurons) converging onto a
single output neuron (postganglionic neuron). The lower trace in
Figure 1A shows a representative recording of an artificially gen-
erated spike train in a “postganglionic neuron,” together with the
spike trains from two of the three “preganglionic neurons,” units
1 and 2, that converged onto this model output neuron. Note the
variation in spike amplitude of the modeled postganglionic neu-
ron, due to the underlying noise on which each standard spike is
riding. Although the overall discharge frequency was low, it can be
seen that intermittent high-frequency discharges can be observed:
these are generated by the chance occurrence of spikes from the
two preganglionic neurons converging onto the postganglionic
neuron. Figure 1B shows the firing pattern when all three input
neurons were driving the output neuron. Increasing the num-
ber of active preganglionic neurons increased the overall firing
probability (and mean firing rate) of the postganglionic neuron,
the incidence of intermittent high instantaneous frequencies also
increasing.

Figure 2 shows the distribution of spikes per “cardiac interval”
(1 s), calculated when one, two, or three model preganglionic neu-
rons – discharging with a mean interspike interval of 1000 ms and
a SD of 500 ms – were driving a single model postganglionic neu-
ron. Figure 2F shows the distribution of real spikes recorded from
33 muscle vasoconstrictor neurons in healthy subjects. It is read-
ily apparent that none of the patterns illustrated in Figures 2A–E
matched the firing pattern of the real neurons: when a single pre-
ganglionic neuron was active (Figures 2A–C) the overall firing
probability was too high (i.e., there were fewer cardiac intervals in
which the neuron was silent) and when two or more preganglionic
neurons were active the incidence of multiple firing was too high.
Moreover, the mean firing rates were higher than those recorded
from the real neurons. The same was true when the SD was 1×
and 2× the mean interspike interval.

At the other extreme, Figures 3A–E shows the spike distribu-
tions calculated when one, two, or three preganglionic neurons –
each firing with a mean interspike interval of 2500 ms and SD
of 5000 ms – were driving the postganglionic neuron on which
they converged. For the majority of intervals, the postganglionic
neuron was silent: 83% of intervals when only one input neuron
was active, 70% when two were active, and 57% when three input
neurons were active. As the number of silent cardiac intervals
decreased with an increase in the number of active preganglionic
neurons, so the number of spikes generated within each cardiac
interval increased. It is apparent that the distribution of the num-
ber of spikes per cardiac interval was similar between the modeled
and actual data shown in Figure 3F: 0 spikes (69.5 vs 66.6%), 1
spike (25.6 vs 21.2%), 2 spikes (4.3 vs 6.4%), 3 spikes (0.5 vs 1.7%),
and 4 spikes (0.1 vs 0.7%). The mean discharge interval from this
pattern was 2314 ± 1453 (SD) s, corresponding to a mean firing
rate of 0.22 Hz, comparable to (but somewhat lower than) that
of the population of spontaneously active muscle vasoconstrictor
neurons recorded in healthy subjects (0.40 Hz).

Table 1 shows the spike distributions for the model postgan-
glionic neurons driven by one, two, or three model preganglionic
neurons, each firing with a mean interspike interval of 1000, 1500,
2000, or 2500 ms and SDs of 0.5×, 1.0×, or 2.0× that of the mean
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FIGURE 1 | Model spike trains from two (A) or three (B) “preganglionic neurons” that converged onto a model “postganglionic neuron.”The lower
trace shows the emulated nerve recording. The mean interspike interval was 2500 ± 5000 ms (SD).

FIGURE 2 | (A–E) Spike interval distributions for a model postganglionic
neuron generating 0–4 spikes per “cardiac interval” (1 s), while being driven
by 1–3 model preganglionic neurons discharging at a mean interspike
interval of 1000 ± 500 ms. (F) Spike distribution of real muscle
vasoconstrictor neurons (data pooled from Macefield et al., 1994; Macefield
and Wallin, 1999a).

FIGURE 3 | (A–E) Spike interval distributions for a postganglionic neuron
generating 0–4 spikes per “cardiac interval” (1 s), while being driven by 1–3
model preganglionic neurons discharging at a mean interspike interval of
2500 ± 5000 ms. (F) Spike distribution of real muscle vasoconstrictor
neurons (data pooled from Macefield et al., 1994; Macefield and Wallin,
1999a).
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interval. With the exception of some that were greater than 1 Hz,
the mean firing rates of the model postganglionic neurons were
all within the physiological range recorded from real muscle vaso-
constrictor neurons. And while some of the patterning could be
partially explained by a postganglionic neuron being driven by one
preganglionic neuron exclusively (see asterisks in Table 1), there
were no firing distributions generated by the summed inputs of all
three preganglionic neurons that matched those of the real muscle
vasoconstrictor neurons. Indeed, of the 45 patterns examined, the
mean discharge properties of the model postganglionic neuron
could best be explained by it being driven by – on average – two
preganglionic neurons firing with a mean interspike interval of
2500 ms and SD of 5000 ms (Figure 3). Table 1 also shows that
for all patterns the incidence of short interspike intervals was very
low; intervals ≤20 ms typically occurred <2% of the time.

DISCUSSION
This study has shown that the characteristic firing pattern of post-
ganglionic muscle vasoconstrictor neurons recorded from awake
healthy human subjects can be emulated by a limited set of patterns
of firing in the preganglionic neurons. Obviously, it is not possible
to directly record from preganglionic neurons in awake human
subjects, which would require inserting a microelectrode into the
intermediolateral column of the spinal cord or the white rami that
connect the cord to the sympathetic chain. Accordingly, this mod-
eling study was an attempt to increase our understanding of how
the sympathetic nervous system grades its output, given that the
discharge properties of postganglionic neurons are remarkably
consistent in healthy subjects (Macefield et al., 2002). A similar
modeling approach had been used by McLachlan et al. (1998)
to compare the firing of simulated postganglionic neurons and
real postganglionic neurons recorded from the superior cervical
ganglion in the rat.

Of the 45 spike emulation patterns examined, the discharge
properties of a typical postganglionic muscle vasoconstrictor neu-
ron could best be explained by it being driven by, on average, two
preganglionic neurons firing with a mean interspike interval of
2500 ms and SD of 5000 ms: firing probability and the numbers of
spikes generated within a cardiac interval matched those of spon-
taneously active muscle vasoconstrictor neurons; mean firing rate
was also in the physiological range (Macefield et al., 1994; Mace-
field and Wallin, 1999a). Moreover, given that the firing patterns
are similar for cutaneous vasoconstrictor and sudomotor neurons
in healthy subjects exhibiting cold-induced cutaneous vasocon-
striction (Macefield and Wallin, 1999b) or heat-induced sweating
(Macefield and Wallin, 1996), the current modeling data can also
explain the discharge properties of these neurons. It should be
pointed out that some postganglionic neurons comprising the
population of real neurons recorded do discharge with a pattern
that closely reflects the input from a single preganglionic neuron,
but none discharged with a pattern that reflected the combined
inputs from three preganglionic neurons. Moreover, individual
neurons vary in their firing probabilities, with some having low
and some high firing probabilities. Such patterns have also been
observed when using wavelet decomposition techniques to extract
the firing of individual spikes comprising a multiunit recording
(Steinback et al., 2010; Salmanpour et al., 2011). Nevertheless, on

average, one can conclude that the population behavior is of each
postganglionic neuron being driven, on average, by two pregan-
glionic neurons. This then provides us with an upper limit as to
how many preganglionic neurons are responsible for the genera-
tion of action potentials in a single postganglionic neuron: two.

We know from studies in the anesthetized rat that some post-
ganglionic neurons in the superior cervical ganglion, which supply
many different tissues, are driven by two (rarely three) pregan-
glionic neurons with“strong”synapses, but that most are driven by
only one (McLachlan et al., 1997, 1998; Li and Horn, 2006; Rimmer
and Horn, 2010). Moreover, close temporal coincidence of EPSPs
from two preganglionic neurons with “weak” synapses can bring
the postganglionic neuron to threshold (Rimmer and Horn, 2010).
Like those in the superior cervical ganglion, most postganglionic
neurons recorded from a lumbar sympathetic ganglion in the rat –
the majority of which are vasoconstrictor in function – are driven
by one “primary” preganglionic neuron, but inputs from two (or
rarely three) “secondary” preganglionic neurons can occasionally
contribute to the firing of a single postganglionic neuron (Brat-
ton et al., 2010). The current modeling study suggests that the
synaptic organization of postganglionic neurons in awake human
subjects is similar to that seen in the anesthetized rat. However,
it should be noted that the studies of ganglionic transmission in
the superior cervical ganglion (McLachlan et al., 1997, 1998) were
made under conditions in which the postganglionic neurons were
hyperpolarized, which may have blocked the production of action
potentials from “weak inputs,” whereas the studies conducted in a
lumbar sympathetic ganglion (Bratton et al., 2010) were made at
the resting membrane potential. Nevertheless, both sets of studies
were undertaken in very reduced preparations, and the influence
of anesthesia may well have affected the underlying firing prop-
erties of both the preganglionic neurons and the postganglionic
neurons to which they project. Despite these differences between
the rat and human studies, it would appear that the underlying
ganglionic neurophysiology is remarkably similar.

If human postganglionic neurons are driven by, on average,
two preganglionic neurons then this fits with our interpretation
of how short “spike doublets” are generated in muscle vasocon-
strictor, cutaneous vasoconstrictor, and sudomotor neurons – by
the chance occurrence of temporally coincident action potentials
in the preganglionic neurons that synapse onto a given postgan-
glionic neuron (Macefield et al., 2002). Indeed, we had argued that
this observation alone suggests that each postganglionic neuron
is driven by two preganglionic neurons, so the current mod-
eling study lends credence to this interpretation. Importantly,
we had noted previously that “although the generation of high
instantaneous frequencies requires an increase in synaptic drive
to the neuron, these events were usually not associated with large
bursts – rather they occurred essentially randomly” (Macefield
et al., 2002).

Because our model preganglionic neurons were set up to fire
stochastically, there were no constraints as to whether the discharge
of two or three closely firing neurons could influence a post-
ganglionic neuron. Physiologically, of course, the capacity of a
postganglionic neuron to follow excitatory postsynaptic poten-
tials and generate action potentials is limited by the absolute
refractory period of the neuron (∼2 ms); indeed, our recordings
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Table 1 | Firing patterns of model postganglionic neurons driven by 1, 2, or 3 model preganglionic neurons with differing interspike interval (ISI)

distributions.

ISI ± SD 0 Spikes 1 Spike 2 Spikes 3 Spikes 4 Spikes Firing prob. Mean freq. Intervals ≤20 ms%

1000 ± 500 ms

Unit 1 30.5 58.4 10.6 0.5 0.1 69.5 0.67 0.1

Unit 1 + 2 9.8 32.3 40.3 13.8 3.5 90.2 1.6 2.2

Unit 1 + 2 + 3 3.3 16.5 30.5 30.6 14.7 96.7 2.5 1.9

1000 ± 1000 ms

Unit 1 51.4 41.5 5.7 1.2 0 48.6 0.35 0.2

Unit 1 + 2 29.3 37.5 23.7 8. 3 0.8 70.7 0.7 1.1

Unit 1 + 2 + 3 17.1 31 25.5 17.3 6.3 82.9 1.09 1.3

1000 ± 2000 ms

Unit 1 49.1 42.5 7.3 1 0.1 50.9 0.39 0.1

Unit 1 + 2 25.4 40.9 23.7 8.1 1.6 74.6 0.81 1

Unit 1 + 2 + 3 12.4 29.5 32.2 16.7 6.5 87.6 1.38 1.5

1500 ± 750 ms

Unit 1 42.4 52.6 4.9 0.1 0 57.6 0.52 0.2

Unit 1 + 2 17.4 41.8 34 6.2 0.6 82.6 1.21 1.8

Unit 1 + 2 + 3 6.8 27.6 38.2 21 6 93.2 1.96 2

1500 ± 1500 ms

Unit 1 57.1 37.1 5.4 0.4 0 42.9 0.36 0.3

Unit 1 + 2 30 43.5 21.1 4.9 0.5 70 0.77 0.8

Unit 1 + 2 + 3 15.6 36.9 31.7 11. 9 3.5 84.4 1.25 1.1

1500 ± 3000 ms

Unit 1* 70.1 27.6 2.2 0 0 29.9 0.23 0.3

Unit 1 + 2 49 38.9 10.1 1.8 0.1 51 0.43 0.3

Unit 1 + 2 + 3 34.2 41.2 18.6 5.3 0.6 65.8 0.66 0.7

2000 ± 1000 ms

Unit 1 53.4 41.6 4.9 0.1 0 46.6 0.38 0

Unit 1 + 2 28.3 44.8 22.3 4.1 0.6 71.7 0.79 0.8

Unit 1 + 2 + 3 16 35.1 30.1 14.7 3.4 84 1.27 0.9

2000 ± 2000 ms

Unit 1* 68.2 29 2.7 0.1 0 31.8 0.25 0.3

Unit 1 + 2 45.7 39.7 12.4 2 0.1 54.3 0.48 0.4

Unit 1 + 2 + 3 31.8 40.1 21.1 6.2 0.7 68.2 0.72 0.8

2000 ± 4000 ms

Unit 1* 70.6 27.3 2 0.2 0 29.4 0.21 0.3

Unit 1 + 2 47.4 40.1 10.6 1.8 0.9 52.6 0.44 0.7

Unit 1 + 2 + 3 34.2 40.2 19.4 4.6 1.4 65.8 0.67 1.1

2500 ± 1250 ms

Unit 1 46.9 44.6 7.1 1.1 0.1 53.1 0.43 0.3

Unit 1 + 2 23.6 40 25.7 8.6 1.7 76.4 0.89 1.1

Unit 1 + 2 + 3 11.7 28.9 31.7 18.1 6.8 88.3 1.46 1.6

2500 ± 2500 ms

Unit 1* 70 27.5 2.5 0 0 30 0.24 0.4

Unit 1 + 2 49.9 37.9 10.9 1.2 0.1 50.1 0.43 0.9

Unit 1 + 2 + 3 34.7 41.2 19.5 4.1 0.6 65.3 0.65 1.1

2500 ± 5000 ms

Unit 1 83.2 15.7 1.1 0 0 16.8 0.11 0.2

Unit 1 + 2** 69.5 25.6 4.3 0.5 0.1 30.5 0.22 0.3

Unit 1 + 2 + 3 57.2 32.8 8.6 1.1 0.4 42.8 0.32 0.5

Neurons 66.6 21.2 6.4 1.7 0.7 33.4 0.4 2.4

Mean data on the percentage of cardiac intervals in which units were silent (0 spikes) or generated 1 spike, 2, 3, or 4 spikes, firing probability (firing prob.), and mean

firing rate (mean freq.). Data obtained from real muscle vasoconstrictor neurons are shown in the bottom row (data pooled from Macefield et al., 1994; Macefield

and Wallin, 1999a). Asterisks indicate that for these ISI distributions the firing pattern could be partially explained by a postganglionic neuron being driven by one

preganglionic neuron. Bold text indicates that for this ISI distribution the firing pattern closely matches that of the real sympathetic neurons.
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from single postganglionic neurons occasionally revealed instan-
taneous frequencies of 400 Hz, approaching the theoretical limit
of 500 Hz (Macefield et al., 1994, 2002; Macefield and Wallin, 1996,
1999a,b). The model neurons could generate frequencies that were
artificially higher than this, but could also generate intermittent
peak instantaneous frequencies that were similar to those recorded
from real neurons. Nevertheless, the incidence of short interspike
intervals (≤20 ms) was very low, typically < 2%.

LIMITATIONS
There were several assumptions made in this study. First, the
discharge of the model preganglionic neurons was composed of
randomly generated interspike intervals, whereas we know that
individual muscle vasoconstrictor neurons are constrained by the
arterial baroreceptors to fire with a tight cardiac rhythmicity,
and that even cutaneous vasoconstrictor and sudomotor neu-
rons do exhibit some cardiac rhythmicity (Macefield and Wallin,
1996, 1999b). Nevertheless, like the real neurons, the distribution
of firing rates was exponential: it was positively skewed with a
positive kurtosis (Macefield et al., 2002). In many respects, the
randomly occurring spikes largely mimicked that of actual post-
ganglionic neurons, the firing of which appears to be probabilistic
in nature. We know that the interspike intervals of neurons in the
superior cervical ganglion of the anesthetized rat are exponentially
distributed, that bursts of impulses occur through chance, and

that cardiac and respiratory rhythms can entrain the discharge
(McLachlan et al., 1998). Second, as noted above, there were no
biophysical constraints as to the shortest interspike interval, but
given that these were rare I don’t believe this has a major impact
on the interpretation. Third, it is assumed that the presynaptic
neurons are exclusively excitatory – dominated by“strong” or“pri-
mary” inputs in which there is faithful synaptic security between
a given preganglionic neuron and the postganglionic neuron it
supplies. And fourth, the mean firing rate of each of the model
preganglionic neurons was equal: this is not unreasonable, but
assumes that the descending excitatory drive from the medulla is
distributed uniformly within the pool of preganglionic neurons in
the spinal cord.

CONCLUSION
Not withstanding these limitations, on the basis of modeling the
firing properties of preganglionic neurons and comparing these
with the firing of real postganglionic neurons it is concluded
that the firing properties of single muscle vasoconstrictor neu-
rons recorded in awake human subjects appear to be an emergent
property of the probabilistic discharge of – on average – two
preganglionic neurons converging onto the one postganglionic
neuron. None of the firing patterns generated by the convergence
of three preganglionic neurons matched the discharge of the real
postganglionic neurons.
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