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Abstract

Motivation: Due to the nature of experimental annotation, most protein function prediction meth-

ods operate at the protein-level, where functions are assigned to full-length proteins based on over-

all similarities. However, most proteins function by interacting with other proteins or molecules,

and many functional associations should be limited to specific regions rather than the entire

protein length. Most domain-centric function prediction methods depend on accurate domain

family assignments to infer relationships between domains and functions, with regions that are

unassigned to a known domain-family left out of functional evaluation. Given the abundance of

residue-level annotations currently available, we present a function prediction methodology that

automatically infers function labels of specific protein regions using protein-level annotations and

multiple types of region-specific features.

Results: We apply this method to local features obtained from InterPro, UniProtKB and amino acid

sequences and show that this method improves both the accuracy and region-specificity of protein

function transfer and prediction. We compare region-level predictive performance of our method

against that of a whole-protein baseline method using proteins with structurally verified binding

sites and also compare protein-level temporal holdout predictive performances to expand the var-

iety and specificity of GO terms we could evaluate. Our results can also serve as a starting point to

categorize GO terms into region-specific and whole-protein terms and select prediction methods

for different classes of GO terms.

Availability and implementation: The code and features are freely available at: https://github.com/

ek1203/rsfp.

Contact: rb133@nyu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are involved in nearly every cellular process and function,

including cell organization, biochemical catalysis, signaling and

transport. The exponentially large number of possible sequence

combinations enables proteins to exhibit the necessary diverse se-

quential, structural and functional properties required by the cell.

Protein function is often defined or modified by specific interactions

with other molecules, therefore knowing what, where and how

proteins interact is important in elucidating the cellular machinery

of life (Alberts et al., 2002). Proteins can be multifunctional by hav-

ing completely different functions in different contexts [‘moonlight-

ing proteins’ like crystallins (Jeffery, 2009; Piatigorsky, 1998)], by

binding to multiple substrates and catalyzing multiple reactions

[‘promiscuous proteins’ (Hult and Berglund, 2007; Khersonsky and

Tawfik, 2010)] or by having combinations of domains in different

sequential orders (Bashton and Chothia, 2002). Comprehensive
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experimental characterization of protein function is thus a labori-

ous, expensive and time-consuming process, which is especially true

for proteins found in non-model and multicellular organisms.

With the advent of the Gene Ontology (GO) project (Ashburner

et al., 2000), computational prediction of protein function has be-

come more viable and it is an on-going quest to improve the number

and quality of predictions. Many different approaches have been

proposed over decades (Cozzetto et al., 2013, 2016; Jensen et al.,

2002; Lanckriet et al., 2004; Martin et al., 2004; Mostafavi et al.,

2008; Roy et al., 2010; Sharan et al., 2007; Troyanskaya et al.,

2003) and reviewed extensively (Bernardes and Pedreira, 2013;

Bork et al., 1998; Kihara, 2016; Lee et al., 2007; Rost et al., 2003).

Although not an all-encompassing evaluation, results from large-

scale Critical Assessment of protein Function Annotation (CAFA)

experiments (Jiang et al., 2016; Radivojac et al., 2013) and related

blind tests like MouseFunc (Pe~na-Castillo et al., 2008) offer import-

ant insights into the performances of state-of-the-art computational

protein function prediction methods.

The underlying principle of protein function prediction is the

transfer of function from a known protein to a query protein based

on shared features. Such features include protein sequence, structure

and pairwise associations from high-throughput experimental data

like protein–protein interaction and gene co-expression. BLAST

(Altschul et al., 1990), for example, is one of the most widely used

sequence-based tools and is regularly used as a benchmark to evalu-

ate the performances of more complex methods. Due to the nature

of experimental annotation (and the prevalence of genetics as a

means of connecting genes to functions), most protein function pre-

diction methods operate at the whole-protein level (i.e. functions are

transferred directly between whole-chain proteins). However, the

majority of proteins are composed of one or more structural and

functional units called domains (Gerstein, 1998), which can func-

tion independently or in combination with other domains [‘supra-

domains’ (Vogel et al., 2004)].

Ideally, functions wholly encapsulated within such regions

should be confined and uncoupled from other regions of the protein

in a region-specific annotation scheme. This is especially true for

GO terms in the Molecular Function (MF) branch of the ontology.

Currently, a few such annotated domain-centric resources exist

through a combination of manual and automated curation [e.g.

Pfam (Finn et al., 2016b), SUPERFAMILY (Gough et al., 2001),

CATH-GENE3D (Sillitoe and Furnham, 2016), metadatabase

InterPro (Finn et al., 2016a)], allowing functions to be transferred to

novel proteins assigned with known and annotated domain families.

Other domain-centric methods have also been described previously

(Cozzetto et al., 2016; Das et al., 2015; Fang and Gough, 2013;

Forslund and Sonnhammer, 2008; Lopez and Pazos, 2013; Rentzsch

and Orengo, 2013; Schug et al., 2002) to automatically associate

functions directly to domain families before integrating them for

protein function prediction.

These resources are generally very sparse as they require a fine

balance between sufficient coverage of the domain space and the ap-

plicability of the annotations to all proteins matching the given do-

main signature (Burge et al., 2012). This is especially problematic

for large and diverse families, and hinders the mapping of specific

GO terms. Another common weakness of these domain-centric

approaches is that they depend entirely on predicted domain family

assignments, which not only differ based on different classification

and identification schemes, but are also constantly changing and

updating (Sangrador-Vegas et al., 2016). Additionally, these pre-

dicted assignments only cover about a third of the total residues in

the proteomes. For example, even though approximately 55% of

yeast and 68% of human protein sequences [UniProtKB (Bateman

et al., 2017) reference proteomes release 2017_10] have at least one

‘DOMAIN’ entry type assigned [InterPro database (Finn et al.,

2016a) release 65.0, Oct 2017], less than 32 and 38% of total resi-

dues in each proteome, respectively, are actually covered by the

assignments. This can be due to the fact that the majority of domain

families identified are structured domains. Intrinsically disordered

regions, which are prevalent in eukaryotic genomes and have been

established to actively participate in diverse protein functions (Van

Der Lee et al., 2014), are excluded entirely from functional evalu-

ation. In addition, the treatment of domains as binary features of

proteins prevent the transfer of function from annotated to unanno-

tated domain families, which can have shared functions as well.

Therefore, we find it pertinent to decompose proteins into

‘regions’, which are continuous sections of protein sequences parti-

tioned by consensus assignments from InterProScan to ensure full se-

quence coverage (see Section 2.1 for more details). This allows us to

then build a method that can transfer protein labels at the region

level explicitly, including regions that are not covered by traditional

domain assignments. For example in Figure 1, instead of represent-

ing ‘BAI1-associated protein 2-like protein 1’ (BAIAP2L1,

UniProtKB accession: Q9UHR4) as a 511 residue protein with two

domains, an IMD/I-BAR domain (residues 1–249) and an SH3 do-

main (residues 339–402), we will represent this protein as four

regions, with regions 1 and 3 containing the well-annotated domains

and the remaining regions 2 (residues 250–338) and 4 (residues

403–511) containing (prior to prediction) no assigned domain fami-

lies. These unassigned regions will still contain sequence information

(and sequence derived features) and other site-specific feature anno-

tations, such as post-translational modifications and F-actin binding

sites, from databases with manual curation like UniProtKB

(Bateman et al., 2017) that can provide functional clues (features).

Here, we detail our approach to generating protein regions using

curated site-specific features and to localizing known protein func-

tion labels to these regions automatically based on related

Fig. 1. Diagram of processing pipeline using ‘BAI1-associated protein 2-like

protein 1’ (BAIAP2L1, UniProtKB accession: Q9UHR4) as an example. Region

boundaries are delineated by vertical lines based on consensus domain

assignments from different InterPro member databases. Below, features

assigned to the protein sequence are grouped by source databases for clarity
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approaches to structured sentiment analysis (Kotzias et al., 2015).

We evaluate the prediction accuracy of our region-specific frame-

work for a variety of GO terms at both region- and protein-levels

for experimentally annotated and reviewed protein sequences from

Swiss-Prot and describe performance improvements over using a

whole-protein baseline model. Our results show that many GO

terms benefit from applying this region-specific framework and that

different types of GO terms should be treated differently in function

prediction pipelines depending on their extent of functional

localization.

2 Materials and methods

The general process outline of our method is to: (i) split protein

sequences into potential functional regions based on the presence

and absence of domain and protein family assignments, (ii) encode

the regions as separate feature vectors based on data sources sum-

marized in Table 1 and (iii) train model to infer region function

labels from known protein labels. This is summarized in Figure 1.

The taxonomic composition of the protein dataset can be found in

Supplementary Figure S1.

2.1 Generating region boundaries
The first step in this approach is to split the protein sequences into

potential functional regions. To do that, we processed the amino

acid sequences with InterProScan (Jones et al., 2014) and used the

feature annotations to build consensus region boundaries. InterPro

entry types used include Domain, Family, Homologous superfamily

and select unintegrated signatures from InterPro (Finn et al., 2016a),

Signal peptide, Transmembrane and Non-transmembrane from

PHOBIUS (Käll et al., 2004) and Disorder from MobiDB-lite

(Necci et al., 2017). All Repeats and Sites annotations are excluded

during this process. Aside from Signal peptide, which is

included whenever available, initial region boundaries are assigned

exclusively by types in the following order of precedence: Domain,

Family and Homologous superfamily, Unintegrated signatures,

Transmembrane, Non-transmembrane and Disorder.

Unassigned terminal regions less than 18 residues in length

[selected based on signal length distributions (Bendtsen et al., 2004)]

are merged with immediate neighboring regions to remove excessive

numbers of short peptides without losing potential targeting and re-

tention signal peptides, while longer terminal regions are retained as

separate regions. Inter-domain regions less than 20 residues in

length [selected based on linker length distribution (Chen et al.,

2013)] are also discarded to remove the majority of linker regions.

On average, each protein has a mean of 3.14 and a median of 3

regions. The complete distribution of regions per protein can be

found in Supplementary Figure S2.

2.2 Data representation and feature generation
Each protein/region is represented as a fixed-length vector in four

different feature spaces encoded with the data types listed below.

1. K-mers—a collection of consecutive, overlapping, k-residue long

sub-sequences of the sequence of the region itself. For example,

a sequence of ‘ABCDE’ will result in 3-mers of ‘ABC’, ‘BCD’

and ‘CDE’. The length of 3 was tested to get a compromise be-

tween capturing sufficient protein fold information and having a

feature vector that is not too large to deal with.

2. Keywords—a vocabulary of individual words parsed from

descriptions of features assigned from UniProtKB, InterPro

entries, original member databases and DisProt. For example, a

region assigned with feature ‘WD repeat-containing’ will contain

keywords ‘WD’, ‘repeat’ and ‘containing’, allowing the region to

have a non-zero similarity score when compared to another that

is assigned with ‘WD repeat’ (i.e. ‘WD’ and ‘repeat’). In add-

ition, this allows us to aggregate features from the different data-

bases into a homogeneous feature space.

For further comparisons, the InterPro entry IDs and signature IDs

assigned to the regions (at least 75% overlap) are used directly as

they require no further processing.

3. InterPro entry IDs—a collection of unique IDs (which can map to

protein families, domain families, repeats, sites), assigned to the

regions by InterPro.

4. Signature IDs from InterPro member databases—a collection of

unique IDs (which can map to protein families, domain families,

repeats, sites), assigned to the regions by the member databases

of InterPro. This also includes unintegrated entries like signal

peptide and transmembrane topology predictions from tools like

Phobius (Käll et al., 2004) through InterProScan (Finn et al.,

2016a).

The hypothesized advantage of using InterPro entry IDs is that

the feature set would be concise and curated, whereas the advantage

of using the underlying Signature IDs is that the feature set would be

more sensitive to functional differences. This is due to the fact that

different databases use different models and methods to classify and

identify the assigned features, so not all regions containing the same

InterPro IDs will be matched to the same set of signature IDs. For

example, the ‘C2 domain’ (IPR000008) groups four contributing

signatures and is assigned to both ‘Fer-1-like protein 5’ (A0AVI2)

and ‘Extended synaptotagmin-3’ (A0FGR9) proteins. However,

only three out of the four signatures matched ‘Fer-1-like protein 5’,

while all four signatures matched ‘Extended synaptotagmin-3’.

The resulting frequency matrices for the features are then trans-

formed into TF-IDF weights (Salton and McGill, 1986) (a well-

established technique in Natural Language Processing) to upweight

features that occur in fewer proteins and downweight features that

occur in many.

The dimensions of the different feature types are shown in

Supplementary Table S1 and a visual example of the differing pair-

wise similarity scores (cosine similarity) for a set of 500 regions can

be viewed in Supplementary Figure S3. The number and fraction of

proteins and regions containing each of the feature type are summar-

ized in Table 2 and the number of regions without InterPro domains

and families but are covered by Signature IDs and Keyword features

are summarized in Supplementary Table S2.

Table 1. Data sources

Data type Version

Protein set UniProtKB Reference Proteomes release

2018_02

GO annotations

(protein)

UniProt-GOA release 155 (2016-05)

and 175 (2018-02) [non-IEA onlya]

GO annotations

(domain/region)

external2go (2016-05-28 and 2018-03-01),

inferred from binding sites (NBench and BioLiP)

InterPro features InterProScan 5.28-67.0

UniProt features UniProtKB/Swiss-Prot Release 2018_02

DisProt features DisProt 7 release 0.5

*Annotations with the following evidence codes ‘EXP’, ‘IDA’, ‘IMP’, ‘IGI’,

‘IEP’, ‘TAS’, ‘IC’, ‘IPI’.
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2.3 Our region-specific cost function
To transfer known protein labels to the respective functional

regions, we have extended an approach called Group-Instance Cost

Function (GICF) (Kotzias et al., 2015), initially applied to sentiment

analysis of sentences within larger document and user hierarchies.

Applied to protein function prediction, these prior works are analo-

gous to identifying positive and negative labels (for a given GO

term) for regions within proteins, given only known labels of whole

proteins.

This method involves minimizing a cost function that penalizes

differences in predicted region scores based on their pairwise feature

similarities and also differences between predicted protein scores

(aggregated from the constituent region scores) with known protein

labels. Additional model components are introduced here to account

for differences between predicted region scores with known domain

labels (from manually curated databases) and to reduce over-fitting

to training data (additional regularization terms have been added).

All together, our cost function consists of 4 terms, each of which

enforces the following constraints respectively: (i) predicted region

scores should aggregate to give the correct protein scores when eval-

uated against known protein labels—positive or negative (protein-

level constraint), (ii) regions with similar features should have simi-

lar predicted scores, (iii) predicted region scores should agree with

any known domain-level labels—only positive due to the sparsity

(region-level constraints), (iv) model should not be overfitted to the

training set, which is a standard procedure in machine learning but

was missing from the original cost function (regularization term).

For each GO term, an independent h is estimated from the fol-

lowing cost function:

JðhÞ ¼ 1

Np

XNp

k¼1

DðŶ k;YkÞ þ
w1

N2
r

XNr

i¼1

XNr

j¼1

jðxi;xjÞDðŷi; ŷjÞ

þ w2

Nrþ

X

i�rþ

Dðŷi; yiÞ þ
k

Np
khk2

2

(1)

where:

• yi 2 f0;1g is the known label for region i,
• Yk 2 f0;1g is the known label for protein k,
• Ŷ k ¼ maxðŷi�rk

Þ 2 ½0;1� is the predicted score for protein k,

obtained by getting the maximum predicted score of its contain-

ing regions rk,
• Nr is the total number of regions, Nrþ is the number of positively

annotated regions and rþ is the subset of positively annotated

regions across all proteins,
• Np is the total number of proteins,
• jðxi; xjÞ 2 ½0;1� is the similarity score between regions xi and xj,

calculated using the cosine similarity of the feature vectors

(pairwise scores below the 95th percentile—generated by ran-

domly sampling 10,000 regions for each feature type—are set

to 0),
• D is the square loss function, which is the square of the difference

between the variables and
• wn and k are the trained weights to balance the contributions of

the different terms.

The cost function is based on the output of the following logistic

regression model:

ŷi ¼
1

1þ e�hT xi

(2)

where:

• xi is the input feature vector for region i,
• h is the weight vector of the different contributing features and
• ŷi 2 ½0; 1� is the predicted score for region i.

The choice of logistic regression is due to the binary nature of in-

dividual labels (a given protein has the function or it does not) and

the resulting probabilistic output that is useful for ranking the pre-

dictions. The seed (initial) h was generated for each GO term by fit-

ting a logistic regression model using protein-level features and

known protein labels of the same training set. We used minibatch

stochastic gradient descent with momentum to train the model.

Values of all the hyperparameters are detailed in Supplementary

Section 4.

2.4 Modes of evaluation
Non-IEA (Inferred from Electronic Annotation) annotations at two

time-points were used to train and validate/test the models respect-

ively. This ensures a more ‘realistic’ approach compared to cross-

validation as only proteins with older annotations are used for train-

ing, while proteins that gained new annotations are used for valid-

ation and testing, allowing for a fully blind test.

For model training, protein-level annotations were obtained

from UniProt-GOA and domain-level annotations were obtained

from external2GO (see Table 1). Known domain-level annotations

were propagated up to the parent proteins for consistency. For valid-

ation and testing, only non-IEA protein-level annotations were used.

The details of the protein-level temporal holdout datasets can be

found in Supplementary Section 3.2.

2.4.1 Region-level evaluation

Due to their sparsity of domain-level annotations and the lack of

region-level annotations, there is a lack of gold standard datasets

that we can use as a benchmark to effectively evaluate many of the

GO terms at the region-specific level. However, to show that this ap-

proach can successfully localize GO term labels to the correct

regions, we decided to use binding site annotations from the follow-

ing databases to evaluate their respective ligand binding GO terms:

NBench (Miao and Westhof, 2015), as a source of nucleic acid bind-

ing sites for ‘DNA binding’ (GO: 0003677) and ‘RNA binding’

(GO: 0003723), and BioLiP (Yang et al., 2013), as a source of mag-

nesium and zinc ion binding sites for ‘magnesium ion binding’ (GO:

0000287) and ‘zinc ion binding’ (GO: 0008270). Although they

may contain some errors, both databases are semi-manually curated

from protein structures extracted from the Protein Data Bank.

Here, nucleic acid binding regions were defined as regions with

more than 3 amino acid residues within a cutoff distance of 6 Å

from a nucleic acid molecule in the complex to reduce spurious

Table 2. Feature coverage

Feature type Counts (%)

Protein 73 224 (100%)

InterPro domains 50 641 (69.2%)

All InterPro entries (incl. sites) 70 662 (96.5%)

Signatures 72 441 (98.9%)

Keywords 73 157 (99.9%)

Regions 230 186 (100%)

InterPro domains 91 276 (39.7%)

All InterPro entries (incl. sites) 137 278 (59.6%)

Signatures 190 052 (82.6%)

Keywords 204 684 (88.9%)

1740 D.C.E.Koo and R.Bonneau



associations. However, as most proteins do not have structural data

for the entire protein length, only regions with at least 80% struc-

tural coverage were considered in the evaluation as either a positive

or negative example. The same training and validation proteins as

the temporal holdout set were used for model selection.

Area Under Precision-Recall (AUPR) performances were gener-

ated for regions with structural coverage and were evaluated for

each GO term individually. The method is then compared with a

whole-protein baseline method (see Section 2.4.3) using two-tailed

Wilcoxon signed rank test after 1000 rounds of bootstrapping. The

details of the region-level datasets are found in Supplementary

Section 3.1.

2.4.2 Protein-level evaluation

To test if localizing GO term labels to their respective regions can

improve overall function prediction at the protein level and if so, for

which GO terms, we also conducted protein-level evaluations for all

67 MF-GO terms that meet the temporal holdout criteria. The pre-

dicted protein scores are obtained by getting the maximum predicted

score of its containing regions.

2.4.3 Baseline methods

BLAST predictions for regions and proteins were generated using

the maximum pairwise sequence identity between the region/protein

template and the protein targets [as used in CAFA Jiang et al.

(2016)].

Logistic regression [implemented using source code from

(Rebello, 2013)] was used as the whole-protein baseline method for

comparison. It is trained directly on features from whole proteins

(i.e. features from all regions plus those that span multiple regions)

with regularization weights (k) ranging from 0.1 to 100 and the

same set of protein-level annotations, with no knowledge of region

boundaries at all. The best estimated hbase based on the validation

set was also used as the seed input h to our cost function. This would

give us an estimate of how well the predictions would do without

the constraints of the region-specific framework. As the feature vec-

tors are the same dimensions for regions and proteins, the hbase

trained on whole proteins can be used to predict for both regions

and proteins directly, allowing us to compare the scores predicted at

the region- and protein-level.

3 Results and discussion

We show the ability of our method to localize binding labels to spe-

cific regions within proteins by comparing the predictions directly to

binding sites extracted from protein-ligand structures. We also show

that the added region-specific framework can lead to improvements

in protein-level function predictions for many of the MF-GO terms

that we tested in the section after.

3.1 Region-specific localization of binding terms
Here, we detail tests of our method over a subset of GO terms that

can be tied directly to protein sequence via structure, focusing on

cases where protein structure analysis provides unambiguous local-

izations to proteins with residue-level resolution. Results from the

region-level evaluation for four binding GO terms and four feature

sets are shown in Figure 2, with Figure 2(a) containing regions with

InterPro assignments and Figure 2(b) containing regions without

InterPro assignments. The evaluation results of all of these regions

combined can be found in the Supplementary Section 5.1.

We include both the BLAST and whole-protein baseline per-

formances for comparison, with the bottom panels showing the dif-

ferences in performances between the median AUPRs of our region-

specific method and whole-protein baseline. This head-to-head com-

parison allows us to eliminate the differences in raw performances

based on lack of informative features or annotations, allowing us to

focus entirely on the effectiveness of using this region-specific frame-

work for this particular set of feature types and GO terms. The main

difference between the models (aside from the region-specific con-

straints) is that the whole-protein baseline model uses a combination

of all the features found within the regions plus additional protein-

level features that span multiple regions, like protein families, which

would not exist when the regions are looked at in isolation.

When we look at regions with InterPro assignments, InterPro IDs

and Signature IDs do not benefit much from this approach and per-

form worse than baseline in most binding terms at the region-level,

while Keywords and K-mers show significant improvements across

binding terms. This is not surprising given that both features can be

found in regions without domain family assignments and are more

discriminating within regions compared to InterPro IDs and Signature

IDs, allowing for greater propagation of labels between regions.

On the other hand, when we look at regions without InterPro

assignments (and thus cannot be predicted using InterPro IDs—the

box plots show the performance when all scores are 0), Keywords

and Signature IDs both show significant improvements across bind-

ing terms, while K-mers show decreases in performances. This sug-

gests that there are informative features that exist in other databases

that have yet to be incorporated into InterPro and that these regions

Fig. 2. Performance comparisons of region-level predictions using BLAST

(green), whole-protein baseline model (orange) versus our region-specific

model (purple) for DNA (GO: 0003677), RNA (GO: 0003723), MG (GO:

0000287) and ZN (GO: 0008270) binding GO terms. IPR ¼ InterPro IDs, KEY ¼
Keywords, KMER ¼ K-mers, SIG ¼ Signature IDs. (a) Regions with InterPro

assignments, (b) Regions without any InterPro assignments. Upper panels:

Box plots showing the first quartile (Q1), median, third quartile (Q3) and out-

liers of AUPRs generated over 1000 rounds of bootstrapping. Bottom panels:

Differences between the median AUPR between whole-protein baseline and

region-specific methods corresponding to the pair of box plots directly above.

Positive values indicate that the region-specific method outperforms the

baseline and vice versa for negative values. Aside from the IPR performances

in (b), all differences are significant to at least.001 level based on test statistics

from two-tailed Wilcoxon signed rank test
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likely have less sequence homology to the currently annotated pro-

teins and regions.

Overall, Signature IDs show equivalent or better performance at

the region-level compared to InterPro IDs, pointing to the value of

unintegrated feature annotations, such as signal peptides and trans-

membrane helices, that would not be included in purely domain-

centric methods. InterPro assignments are dominated by Domain

and Family entry types (47 and 32% in yeast, 53 and 22% in

human, respectively), and in the majority of cases, two regions are

either assigned the same InterPro ID, and thus have a similarity

score of 1, or are assigned different InterPro IDs, and thus have a

similarity score of 0. As shown in Supplementary Figure S3, the

resulting pairwise similarity values for InterPro are very sparse rela-

tive to the other feature types and that sparsity has the effect of

reducing the effectiveness of term 2 in the cost function (equation 1),

which encourages propagation of labels between regions.

In the future, it would be trivial to extend this method to other,

perhaps more informative, sequence-derived representations like

ProtVec (Asgari and Mofrad, 2015), biophysical properties of the

amino acids themselves (Cozzetto et al., 2016), or even structure-

derived representations like contact maps and features extracted

from known structures using the Rosetta energy function (Alford

et al., 2017) to take into account short- and long-range interactions

between residues. In addition, we are also working on using autoen-

coders as a way to integrate the different feature types into a single,

low-dimensional feature space.

3.1.1 Structural examples of binding label localization

Here we leverage the binding proteins with known structures to in-

vestigate the performance and resolution of our method. Figure 3

shows some examples of the localizations of binding GO terms to

specific regions within the protein using only Keywords. Regions are

colored green according to positive predictions from Keyword fea-

tures. We consider a region to be positive if its predicted score is

larger than the threshold at which the F1 score (harmonic mean of

precision and recall) is at its maximum for the given GO term.

Different shades are used simply to delineate separate regions. None

of these regions have been annotated at time of training or testing.

Figure 3a and b show crystal structures of proteins containing

two chains with a DNA binding and a protein dimerization region.

In both cases, our region-specific method successfully localized the

DNA binding GO term only to the direct DNA binding regions,

while excluding the dimerization regions. Figure 3c shows an ex-

ample of RNA binding prediction for two neighbouring regions in

space but not in sequence, while Figure 3d–f all highlight zinc-

binding regions. In particular, the predicted binding region in

Figure 3e does not have a domain assigned, while the regions in

Figure 3f overlap two much larger regions outside of the available

structural coverage. One is assigned as an oxygenase domain, while

the other remains unassigned.

More details on the structures and binding residues can be found

in Supplementary Section 5.2.

3.2 Expanded functional evaluation at protein level
After the initial proof of concept, which shows that our region-

specific method can successfully localize binding GO term labels to

specific regions without prior domain-level annotations, we extend

the analysis to include GO terms from a larger number of functional

categories by evaluating the predictions at the protein level.

Figure 4 shows the differences in median AUPR performances of

our region-specific method relative to the whole-protein baseline

model using the same training, validation and test sets. Protein-level

predictions over all four feature types are evaluated and all GO

terms are grouped into the shared parental terms (shown in blue on

the top left) for clarity, with isolated terms grouped together as

‘Others’. The differences are shown as colored bars stacked either in

the positive (right) or negative (left) direction. Only differences that

are significant (P-value < 0.05 level based on two-tailed Wilcoxon

signed rank test) are shown on the plot. The numbers next to each

GO term represent the number of positive training and testing pro-

teins for that particular GO term (i.e. the particular class distribu-

tions during training and testing). Majority of the binding terms that

do not show much difference from baseline are not predictable using

any of the methods and this can be observed from the raw perform-

ances found in Supplementary Section 6.

Overall, our results here show that this framework can improve

protein-level function predictions for many of the MF-GO terms

evaluated, especially for Keywords and K-mer features that allow

for better label propagation between regions. The results also sug-

gest that the performance relative to the whole-protein baseline

model can give us a way to characterize region-specificity of differ-

ent GO terms and thus inform us on how to treat them during the

function prediction process.

The majority of Binding terms show improved performance re-

gardless of feature type, especially for terms with well-annotated

Fig. 3. Structural examples of DNA (a,b), RNA (c) and Zn (d–f) binding predic-

tions. Regions are colored in green if it is predicted to be positive for a given

GO term. Different shades of green are used to delineate separate regions.

The UniProtKB (PDB ids) are as follows: a) P04386 (3coq), b) P01106 (1nkp), c)

O95786 (3zd6), d) P03081 (2pf4), e) P39286 (5uz4), f) Q6N021 (5deu). Ligand

colors: DNA (blue). RNA (red), Zn (purple). Images are created with PyMOL

(Schrödinger, LLC, 2015)
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binding site annotations from InterPro and UniProtKB like metal

ion and DNA bindings. About two-thirds of the Catalytic activity

GO terms evaluated also show better performance across features

when the region-specific method is used, suggesting that it is possible

and helpful to localize some GO terms to single regions. For those

that perform worse, it is likely that specific features from multiple

regions are needed for the association or if the protein family is com-

posed of domains found in diverse proteins, such that a strong asso-

ciation can only be made at the level of the protein family itself.

Majority of the Transporter activity GO terms show a decrease

in performance with InterPro and Signature IDs, but improved per-

formance with Keywords, highlighting the advantage of using text

descriptions directly for better label propagation between regions.

For InterPro IDs in particular, if the association to the region fea-

tures are weak in the training set (i.e. the fraction of proteins with

those features that are positively annotated with that GO term is

low), then term 2 of the cost function (Equation 1) will weaken the

associations further due to high region similarity to regions in nega-

tively annotated proteins (refer to a similar discussion in Section 3.1

on sparsity of InterPro IDs).

Cases where K-mers show large improvements in performance

suggest that the GO term can be localized to sequence-specific

regions. This is supported by the improvements in GO terms such as

‘RNA polymerase II regulatory region sequence-specific DNA bind-

ing’ (GO: 0000977) under Binding and ‘RNA polymerase II tran-

scription factor activity, sequence-specific DNA binding’ (GO:

0000981) under Others.

4 Conclusion

In this work, we have described a function prediction pipeline to lo-

calize protein-level annotations to specific regions within the pro-

tein. It is based on the compact biologically reasonable assumption

that functional homology is mediated by regions with similar (if un-

known) features and is built around a cost function that takes into

account regions with unassigned domain families but contain exist-

ing feature annotations.

The results from our region-level evaluation using ligand binding

datasets show that our method can successfully localize functions

known to be site-specific to their respective functional regions and

performs significantly better than the whole-protein variant. We

also evaluate the performance of our region-specific prediction

method at the whole-protein level to determine the protein functions

that benefit from our explicit region localization and find that, while

localization improves performance for some functions, it also

decreases performance for others.

This difference in the effect of mapping function to specific

regions supports the notion that different GO terms have different

levels of operational units and that they should be treated differently

in protein function prediction pipelines to take that into account

(with some functions tied to small active/binding regions, some tied

to domains and some that need multiple domains and regions for

proper functioning). Our results serve as a starting point to begin

categorizing GO terms into region-specific and protein-wide sub

groups to maximize the predictive performance of protein function

prediction for each GO term and to provide a framework for select-

ing correct function prediction methods for different functions.

Future work would include introducing a hierarchy of region

boundaries within a single protein to allow for different levels of

label propagation for different GO terms, and also the use of differ-

ent feature types simultaneously to consolidate different sources of

information. One could, in principle, use autoencoders or NNMF to

integrate the different feature types into a single, low-dimensional

feature space that would be well-suited to our region-level model

(Gligorijevi�c and Pr�zulj, 2015; Li et al., 2016). We will also experi-

ment with combining our region-specific model with protein–pro-

tein network data using methods such as deepNF (Gligorijevi�c et al.,

2018) to incorporate known overarching relationships between pro-

teins for a more comprehensive function prediction tool.
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